Dynamic Changes in and Driving Factors of Soil Organic Carbon in China from 2001 to 2020
<p>Distribution of sample values of soil carbon density in soil layers at 0–20 cm (<b>a</b>) and 0–100 cm (<b>b</b>) depths. Sampled data refer to the soil data obtained from our project team’s field survey. Collected data refer to the collection of data from the literature and databases.</p> "> Figure 2
<p>Scatter plots of estimated and predicted SOCD values: depths of 0–20 cm (<b>a</b>) and 0–100 cm (<b>b</b>). R<sup>2</sup>, coefficient of determination; RMSE, root mean squared error; LCCC, Lin’s concordance correlation coefficient.</p> "> Figure 3
<p>Order of importance of ECs used to predict SOCD in random forest: depths of 0–20 cm (<b>a</b>) and 0–100 cm (<b>b</b>).</p> "> Figure 4
<p>Spatial distribution of and temporal variation in 0–20 cm SOCD. (<b>a</b>–<b>e</b>) represent SOCD distribution maps; (<b>f</b>) shows the change in SOCD. When slope > 0, the SOCD of the time series shows an increasing trend; when slope < 0, the SOCD of the time series shows a decreasing trend.</p> "> Figure 5
<p>Spatial distribution of and temporal variation in 0–100 cm SOCD. (<b>a</b>–<b>e</b>) represent SOCD spatial distribution; (<b>f</b>) shows the change in SOCD. When slope > 0, the SOCD of the time series shows an increasing trend; when slope < 0, the SOCD of the time series shows a decreasing trend.</p> "> Figure 6
<p>Zonal statistics for SOCS, mean SOCD, and mean Theil–Sen median slope: depth of 0–20 cm (<b>a</b>) and 0–100 cm (<b>b</b>).</p> "> Figure 6 Cont.
<p>Zonal statistics for SOCS, mean SOCD, and mean Theil–Sen median slope: depth of 0–20 cm (<b>a</b>) and 0–100 cm (<b>b</b>).</p> "> Figure 7
<p>Spatial pattern of partial correlation and correlation coefficients of SOCD at a depth between 0 and 20 cm and influencing factors from 2001 to 2020. These factors include temperature (<b>a</b>), precipitation (<b>b</b>), land use disturbance intensity (<b>c</b>), and (<b>d</b>) the percentage of partial correlation and correlation between SOCD at a 0 to 20 cm depth and the three influencing factors. Upward and downward bars indicate percentages of positive and negative correlation, respectively. Colored areas indicate correlation coefficients greater than 0.5 or less than −0.5.</p> "> Figure 8
<p>Spatial pattern of partial correlation and correlation coefficients of SOCD at a depth between 0 and 100 cm and influencing factors from 2001 to 2020. These factors include temperature (<b>a</b>), precipitation (<b>b</b>), land use disturbance intensity (<b>c</b>), and (<b>d</b>) the percentage of partial correlation and correlation between SOCD at a 0 to 100 cm depth and the three influencing factors. Upward and downward bars indicate percentages of positive and negative correlation, respectively. Colored areas indicate correlation coefficients greater than 0.5 or less than −0.5.</p> "> Figure 9
<p>Land use change from 2001 to 2020 (the left side is the area transferred out of different land types, and the right side is the area transferred in from different land types; area unit is km<sup>2</sup>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inversion of SOCD Spatial Distribution
2.1.1. SOCD Sample Data Sources and Processing
2.1.2. Data Collection and Processing of ECs
2.1.3. Extraction of ECs
2.1.4. Model Building and Evaluation
2.2. Changes in SOCD Trends and Attribution Analysis
2.2.1. Land Use Change Analysis and Intensity Detection
2.2.2. Partial Correlation and Correlation Analysis
3. Results
3.1. Model Performance
3.2. Spatial Distribution and Dynamics of SOCD
3.3. Impacts of Climate Change and Land Use Disturbance on SOCD
4. Discussion
4.1. Model Performance and Variable Selection
4.2. Driving Factors for SOC
4.2.1. Impact of Climate Change on SOC
4.2.2. Impact of Land Use Change on SOC
4.3. Positive Role of National Land Policies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Categories | Variables | Description |
---|---|---|
MODIS data | Band 1 | Surface reflectance band 1 (620–670 nm) |
Band 2 | Surface reflectance band 2 (841–876 nm) | |
Band 3 | Surface reflectance band 3 (459–479 nm) | |
Band 4 | Surface reflectance band 4 (545–565 nm) | |
Band 5 | Surface reflectance band 5 (1230–1250 nm) | |
Band 6 | Surface reflectance band 6 (1628–1652 nm) | |
Band 7 | Surface reflectance band 7 (2105–2155 nm) | |
NDVI | Normalized difference vegetation index | |
EVI | Enhanced vegetation index | |
NPP | Net primary production | |
GPP | Gross primary productivity | |
Climate factors | Temperature | Annual mean temperature |
Precipitation | Annual precipitation | |
Topographic factors | DEM | DEM elevation |
Slope | — | |
Aspect | — | |
Soil factors | CEC | Soil cation exchange capacity |
Clay | Percentage of clay in the soil | |
pH_H2O | Soil pH | |
Porosity | Soil porosity | |
Silt | Percentage of silt in the soil |
References
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Bossio, D.A.; Cook-Patton, S.C.; Ellis, P.W.; Fargione, J.; Sanderman, J.; Smith, P.; Wood, S.; Zomer, R.J.; von Unger, M.; Emmer, I.M.; et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 2020, 3, 398. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Beillouin, D.; Corbeels, M.; Demenois, J.; Berre, D.; Boyer, A.; Fallot, A.; Feder, F.; Cardinael, R. A global meta-analysis of soil organic carbon in the Anthropocene. Nat. Commun. 2023, 14, 3700. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Woolf, D.; Fan, M.S.; Qiao, L.; Li, R.; Lehmann, J. Global crop production increase by soil organic carbon. Nat. Geosci. 2023, 16, 1159–1165. [Google Scholar] [CrossRef]
- Siddique, K.H.; Bolan, N.; Rehman, A.; Farooq, M. Enhancing crop productivity for recarbonizing soil. Soil Tillage Res. 2024, 235, 105863. [Google Scholar] [CrossRef]
- Beillouin, D.; Demenois, J.; Cardinael, R.; Berre, D.; Corbeels, M.; Fallot, A.; Boyer, A.; Feder, F. A global database of land management, land-use change and climate change effects on soil organic carbon. Sci. Data 2022, 9, 228. [Google Scholar] [CrossRef]
- Tilahun, E.; Haile, M.; Gebresamuel, G.; Zeleke, G. Spatial and temporal dynamics of soil organic carbon stock and carbon sequestration affected by major land-use conversions in Northwestern highlands of Ethiopia. Geoderma 2022, 406, 115506. [Google Scholar] [CrossRef]
- Chen, B.; Lu, Q.K.; Wei, L.F.; Fu, W.Q.; Wei, Z.Y.; Tian, S. Global predictions of topsoil organic carbon stocks under changing climate in the 21st century. Sci. Total Environ. 2024, 908, 168448. [Google Scholar] [CrossRef]
- Wang, M.M.; Guo, X.W.; Zhang, S.; Xiao, L.J.; Mishra, U.; Yang, Y.H.; Zhu, B.; Wang, G.C.; Mao, X.L.; Qian, T. Global soil profiles indicate depth-dependent soil carbon losses under a warmer climate. Nat. Commun. 2022, 13, 5514. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Landschützer, P.; Le Quéré, C.; Luijkx, I.T.; Peters, G.P.; et al. Global Carbon Budget 2023. Earth System Science Data Discussions 2023, 15, 5369. [Google Scholar] [CrossRef]
- Bradford, M.A.; Wieder, W.R.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar] [CrossRef]
- Ding, X.L.; Chen, S.Y.; Zhang, B.; Liang, C.; He, H.B.; Horwath, W.R. Warming increases microbial residue contribution to soil organic carbon in an alpine meadow. Soil Biol. 2019, 135, 13–19. [Google Scholar] [CrossRef]
- Wang, C.; Morrissey, E.M.; Mau, R.L.; Hayer, M.; Piñeiro, J.; Mack, M.C.; Marks, J.C.; Bell, S.L.; Miller, S.N.; Schwartz, E. The temperature sensitivity of soil: Microbial biodiversity, growth, and carbon mineralization. ISME J. 2021, 15, 2738–2747. [Google Scholar] [CrossRef] [PubMed]
- Soong, J.L.; Castanha, C.; Hicks Pries, C.E.; Ofiti, N.; Porras, R.C.; Riley, W.J.; Schmidt, M.W.; Torn, M.S. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux. Sci. Adv. 2021, 7, eabd1343. [Google Scholar] [CrossRef]
- Wang, N.; Quesada, B.; Xia, L.L.; Butterbach-Bahl, K.; Goodale, C.L.; Kiese, R. Effects of climate warming on carbon fluxes in grasslands—A global meta analysis. Glob. Chang. Biol. 2019, 25, 1839–1851. [Google Scholar] [CrossRef]
- Craig, M.E.; Geyer, K.M.; Beidler, K.V.; Brzostek, E.R.; Frey, S.D.; Stuart Grandy, A.; Liang, C.; Phillips, R.P. Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits. Nat. Commun. 2022, 13, 1229. [Google Scholar] [CrossRef]
- Man, M.; Wagner-Riddle, C.; Dunfield, K.E.; Deen, B.; Simpson, M.J. Long-term crop rotation and different tillage practices alter soil organic matter composition and degradation. Soil Tillage Res. 2021, 209, 104960. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, C.; Sun, O.J. Spatially differentiated changes in regional climate and underlying drivers in southwestern China. J. For. Res. 2022, 33, 755–765. [Google Scholar] [CrossRef]
- Jouberton, A.; Shaw, T.E.; Miles, E.; McCarthy, M.; Fugger, S.; Ren, S.; Dehecq, A.; Yang, W.; Pellicciotti, F. Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2022, 119, e2109796119. [Google Scholar] [CrossRef]
- Ding, Q.; Shao, H.; Chen, X.; Zhang, C. Urban land conversion reduces soil organic carbon density under impervious surfaces. Glob. Biogeochem. Cycles 2022, 36, e2021GB007293. [Google Scholar] [CrossRef]
- Luo, Y.L.; Shen, J.; Chen, A.F.; Tao, Q.; Li, Q.Q.; White, P.J.; Li, T.Q.; Li, B.; Chen, L.; Li, H.X. Loss of organic carbon in suburban soil upon urbanization of Chengdu megacity, China. Sci. Total Environ. 2021, 785, 147209. [Google Scholar] [CrossRef] [PubMed]
- Li, H.W.; Wu, Y.P.; Liu, S.G.; Zhao, W.Z.; Xiao, J.F.; Winowiecki, L.A.; Vågen, T.G.; Xu, J.C.; Yin, X.W.; Wang, F. The Grain-for-Green project offsets warming-induced soil organic carbon loss and increases soil carbon stock in Chinese Loess Plateau. Sci. Total Environ. 2022, 837, 155469. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Dou, Y.X.; Wang, B.R.; Wang, Y.Q.; Liang, C.; An, S.S.; Soromotin, A.; Kuzyakov, Y. Increasing contribution of microbial residues to soil organic carbon in grassland restoration chronosequence. Soil Biol. Biochem. 2022, 170, 108688. [Google Scholar] [CrossRef]
- Xu, L.; He, N.P.; Rui, Y.G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2019, 4. [Google Scholar] [CrossRef]
- Wen, S.; Lan, C.C.; Hui, D.T.; Ling, F.Y.; Xang, H.X.; Tao, H.Y.; Hong, K.F.; Dong, L.Z.; Zhen, L.G.; Jun, L.X.; et al. A dataset of topsoil organic carbon density for agricultural ecosystem field stations of Chinese Ecosystem Research Network (2005–2015). China Sci. Data 2020, 5, 56–68. [Google Scholar]
- Chen, L.T.; Jing, X.; Flynn, D.F.B.; Shi, Y.; Kühn, P.; Scholten, T.; He, J.S. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes. Geoderma 2017, 288, 166–174. [Google Scholar] [CrossRef]
- Wu, X.D.; Fang, H.B.; Zhao, Y.H.; Smoak, J.M.; Li, W.P.; Shi, W.; Sheng, Y.; Zhao, L.; Ding, Y.J. A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau. J. Geophys. Res. Biogeosci. 2017, 122, 1705–1717. [Google Scholar] [CrossRef]
- Shen, K.H.; Wei, S.G.; Li, L.; Chu, X.X.; Zhong, J.J.; Zhou, J.G.; Zhao, Y. Spatial distribution patterns of soil organic carbon in karst forests of the Lijiang river basin and Its driving factors. Environ. Sci. 2024, 45, 323–334. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Huang, Y.; Zhang, W. Modeling soil organic carbon change in croplands of China, 1980–2009. Glob. Planet. Chang. 2012, 82–83, 115–128. [Google Scholar] [CrossRef]
- Wang, S.; Huang, M.; Shao, X.M.; Mickler, R.A.; Li, K.R.; Ji, J.J. Vertical Distribution of Soil Organic Carbon in China. Environ. Manag. 2004, 33, S200–S209. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Liu, B.; Zhu, A.; Duan, Q.; Wu, L.; Ji, D.; Ye, A.; Yuan, H.; Zhang, Q.; et al. A China dataset of soil properties for land surface modeling. J. Adv. Model. Earth Syst. 2013, 5, 212–224. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Indag. Math. 1992, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Nackaerts, K.; Vaesen, K.; Muys, B.; Coppin, P. Comparative performance of a modified change vector analysis in forest change detection. Int. J. Remote Sens. 2005, 26, 839–852. [Google Scholar] [CrossRef]
- Karnieli, A.; Qin, Z.H.; Wu, B.; Panov, N.; Yan, F. Spatio-temporal dynamics of land-use and land-cover in the Mu Us sandy land, China, using the change vector analysis technique. Remote Sens. 2014, 6, 9316–9339. [Google Scholar] [CrossRef]
- Malila, W.A. Change vector analysis: An approach for detecting forest changes with Landsat. In LARS Symposia; Purdue University Libraries: West Lafayette, IN, USA, 1980; p. 385. [Google Scholar]
- Chen, J.; Gong, P.; He, C.Y.; Pu, R.L.; Shi, P.J. Land-use/land-cover change detection using improved change-vector analysis. Photogramm. Eng. Remote Sens. 2003, 69, 369–379. [Google Scholar] [CrossRef]
- Yang, R.M.; Huang, L.M.; Zhang, X.; Zhu, C.M.; Xu, L. Mapping the distribution, trends, and drivers of soil organic carbon in China from 1982 to 2019. Geoderma 2023, 429, 116232. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Ding, J.L.; Zhu, C.M.; Wang, J.J.; Ge, X.Y.; Li, X.; Han, L.J.; Chen, X.Y.; Wang, J.Z. Historical and future variation of soil organic carbon in China. Geoderma 2023, 436, 116557. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Ding, J.L.; Zhu, C.M.; Wang, J.J.; Li, X.; Ge, X.Y.; Han, L.J.; Chen, X.Y.; Wang, J.Z. Exploring the inter-decadal variability of soil organic carbon in China. Catena 2023, 230, 107242. [Google Scholar] [CrossRef]
- Chi, Y.; Liu, D.H.; Gao, J.H.; Sun, J.K.; Zhang, Z.W.; Xing, W.X.; Qu, Y.B.; Ma, X.J.; Zha, B. Coastal surface soil carbon stocks have distinctly increased under extensive ecological restoration in northern China. Commun. Earth Environ. 2023, 4, 373. [Google Scholar] [CrossRef]
- Sahu, B.; Ghosh, A.K. Deterministic and geostatistical models for predicting soil organic carbon in a 60 ha farm on Inceptisol in Varanasi, India. Geoderma Reg. 2021, 26, e00413. [Google Scholar] [CrossRef]
- Liu, W.J.; Xu, C.; Zhang, Z.M.; De Boeck, H.; Wang, Y.F.; Zhang, L.K.; Xu, X.W.; Zhang, C.; Chen, G.R.; Xu, C. Machine learning-based grassland aboveground biomass estimation and its response to climate variation in Southwest China. Front. Ecol. Evol. 2023, 11, 1146850. [Google Scholar] [CrossRef]
- Huang, T.B.; Ou, G.L.; Wu, Y.; Zhang, X.L.; Liu, Z.H.; Xu, H.; Xu, X.W.; Wang, Z.H.; Xu, C. Estimating the aboveground biomass of various forest types with high heterogeneity at the provincial scale based on multi-source data. Remote Sens. 2023, 15, 3550. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Yang, Z.; Yu, N.; Jin, X. Temporal and spatial changes of soil organic carbon stocks in the forest area of northeastern China. Forests 2019, 10, 1023. [Google Scholar] [CrossRef]
- Zhang, Y.C.S.; Guo, L.; Chen, Y.Y.; Shi, T.Z.; Luo, M.; Ju, Q.L.; Zhang, H.T.; Wang, S.Q. Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China. Remote Sens. 2019, 11, 1683. [Google Scholar] [CrossRef]
- Fang, J.Y.; Liu, G.H.; Ling, X.S. Carbon reservoir of terrestrial ecosystem in China. In Monitoring and Relevant Process of Greenhouse Gas Concentration and Emission; Wang, G.C., Pu, W.Y., Eds.; China Environment Sciences Publishing House: Beijing, China, 1996; pp. 109–128. [Google Scholar]
- Wang, S.Q.; Zhou, C.H. Estimating soil carbon reservior of terrestrial ecosystem in China. Geogr. Res. 1999, 18, 349–356. [Google Scholar]
- Yang, Y.H.; Shi, Y.; Shun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T.; Yu, L.F.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China-Life Sci. 2022, 52, 534–574. [Google Scholar]
- Tang, X.L.; Zhao, X.; Bai, Y.F.; Tang, Z.Y.; Wang, W.T.; Zhao, Y.C.; Wan, H.W.; Xie, Z.Q.; Shi, X.Z.; Wu, B.F. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.R.; He, N.P. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J. Geogr. Sci. 2019, 29, 49–66. [Google Scholar] [CrossRef]
- Zhang, L.M.; Zheng, Q.F.; Liu, Y.L.; Liu, S.G.; Yu, D.S.; Shi, X.Z.; Xing, S.H.; Chen, H.Y.; Fan, X.Y. Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma 2019, 337, 1105–1115. [Google Scholar] [CrossRef]
- Feng, J.G.; He, K.Y.; Zhang, Q.F.; Han, M.G.; Zhu, B. Changes in plant inputs alter soil carbon and microbial communities in forest ecosystems. Glob. Change Biol. 2022, 28, 3426–3440. [Google Scholar] [CrossRef] [PubMed]
- Domeignoz-Horta, L.A.; Pold, G.; Erb, H.; Sebag, D.; Verrecchia, E.; Northen, T.; Louie, K.; Eloe-Fadrosh, E.; Pennacchio, C.; Knorr, M.A. Substrate availability and not thermal-acclimation controls microbial temperature sensitivity response to long term warming. Glob. Change Biol. 2022, 29, 1574–1590. [Google Scholar] [CrossRef]
- Yang, Y.; Tilman, D.; Furey, G.; Lehman, C. Soil carbon sequestration accelerated by restoration of grassland biodiversity. Nat. Commun. 2019, 10, 718. [Google Scholar] [CrossRef]
- Xu, S.; Wang, J.J.; Sayer, E.J.; Lam, S.K.; Lai, D.Y. Precipitation change affects forest soil carbon inputs and pools: A global meta-analysis. Sci. Total Environ. 2024, 908, 168171. [Google Scholar] [CrossRef]
- Jiang, M.D.; Li, H.L.; Zhang, W.; Liu, J.B.; Zhang, Q. Effects of climate change and grazing on the soil organic carbon stock of alpine wetlands on the Tibetan Plateau from 2000 to 2018. Catena 2024, 238, 107870. [Google Scholar] [CrossRef]
- Song, J.; Wan, S.Q.; Piao, S.L.; Knapp, A.K.; Classen, A.T.; Vicca, S.; Ciais, P.; Hovenden, M.J.; Leuzinger, S.; Beier, C.; et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. 2019, 3, 1320. [Google Scholar] [CrossRef]
- Nottingham, A.T.; Whitaker, J.; Ostle, N.J.; Bardgett, R.D.; McNamara, N.P.; Fierer, N.; Salinas, N.; Ccahuana, A.J.; Turner, B.L.; Meir, P. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 2019, 22, 1889–1899. [Google Scholar] [CrossRef]
- Chen, J.; Elsgaard, L.; van Groenigen, K.J.; Olesen, J.E.; Liang, Z.; Jiang, Y.; Lærke, P.E.; Zhang, Y.F.; Luo, Y.Q.; Hungate, B.A. Soil carbon loss with warming: New evidence from carbon-degrading enzymes. Glob. Chang. Biol. 2020, 26, 1944–1952. [Google Scholar] [CrossRef]
- Yu, Y.Y.; Ru, J.Y.; Lei, B.H.; Han, S.J.; Wan, S.Q.; Zheng, J.Q. Distinct response patterns of soil micro-eukaryotic communities to early-season and late-season precipitation in a semiarid grassland. Soil Biol. Biochem. 2024, 194, 109427. [Google Scholar] [CrossRef]
- Wang, M.M.; Zhang, S.; Guo, X.W.; Xiao, L.J.; Yang, Y.H.; Luo, Y.Q.; Mishra, U.; Luo, Z.K. Responses of soil organic carbon to climate extremes under warming across global biomes. Nat. Clim. Chang. 2024, 14, 98–105. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Shi, H.; Chen, X.; Han, L.; Wang, J. Changes in soil organic carbon stocks from 1980-1990 and 2010-2020 in the northwest arid zone of China. Land Degrad. Dev. 2022, 33, 2713–2727. [Google Scholar] [CrossRef]
- Bai, L.H.; Zhang, H.; Zhang, J.G.; Li, X.; Wang, B.; Miao, H.Z.; Sial, T.A.; Dong, Q.; Fu, G.J.; Li, L.M. Long-term vegetation restoration increases carbon sequestration of different soil particles in a semi-arid desert. Ecosphere 2021, 12, 109427. [Google Scholar] [CrossRef]
- Li, Y.F.; Xie, T.; Yang, H.T.; Li, X.J. Revegetation enhances soil organic carbon mineralization and its temperature sensitivity in the Tengger Desert, North China. Catena 2022, 218, 106541. [Google Scholar] [CrossRef]
- Lin, B.J.; Li, R.C.; Liu, K.C.; Oladele, O.P.; Xu, Z.Y.; Lal, R.; Zhao, X.; Zhang, H.L. Management-induced changes in soil organic carbon and related crop yield dynamics in China’s cropland. Glob. Chang. Biol. 2023, 29, 3575–3590. [Google Scholar] [CrossRef]
- Xie, E.Z.; Zhang, Y.X.; Huang, B.; Zhao, Y.C.; Shi, X.Z.; Hu, W.Y.; Qu, M.K. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 2021, 205, 104763. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Li, W.; Zhao, Z.H.; Zhou, Y.F.; Zhang, J.B.; Wu, Q.C. Spatiotemporal variability and related factors of soil organic carbon in henan province. Vadose Zone J. 2018, 17, 1–10. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, C.H.; Wang, M.L.; Zhao, L.; Zhao, Y.C.; Zhang, Q.P.; Zhang, C.Y. Decoupling analysis to assess the impact of land use patterns on carbon emissions: A case study in the Yellow River Delta efficient eco-economic zone, China. J. Clean. Prod. 2023, 412, 137415. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.J.; Wang, L.P.; Zheng, M.; Wang, Z.M.; Song, K.S. Effects of cropland reclamation on soil organic carbon in China’s black soil region over the past 35 years. Glob. Chang. Biol. 2023, 29, 5460–5477. [Google Scholar] [CrossRef]
- Liu, H.B.; Li, S.T.; Zhou, Y.P.; Health, P. Spatial-temporal variability of soil organic matter in urban fringe over 30 years: A case study in Northeast China. Int. J. Environ. Res. Public Health 2020, 17, 292. [Google Scholar] [CrossRef] [PubMed]
- He, X.X.; Sheng, M.Y.; Wang, L.J.; Zhang, S.L.; Luo, N.N. Effects on soil organic carbon accumulation and mineralization of long-term vegetation restoration in Southwest China karst. Ecol. Indic. 2022, 145, 109622. [Google Scholar] [CrossRef]
- Hong, S.B.; Ding, J.Z.; Kan, F.; Xu, H.; Chen, S.Y.; Yao, Y.T.; Piao, S.L. Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen. Nat. Commun. 2023, 14, 3196. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhuang, Q.L.; Zhou, M.Y.; Jin, X.X.; Yu, N.; Yuan, T. Temporal and spatial changes in soil organic carbon and soil inorganic carbon stocks in the semi-arid area of northeast China. Ecol. Indic. 2023, 146, 109776. [Google Scholar] [CrossRef]
- Ou, Y.; Rousseau, A.N.; Wang, L.X.; Yan, B.X. Spatio-temporal patterns of soil organic carbon and pH in relation to environmental factors—A case study of the Black Soil Region of Northeastern China. Agric. Ecosyst. Environ. 2017, 245, 22–31. [Google Scholar] [CrossRef]
- Huang, B.; Sun, W.X.; Zhao, Y.C.; Zhu, J.; Yang, R.Q.; Zou, Z.; Ding, F.; Su, J.P. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma 2007, 139, 336–345. [Google Scholar] [CrossRef]
- Qi, J.Y.; Wang, X.; Zhao, X.; Pu, C.; Kan, Z.R.; Li, C.; Liu, P.; Xiao, X.P.; Lal, R.; Zhang, H.L. Temporal variability of soil organic carbon in paddies during 13-year conservation tillage. Land Degrad. Dev. 2019, 30, 1840–1850. [Google Scholar] [CrossRef]
- Wang, G.Y.; Mao, J.F.; Fan, L.L.; Ma, X.X.; Li, Y.M. Effects of climate and grazing on the soil organic carbon dynamics of the grasslands in Northern Xinjiang during the past twenty years. Glob. Ecol. Conserv. 2022, 34, e02039. [Google Scholar] [CrossRef]
- Hu, L.N.; Li, Q.; Yan, J.H.; Liu, C.; Zhong, J.X. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Sci. Total Environ. 2022, 820, 153137. [Google Scholar] [CrossRef]
- Cheng, S.L.; Ouyang, H.; Niu, H.S.; Wang, L.; Zhang, F.; Gao, J.Q.; Tian, Y.Q. Spatial and temporal dynamics of soil organic carbon in reserved desertification area: A case study in Yulin City, Shaanxi Province, China. Chin. Geogr. Sci. 2004, 14, 245–250. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.R.; Liu, J.; Clevers, J.G. Spatio-temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: A case study in Heyang County. Environ. Earth Sci. 2016, 75, 1–15. [Google Scholar] [CrossRef]
- Ye, H.C.; Huang, Y.F.; Chen, P.F.; Huang, W.J.; Zhang, S.W.; Huang, S.Y.; Sen, H. Effects of land use change on the spatiotemporal variability of soil organic carbon in an urban-rural ecotone of Beijing, China. J. Integr. Agric. 2016, 15, 918–928. [Google Scholar] [CrossRef]
- Wang, X.H.; He, J.; Mou, X.J.; Zhu, Z.X.; Chai, H.X.; Liu, G.H.; Rao, S.; Zhang, X. 20 Years of Ecological Protection and Restoration in China:Review and Prospect. Chin. J. Environ. Manag. 2021, 13, 85–92. [Google Scholar]
- Deng, L.; Liu, G.B.; Shangguan, Z.P. Land-use conversion and changing soil carbon stocks in China’s ‘Grain-for-Green’ Program: A synthesis. Glob. Chang. Biol. 2014, 20, 3544–3556. [Google Scholar] [CrossRef]
- Zhao, Y.C.; Wang, M.Y.; Hu, S.J.; Zhang, X.D.; Ouyang, Z.; Zhang, G.L.; Huang, B.; Zhao, S.W.; Wu, J.S.; Xie, D.T. Economics-and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl. Acad. Sci. USA 2018, 115, 4045–4050. [Google Scholar] [CrossRef]
- Mo, F.; Yang, D.Y.; Wang, X.K.; Crowther, T.W.; Vinay, N.; Luo, Z.K.; Yu, K.L.; Sun, S.K.; Zhang, F.; Xiong, Y.C.; et al. Nutrient limitation of soil organic carbon stocks under straw return. Soil Biol. Biochem. 2024, 192, 109360. [Google Scholar] [CrossRef]
- Stella, T.; Mouratiadou, I.; Gaiser, T.; Berg-Mohnicke, M.; Wallor, E.; Ewert, F.; Nendel, C. Estimating the contribution of crop residues to soil organic carbon conservation. Environ. Res. Lett. 2019, 14, 094008. [Google Scholar] [CrossRef]
- Bárcena, T.G.; Kiær, L.P.; Vesterdal, L.; Stefánsdóttir, H.M.; Gundersen, P.; Sigurdsson, B.D. Soil carbon stock change following afforestation in Northern Europe: A meta-analysis. Glob. Chang. Biol. 2014, 20, 2393–2405. [Google Scholar] [CrossRef]
- Nash, P.R.; Gollany, H.T.; Liebig, M.A.; Halvorson, J.J.; Archer, D.W.; Tanaka, D.L. Simulated Soil Organic Carbon Responses to Crop Rotation, Tillage, and Climate Change in North Dakota. J. Environ. Qual. 2018, 47, 654–662. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, F.; Yan, M.; Zhang, L.; Yang, J.; Chen, G.; Shan, K.; Zhang, C.; Xu, X.; Wang, Z.; Xu, C. Dynamic Changes in and Driving Factors of Soil Organic Carbon in China from 2001 to 2020. Land 2024, 13, 1764. https://doi.org/10.3390/land13111764
Zou F, Yan M, Zhang L, Yang J, Chen G, Shan K, Zhang C, Xu X, Wang Z, Xu C. Dynamic Changes in and Driving Factors of Soil Organic Carbon in China from 2001 to 2020. Land. 2024; 13(11):1764. https://doi.org/10.3390/land13111764
Chicago/Turabian StyleZou, Fuyan, Min Yan, Liankai Zhang, Jinjiang Yang, Guiren Chen, Keqiang Shan, Chen Zhang, Xiongwei Xu, Zhenhui Wang, and Can Xu. 2024. "Dynamic Changes in and Driving Factors of Soil Organic Carbon in China from 2001 to 2020" Land 13, no. 11: 1764. https://doi.org/10.3390/land13111764