Laboratory Assessment for Determining Microplastics in Freshwater Systems—Characterization and Identification along the Somesul Mic River
<p>Map of sampling points: UP Floresti, DW Floresti, UP Cluj-Napoca WWTP, and DW Cluj-Napoca WWTP (Google maps and QGis—3.26 Buenos Aires Maps Program).</p> "> Figure 2
<p>Examples of the microscopic visualization of particles suspected to be MPs (indicated by the black arrow) from surface waters concentrated through 20 µm nets in the Floresti area. The picture was taken before the digestion of the organic matter (10×–40× magnifications); scale bar = 1–5 mm.</p> "> Figure 3
<p>MPs (black arrow) in the form of fibers—(purple, blue, black, and orange) in sediment collected on a 500 µm sieve (possibly polypropylene or polyamide)—UP Floresti; scale bar = 5 mm, 400 µm, 500 µm, 1 mm, 1 mm, and 1 mm.</p> "> Figure 4
<p>MPs (white arrow) in the form of fibers—(blue, white, and pink) and fragments (pink, white, and blue-green) in sediment collected on a 250 µm sieve—UP Floresti; scale bar = 500 µm, 1 mm, 200 µm, 1 mm, and 1 mm.</p> "> Figure 5
<p>MPs (white arrow) in the form of fibers (purple) and fragments (transparent) in sediment collected on a 40 µm sieve—UP Floresti; scale bar = 1 mm, 500 µm, 1 mm.</p> "> Figure 6
<p>MPs (white arrow) in the form of fibers (red and blue), ribbon (transparent and white), foam spheres (white) and fragments (transparent and red) in surface water collected on a 200 µm filter—UP Floresti; scale bar = 5 mm, 2 mm, and 1 mm.</p> "> Figure 7
<p>MPs (white arrow) in the form of fibers (purple and blue), fragments (brown, yellow, and blue) and foam (white) in sediment collected on the 500 µm sieve—DW Floresti; scale bar = 200 µm, 500 µm, 1 mm, 5 mm, 500 µm, and 500 µm.</p> "> Figure 8
<p>MPs (white arrow) in the form of fibers (purple and red) and fragments (red) in sediment collected on the 250 µm sieve—DW Floresti; scale bar = 500 µm, 500 µm, 1 mm, and 200 µm.</p> "> Figure 9
<p>MPs (white arrow) in the form of fibers (purple, blue, pink, and red) and fragments (yellow) in sediment collected on the 40 µm sieve—DW Floresti; scale bar = 1 mm, 500 µm, 1 mm, 500 µm, and 200 µm.</p> "> Figure 10
<p>MPs (white arrow) in the form of spheres and fragments (blue and red) and fibers (red) in surface water collected using a 20 µm filter—DW Floresti; scale bar = 5 mm, 500 µm.</p> "> Figure 11
<p>MPs (white arrow) in the form of fibers (brown and green) and fragments (red and white) in sediment collected on the 500 µm sieve—UP Cluj-Napoca WWTP; scale bar = 5 mm, 500 µm, and 5 mm.</p> "> Figure 12
<p>MPs (white arrow) in the form of purple fibers in sediment collected on the 40 µm sieve—UP Cluj-Napoca WWTP; scale bar = 1 mm and 500 µm.</p> "> Figure 13
<p>MPs (white arrow) in the form of foam (white) and fibers (purple) in surface water collected on the 20 µm filter—UP Cluj-Napoca WWTP; scale bar = 1 mm.</p> "> Figure 14
<p>MPs (white arrow) in the form of fibers (purple, blue, and pink) and fragments (blue and pink) in sediment collected on the 40 µm sieve—DW Cluj-Napoca WWTP; scale bar = 200 µm, 500 µm, 1 mm, 1 mm, and 500 µm.</p> "> Figure 15
<p>MPs (white arrow) in the form of fibers (purple, pink, and transparent) and fragments (transparent and yellow) in sediment collected on the 250 µm sieve—DW Cluj-Napoca WWTP; scale bar = 1 mm, 500 µm, 200 µm, 1 mm, 200 µm, and 500 µm.</p> "> Figure 16
<p>MPs (white arrow) in the form of fibers (blue) and fragments (red) in sediment collected on the 500 µm sieve—DW Cluj-Napoca WWTP; scale bar = 500 µm and 200 µm.</p> "> Figure 17
<p>MPs (white arrow) in the form of fibers (purple, blue, and pink) and fragments (transparent and orange) in surface water collected on the 20 µm filter—DW Cluj-Napoca WWTP; scale bar = 1 mm, 1 mm, 2 mm, and 500 µm.</p> "> Figure 18
<p>MPs (white arrow) in the form of fibers (purple and blue) and fragments (green and red) isolated from the WWTP effluent without concentration of the sample; scale bar = 2 mm, 1 mm, 500 µm, 500 µm, and 200 µm.</p> "> Figure 19
<p>SEM images of suspected MPs: (<b>a</b>) sphere and fragments in particles size of 475 nm to 66 µm, scale bar = 10 µm; and (<b>b</b>) fibers in particles sizes of 23.49 to 407 µm, scale bar = 100 µm.</p> "> Figure 20
<p>Raman spectra of the standard MPs: (<b>a</b>) PE 40–48 µm and 3 mm; (<b>b</b>) PS 3 mm; (<b>c</b>) PP 3 mm.</p> "> Figure 20 Cont.
<p>Raman spectra of the standard MPs: (<b>a</b>) PE 40–48 µm and 3 mm; (<b>b</b>) PS 3 mm; (<b>c</b>) PP 3 mm.</p> "> Figure 21
<p>Raman spectra: (<b>a</b>) sediment UP Floresti—PP (white fragment) 4 mm, spectra compared to reference spectra PP (shown in dark orange); (<b>b</b>) sediment UP Floresti—PP (green fragment) 5 mm, spectra compared to reference spectra PP (shown in orange); (<b>c</b>) wastewater influent—PE (white fragment) 2 mm, spectra compared to reference spectra PE (shown in orange); (<b>d</b>) sediment UP WWTP—fragment 500 µm—the identification was unclear, spectra compared to reference spectra PE (shown in light blue); (<b>e</b>) sediment UP Cluj-Napoca WWTP—fragments—PE, 1 mm, 4 mm, spectra compared to reference spectra PP (shown in orange).The ellipses reveled the MPs peaks similarity with the standard spectra.</p> "> Figure 21 Cont.
<p>Raman spectra: (<b>a</b>) sediment UP Floresti—PP (white fragment) 4 mm, spectra compared to reference spectra PP (shown in dark orange); (<b>b</b>) sediment UP Floresti—PP (green fragment) 5 mm, spectra compared to reference spectra PP (shown in orange); (<b>c</b>) wastewater influent—PE (white fragment) 2 mm, spectra compared to reference spectra PE (shown in orange); (<b>d</b>) sediment UP WWTP—fragment 500 µm—the identification was unclear, spectra compared to reference spectra PE (shown in light blue); (<b>e</b>) sediment UP Cluj-Napoca WWTP—fragments—PE, 1 mm, 4 mm, spectra compared to reference spectra PP (shown in orange).The ellipses reveled the MPs peaks similarity with the standard spectra.</p> "> Figure 22
<p>Raman spectra—sediment UP Cluj-Napoca WWTP. Fragments 3 mm and brown sphere 2 mm—suspected to be PE.</p> "> Figure 23
<p>Raman spectra recorded at the highlighted locations—sediment samples, identifications on filter paper: (<b>a</b>) PP identification (UP Floresti): exposure time 30 s, accumulation 10, center wavenumber 740.11 cm<sup>−1</sup>, Z position 16061.1 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 784.74 nm, resolution 9.02 cm<sup>−1</sup>, 0.61 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 200 × 1000 µm, aperture d-4000 µm, laser power 56.6 mW, CCD temperature −70 °C; (<b>b</b>) PS identification (DW Cluj Napoca WWTP): exposure time 30 s, accumulation 20, center wavenumber 1520.21 cm<sup>−1</sup>, Z position 17,003.6 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 531.94 nm, resolution 4.79 cm<sup>−1</sup>, 1.30 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 50 × 1000 µm, aperture d-4000 µm, laser power 5.5 mW, CCD temperature −70 °C; (<b>c</b>) PC identification (DW Cluj Napoca WWTP): exposure time 30 s, accumulation 10, center wavenumber 740.11 cm<sup>−1</sup>, Z position 17,053.7 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 784.74 nm, resolution 9.02 cm<sup>−1</sup>, 0.61 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 200 × 1000 µm, aperture d-4000 µm, laser power 56.4 mW, CCD temperature −70 °C; (<b>d</b>) PE or PP unclear identification—green fragment (influent of Cluj Napoca WWTP): exposure time 20 s, accumulation 10, center wavenumber 1520.21 cm<sup>−1</sup>, Z position 17,213.7 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 531.94 nm, resolution 4.79 cm<sup>−1</sup>, 1.30 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 50 × 1000 µm, aperture d-4000 µm, laser power 5.6 mW, CCD temperature −70 °C.</p> "> Figure 23 Cont.
<p>Raman spectra recorded at the highlighted locations—sediment samples, identifications on filter paper: (<b>a</b>) PP identification (UP Floresti): exposure time 30 s, accumulation 10, center wavenumber 740.11 cm<sup>−1</sup>, Z position 16061.1 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 784.74 nm, resolution 9.02 cm<sup>−1</sup>, 0.61 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 200 × 1000 µm, aperture d-4000 µm, laser power 56.6 mW, CCD temperature −70 °C; (<b>b</b>) PS identification (DW Cluj Napoca WWTP): exposure time 30 s, accumulation 20, center wavenumber 1520.21 cm<sup>−1</sup>, Z position 17,003.6 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 531.94 nm, resolution 4.79 cm<sup>−1</sup>, 1.30 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 50 × 1000 µm, aperture d-4000 µm, laser power 5.5 mW, CCD temperature −70 °C; (<b>c</b>) PC identification (DW Cluj Napoca WWTP): exposure time 30 s, accumulation 10, center wavenumber 740.11 cm<sup>−1</sup>, Z position 17,053.7 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 784.74 nm, resolution 9.02 cm<sup>−1</sup>, 0.61 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 200 × 1000 µm, aperture d-4000 µm, laser power 56.4 mW, CCD temperature −70 °C; (<b>d</b>) PE or PP unclear identification—green fragment (influent of Cluj Napoca WWTP): exposure time 20 s, accumulation 10, center wavenumber 1520.21 cm<sup>−1</sup>, Z position 17,213.7 µm, binning interval 240–374, valid channel 1–2048, laser wavelength 531.94 nm, resolution 4.79 cm<sup>−1</sup>, 1.30 cm<sup>−1</sup>/pixel, objective lens LMPLFLN 10×, slit 50 × 1000 µm, aperture d-4000 µm, laser power 5.6 mW, CCD temperature −70 °C.</p> "> Figure 24
<p>µRaman spectra recorded at the highlighted locations—surface water samples: (<b>a</b>) filter membrane spectra; (<b>b</b>) UP Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>c</b>) UP Cluj-Napoca WWTP 20 µm— a C compound among others [<a href="#B58-water-16-00233" class="html-bibr">58</a>]; (<b>d</b>) UP Cluj-Napoca WWTP 20 µm—potentially TiO<sub>2</sub> (anatase phase), white pigment [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>e</b>) UP Cluj-Napoca WWTP 20 µm- potentially α-Fe<sub>2</sub>O<sub>3</sub> or FeO(OH)<sub>n</sub>H<sub>2</sub>O, red pigment; (<b>f</b>,<b>g</b>) UP Cluj-Napoca WWTP 200 µm—no clear Raman bands, only fluorescence; (<b>h</b>) DW Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>i</b>) DW Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B54-water-16-00233" class="html-bibr">54</a>]; (<b>j</b>,<b>k</b>) DW Cluj-Napoca WWTP 20 µm—a C compound among others [<a href="#B58-water-16-00233" class="html-bibr">58</a>]; (<b>l</b>,<b>m</b>) DW Cluj-Napoca WWTP 200 µm—clear evidence of PE [<a href="#B54-water-16-00233" class="html-bibr">54</a>]; (<b>n</b>) UP Floresti 200 µm—no clear Raman bands; (<b>o</b>) UP Floresti 200 µm—a C compound [<a href="#B58-water-16-00233" class="html-bibr">58</a>].</p> "> Figure 24 Cont.
<p>µRaman spectra recorded at the highlighted locations—surface water samples: (<b>a</b>) filter membrane spectra; (<b>b</b>) UP Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>c</b>) UP Cluj-Napoca WWTP 20 µm— a C compound among others [<a href="#B58-water-16-00233" class="html-bibr">58</a>]; (<b>d</b>) UP Cluj-Napoca WWTP 20 µm—potentially TiO<sub>2</sub> (anatase phase), white pigment [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>e</b>) UP Cluj-Napoca WWTP 20 µm- potentially α-Fe<sub>2</sub>O<sub>3</sub> or FeO(OH)<sub>n</sub>H<sub>2</sub>O, red pigment; (<b>f</b>,<b>g</b>) UP Cluj-Napoca WWTP 200 µm—no clear Raman bands, only fluorescence; (<b>h</b>) DW Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>i</b>) DW Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B54-water-16-00233" class="html-bibr">54</a>]; (<b>j</b>,<b>k</b>) DW Cluj-Napoca WWTP 20 µm—a C compound among others [<a href="#B58-water-16-00233" class="html-bibr">58</a>]; (<b>l</b>,<b>m</b>) DW Cluj-Napoca WWTP 200 µm—clear evidence of PE [<a href="#B54-water-16-00233" class="html-bibr">54</a>]; (<b>n</b>) UP Floresti 200 µm—no clear Raman bands; (<b>o</b>) UP Floresti 200 µm—a C compound [<a href="#B58-water-16-00233" class="html-bibr">58</a>].</p> "> Figure 24 Cont.
<p>µRaman spectra recorded at the highlighted locations—surface water samples: (<b>a</b>) filter membrane spectra; (<b>b</b>) UP Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>c</b>) UP Cluj-Napoca WWTP 20 µm— a C compound among others [<a href="#B58-water-16-00233" class="html-bibr">58</a>]; (<b>d</b>) UP Cluj-Napoca WWTP 20 µm—potentially TiO<sub>2</sub> (anatase phase), white pigment [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>e</b>) UP Cluj-Napoca WWTP 20 µm- potentially α-Fe<sub>2</sub>O<sub>3</sub> or FeO(OH)<sub>n</sub>H<sub>2</sub>O, red pigment; (<b>f</b>,<b>g</b>) UP Cluj-Napoca WWTP 200 µm—no clear Raman bands, only fluorescence; (<b>h</b>) DW Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B57-water-16-00233" class="html-bibr">57</a>]; (<b>i</b>) DW Cluj-Napoca WWTP 20 µm—potentially PP among others [<a href="#B54-water-16-00233" class="html-bibr">54</a>]; (<b>j</b>,<b>k</b>) DW Cluj-Napoca WWTP 20 µm—a C compound among others [<a href="#B58-water-16-00233" class="html-bibr">58</a>]; (<b>l</b>,<b>m</b>) DW Cluj-Napoca WWTP 200 µm—clear evidence of PE [<a href="#B54-water-16-00233" class="html-bibr">54</a>]; (<b>n</b>) UP Floresti 200 µm—no clear Raman bands; (<b>o</b>) UP Floresti 200 µm—a C compound [<a href="#B58-water-16-00233" class="html-bibr">58</a>].</p> "> Figure 25
<p>Infrared spectra of PS foam measuring 3–5 mm (floating MPs).</p> "> Figure 26
<p>Infrared spectra of PE fragment <5 mm (floating MPs).</p> "> Figure 27
<p>ATR-FTIR spectra—PE, UP Cluj—Napoca WWTP 200 µm (water sample).</p> "> Figure 28
<p>ATR-FTIR spectra—PE, DW Cluj—Napoca WWTP 200 µm (water sample).</p> "> Figure 29
<p>ATR-FTIR spectra—PE, DW Cluj—Napoca WWTP 20 µm (water sample).</p> "> Figure 30
<p>ATR-FTIR spectra—PP, UP Floresti 200 µm (water sample).</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Design
2.2. Sampling Technique
2.3. Laboratory Materials and Methods
2.3.1. Method of Plastic Particles Separation
2.3.2. Microscopic Investigations of MPs
2.3.3. Methods for MPs Identification
- Raman analysis—Raman-HR-TEC-785 Spectrometer
- 2.
- Raman analysis—NRS-7200 Raman Spectrometer
- 3.
- µRaman analysis—LabRam HR800 system
- 4.
- FT-IR—Cary 630 FT-IR Spectrophotometer
- 5.
- ATR—FTIR measurements—Perkin—Elmer Spectrum Two IR spectrometer
3. Results and Discussion
3.1. Characterization of Floating Plastics Particles
3.2. Microscopic Analysis of Separated MPs
3.3. Raman Investigation
3.4. Fourier Transform Infrared Spectroscopic Analysis (FT-IR)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nava, V.; Frezzotti, M.L.; Leoni, B. Raman Spectroscopy for the Analysis of Microplastics in Aquatic Systems. Appl. Spectrosc. 2021, 75, 1341–1357. [Google Scholar] [CrossRef] [PubMed]
- Ferdinand, R. “Plastic”. Encyclopedia Britannica. 22 June 2023. Available online: https://www.britannica.com/science/plastic (accessed on 9 October 2023).
- ISO/DIS 24187; Principles for the Analysis of Microplastics Present in the Environment. International Standard Organization: Geneva, Switzerland, 2023.
- Geerdes, Z.; Hermann, M.; Ogonowski, M.; Gorokhova, E. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Sci. Rep. 2009, 9, 10695. [Google Scholar] [CrossRef] [PubMed]
- Hurley, R.; Woodward, J.; Rothwell, J.J. Microplastic contamination of river beds significantly reduced by catchment-wide flooding. Nat. Geosci. 2018, 11, 251–257. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, A.T.; Navarro, S.; García-de-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Park, B. Review of Microplastic Distribution, Toxicity, Analysis Methods, and Removal Technologies. Water 2021, 13, 2736. [Google Scholar] [CrossRef]
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Boucher, J.; Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources; IUCN: Gland, Switzerland, 2017; Volume 43. [Google Scholar]
- Oluwoye, I.; Machuca, L.L.; Higgins, S.; Suh, S.; Galloway, T.S.; Halley, P.; Tanaka, S.; Iannuzzi, M. Degradation and lifetime prediction of plastics in subsea and offshore infrastructures. Sci. Total Environ. 2023, 904, 904166719. [Google Scholar] [CrossRef]
- Available online: https://www.who.int/news/item/03-03-2020-shortage-of-personal-protective-equipment-endangering-health-workers-worldwide (accessed on 10 August 2023).
- Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/ (accessed on 10 August 2023).
- Martinho, S.D.; Fernandes, V.C.; Figueiredo, S.A.; Delerue-Matos, C. Microplastic Pollution Focused on Sources, Distribution, Contaminant Interactions, Analytical Methods, and Wastewater Removal Strategies: A Review. Int. J. Environ. Res. Public Health 2022, 19, 5610. [Google Scholar] [CrossRef]
- Schrank, I.; Löder, M.G.J.; Imhof, H.K.; Moses, S.R.; Heß, M.; Schwaiger, J.; Laforsch, C. Riverine microplastic contamination in southwest Germany: A large-scale survey. Front. Earth Sci. 2022, 10, 794250. [Google Scholar] [CrossRef]
- Liu, R.-P.; Li, Z.-Z.; Liu, F.; Dong, Y.; Jiao, J.G.; Sun, P.-P.; El-Wardany, R.M. Microplastic pollution in Yellow river, China: Current status and research progress of biotoxicological effects. China Geol. 2021, 4, 585–592. [Google Scholar]
- Scherer, C.; Weber, A.; Stock, F.; Vurusic, S.; Egerci, H.; Kochleus, C.; Arendt, N.; Foeldi, C.; Dierkes, G.; Wagner, M.; et al. Comparative assessment of microplastics in water and sediment of a large European river. Sci. Total Environ. 2020, 738, 139866. [Google Scholar] [CrossRef] [PubMed]
- Gerolin, C.R.; Nascimento Pupim, F.; Oliveira Sawakuchi, A.; Grohmann, C.H.; Labuto, G.; Semensatto, D. Microplastics in sediments from Amazon rivers, Brazil. Sci. Total Environ. 2020, 749, 141604. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, T.; Knickmeier, K.; Kruse, K.; Brennecke, D.; Nauendorf, A.; Thiel, M. Plastic Pirates sample litter at rivers in Germany–Riverside litter and litter sources estimated by schoolchildren. Environ. Pollut. 2019, 245, 545–557. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Peng, C.; Wang, Z.; Xiong, X.; Bi, Y.; Liu, Y.; Li, D. Spatiotemporal distribution of microplastics in surface water, biofilms, and sediments in the world’s largest drinking water diversion project. Sci. Total Environ. 2021, 789, 148001. [Google Scholar] [CrossRef]
- Semmouri, I.; Vercauteren, M.; Van Acker, E.; Pequeur, E.; Asselman, J.; Janssen, C. Presence of microplastics in drinking water from different freshwater sources in Flanders (Belgium), an urbanized region in Europe. Food Contam. 2022, 9, 6. [Google Scholar] [CrossRef]
- Ziani, K.; Ioniță-Mîndrican, C.-B.; Mititelu, M.; Neacșu, S.M.; Negrei, C.; Moroșan, E.; Drăgănescu, D.; Preda, O.-T. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023, 15, 617. [Google Scholar] [CrossRef]
- Available online: https://cdn.who.int/media/docs/default-source/wash-documents/microplastics-in-dw-information-sheet190822.pdf (accessed on 13 August 2023).
- Mason, S.A.; Welch, V.G.; Neratko, J. Synthetic Polymer Contamination in Bottled Water. Front Chem. 2018, 6, 407. [Google Scholar] [CrossRef]
- Chaudhari, S.; Samnani, P. Determination of microplastics in pond water. Mater. Today Proc. 2023, 77, 91–98. [Google Scholar] [CrossRef]
- Pojar, I.; Stănică, A.; Stock, F.; Kochleus, C.; Schultz, M.; Bradley, C. Sedimentary microplastic concentrations from the Romanian Danube river to the Black Sea. Sci. Rep. 2021, 11, 2000. [Google Scholar] [CrossRef]
- Pojar, I.; Kochleus, C.; Dierke, G.; Ehlers, M.S.; Reifferscheid, G.; Stock, F. Quantitative and qualitative evaluation of plastic particles in surface waters of the Western Black Sea. Environ. Pollut. 2021, 268 Pt A, 115724. [Google Scholar] [CrossRef]
- Ding, L.; Mao, R.F.; Guo, X.; Yang, X.; Zhang, Q.; Yang, C. Microplastics in surface waters and sediments of the Wei river, in the northwest of China. Sci. Total Environ. 2019, 667, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Organization for Economic Co-operation and Development. Global Plastics Outlook: Policy Scenarios to 2060; OECD Publishing: Paris, France, 2022. [Google Scholar]
- Uddin, S.; Fowler, S.W.; Saeed, T.; Naji, A.; Al-Jandal, N. Standardized protocols for microplastics determinations in environmental samples from the Gulf and marginal seas. Mar. Pollut. Bull. 2020, 158, 111374. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in freshwater ecosystems: What we know and what we need to know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Asifa, A.; Afroza, A.L.; Md Nazrul, I.; Md Morsaline, B.; Shaikh, T.A.; Md Moshiur, R.; Sheikh, M.R. Microplastics Pollution: A Brief Review of Its Source and Abundance in Different Aquatic Ecosystems. J. Hazard. Mater. Adv. 2023, 9, 100215. [Google Scholar] [CrossRef]
- Ashkan, J. Microplastics in the urban atmosphere: Sources, occurrences, distribution, and potential health implications. J. Hazard. Mater. Adv. 2023, 12, 100346. [Google Scholar] [CrossRef]
- Enders, K.; Lenz, R.; Stedmon, C.A.; Nielsen, T.G. Abundance, size and polymer composition of marine microplastics >= 10um in the atlantic ocean and their modelled vertical distribution. Mar. Pollut. Bull. 2015, 100, 70–81. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, C.; Burton, H. Origins and biological accumulation of small plastic particles in fur seals from macquarie island. Ambio 2003, 32, 380–384. [Google Scholar] [CrossRef]
- Cox, K.G.; Covernton, G.A.; Davies, H.J.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human consumption of microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef]
- Meyers, N.; Catarino, A.I.; Declercq, A.M.; Brenan, A.; Devriese, L.; Vandegehuchte, M.; De Witte, B.; Janssen, C.; Everaert, G. Microplastic detection and identification by Nile red staining: Towards a semi-automated, cost- and time-effective technique. Sci. Total Environ. 2022, 823, 153441. [Google Scholar] [CrossRef]
- Cowger, W.; Gray, A.; Christiansen, S.H.; DeFrond, H.; Deshpande, A.D.; Hemabessiere, L.; Lee, E.; Mill, L.; Munno, K.; Ossmann, B.E.; et al. Critical review of processing and classification techniques for images and spectra in microplastic research. Appl. Spectrosc. 2020, 74, 989–1010. [Google Scholar] [CrossRef]
- Bianco, V.; Memmolo, P.; Carcagnì, P.; Merola, F.; Paturzo, M.; Distante, C.; Ferraro, P. Microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2020, 2, 1900153. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/system/files/documents/2021-09/microplastic-beach-protocol_sept-2021.pdf (accessed on 13 August 2023).
- Keck, F.; Vasselon, V.; Tapolczai, K.; Rimet, F.; Bouchez, A. Freshwater biomonitoring in the Information Age. Front. Ecol. Environ. 2017, 15, 266–274. [Google Scholar] [CrossRef]
- Marcuello, C. Present and future opportunities in the use of atomic force microscopy to address the physico-chemical properties of aquatic ecosystems at the nanoscale level. Int. Aquat. Res. 2022, 14, 231–240. [Google Scholar]
- Pilechi, A.; Abdolmajid, M.; Enda, M. A numerical framework for modeling fate and transport of microplastics in inland and coastal waters. Mar. Pollut. Bull. 2022, 184, 114119. [Google Scholar] [CrossRef] [PubMed]
- Sluka, R. Guidelines for Sampling Microplastics on Sandy Beaches. Rocha International Sampling Guide; A Rocha International: London, UK, 2018. [Google Scholar]
- Bessa, F.; Frias, J.; Kögel, T.; Lusher, A.; Andrade, J.; Antunes, J.C.; Sobral, P.; Pagter, E.; Nash, R.; O’Connor, I.; et al. Harmonized Protocol for Monitoring Microplastics in Biota; JPI-Oceans BASEMAN Project: Brussels, Belgium, 2019; 30p. [Google Scholar] [CrossRef]
- ISO/TR 21960:2020; Plastics—Environmental Aspects—State of Knowledge and Methodologies. International Standard Organization: Geneva, Switzerland, 2020.
- Masura, J.; Joel, B.; Gregory, F.; Courtney, A. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments; NOAA Technical Memorandum NOS-OR&R-48; NOAA Marine Debris Division: Silver Spring, MD, USA, 2015. [Google Scholar]
- Schrank, I.; Möller, J.N.; Imhof, H.K.; Hauenstein, O.; Zielke, F.; Agarwal, S.; Löder, M.G.J.; Greiner, A.; Laforsch, C. Microplastic sample purification methods-Assessing detrimental effects of purification procedures on specific plastic types. Sci. Total Environ. 2022, 833, 154824. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawi, M.S.M.; Kefer, S.; Weißer, J.; Reichel, J.; Schwaller, C.; Glas, K.; Knoop, O.; Drewes, J.E. Validation of Sample Preparation Methods for Microplastic Analysis in Wastewater Matrices—Reproducibility and Standardization. Water 2020, 12, 2445. [Google Scholar] [CrossRef]
- Kärrman, A.; Schönlau, C.; Engwall, M. Exposure and Effects of Microplastics on Wildlife—A Review of Existing Data; Funded by Swedish Environmental Protection Agency; MTM Research Centre School of Science and Technology Örebro University: Örebro, Sweden, 2016. [Google Scholar]
- Wu, X.; Zhao, X.; Chen, R.; Liu, P.; Liang, W.; Wang, J.; Teng, M.; Wang, X.; Gao, S. Wastewater treatment plants act as essential sources of microplastic formation in aquatic environments: A critical review. Water Res. 2022, 221, 118825. [Google Scholar] [CrossRef] [PubMed]
- Gerdts, G. (Ed.) Defining the BASElines and Standards for Microplastics ANalyses in European Waters; Project BASEMAN Final report; JPI-Oceans BASEMAN Project, 2019; Volume 25, 25p. [Google Scholar] [CrossRef]
- Blair, R.M.; Waldron, S.; Phoenix, V.R.; Gauchotte-Lindsay, C. Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK. Environ. Sci. Pollut. Res. 2019, 26, 12491–12504. [Google Scholar] [CrossRef]
- Joshy, A.; Krupesha Sharma, S.R.; Mini, K.G. Microplastic contamination in commercially important bivalves from the southwest coast of India. Environ. Pollut. 2022, 305, 119250. [Google Scholar] [CrossRef]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic Methods and Innovative Detection Techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef]
- Schwarzer, M.; Brehm, J.; Vollmer, M.; Jasinski, J.; Xu, C.; Zainuddin, S.; Fröhlich, T.; Schott, M.; Greiner, A.; Scheibel, T.; et al. Shape, size, and polymer dependent effects of microplastics on Daphnia magna. J. Hazard. Mater. 2022, 426, 128136. [Google Scholar] [CrossRef] [PubMed]
- Rytelewska, S.; Dąbrowska, A. The Raman Spectroscopy Approach to Different Freshwater Microplastics and Quantitative Characterization of Polyethylene Aged in the Environment. Microplastics 2022, 1, 263–281. [Google Scholar] [CrossRef]
- Sharma, S.; Chio, C.; Muenow, D. Raman Spectroscopic Investigation of Ferrous Sulfate Hydrates. In Proceedings of the 37th Annual Lunar and Planetary Science Conference, League City, TX, USA, 3–17 March 2006; Volume 37. [Google Scholar]
- Scardaci, V.; Compagnini, G. Raman Spectroscopy Investigation of Graphene Oxide Reduction by Laser Scribing. C 2021, 7, 48. [Google Scholar] [CrossRef]
- Primpke, S.; Christiansen, S.H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E.B.; Meyns, M.; O’Donnell, B.A.; Ossmann, B.E.; et al. Critical Assessment of Analytical Methods for the Harmonized and Cost Efficient Analysis of Microplastics. Appl. Spectrosc. 2020, 74, 1012–1047. [Google Scholar] [CrossRef] [PubMed]
- Leung, M.M.-L.; Ho, Y.-W.; Lee, C.-H.; Wang, Y.; Hu, M.; Kwok, K.W.H.; Chua, S.-L.; Fang, J.K.-H. Improved Raman spectroscopy-based approach to assess microplastics in seafood. Environ. Pollut. 2021, 289, 117648. [Google Scholar] [CrossRef] [PubMed]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Romano, N.; Ho, Y.B.; Salamatinia, B. A high-performance protocol for the extraction of microplastics in fish. Sci. Total Environ. 2017, 578, 485–494. [Google Scholar] [CrossRef]
- Smith, B.C. The Infrared Spectra of Polymers II: Polyethylene. Spectroscopy 2021, 36, 24–29. [Google Scholar] [CrossRef]
- Herman, V.; Takacs, H.; Duclairoir, F.; Renault, O.; Tortai, J.H.; Viala, B. Core double-shell cobalt/graphene/polystyrene magnetic nanocomposites synthesized by in situ sonochemical polymerization. RCS Adv. 2015, 5, 51371–51381. [Google Scholar] [CrossRef]
- Smith, B.C. The Infrared Spectra of Polymers III: Hydrocarbon Polymers. Spectroscopy 2021, 36, 22–25. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.-J. Analysis of environmental microplastics by vibrational microspectroscopy: FT-IR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S.K.; Sachdev, K. Synthesis and Characterization of Graphene Oxide (GO) and Reduced Graphene Oxide (rGO) for Gas Sensing Application. Macromol. Symp. 2017, 376, 1700006. [Google Scholar] [CrossRef]
- Nallasamy, P.; Anbarasan, P.M.; Mohan, S. Vibrational Spectra and Assignments of cis- and Trans-1,4-Polybutadiene. Turk. J. Chem. 2002, 26, 105–111. [Google Scholar]
- Gong, Y.; Li, D.; Fu, Q.; Pan, C. Influence of graphene microstructures on electrochemical performance for supercapacitors. Prog. Nat. Sci. Mater. Int. 2015, 25, 379–385. [Google Scholar] [CrossRef]
- Syakti, A.D.; Hidayati, N.V.; Jaya, Y.V.; Siregar, S.H.; Yude, R.; Suhendy; Asia, L.; Wong-Wah-Chung, P.; Doumenq, P. Simultaneous grading of microplastic size sampling in the small islands of Bintan Water, Indonesia. Mar. Pollut. Bull. 2018, 137, 593–600. [Google Scholar] [CrossRef]
- Chirea, M.; Freitas, A.; Vasile, B.S.; Ghitulica, C.; Pereira, C.M.; Silva, F. Gold nanowire networks: Synthesis, characterization, and catalytic activity. Langmuir 2011, 27, 3906–3913. [Google Scholar] [CrossRef]
- Krylova, V.; Dukštienė, N. Synthesis and characterization of AG2S layers formed on polypropylene. J. Chem. 2013, 2013, 987879. [Google Scholar] [CrossRef]
- Bhattacharya, S.S.; Chaudhari, S.B. Study on Structural, Mechanical and Functional Properties of Polyester Silica Nanocomposite Fabric. Int. J. Pure Appl. Sci. Technol. 2014, 21, 43–52. [Google Scholar]
Sampling Point | Type | Dimension | Color | No. Total of Particles | Classification |
---|---|---|---|---|---|
UP Floresti left bank: low water level, clear water, waste island on the right bank, flow speed approx. = 0.58 m/s | Fragment | >30 mm | black, green, blue | 5 | Macro |
Fragment—foil | ≥20 mm | white, green/blue | 2 | Macro | |
Sphere | <5 mm | red, brown | 2 | Large | |
Fragment | ~10 mm | white-gray | 1 | Meso | |
Foam | ~5 mm | yellow | 1 | Large | |
Polystyrene pieces | >10, 20, 30 mm | white | 3 | Meso/Macro | |
Non–plastics and other wastes | |||||
Surgical mask fragment/cellulose | >30 mm | green | 1 | - | |
Fragments of aluminum packaging | >50 mm | blue | 1 | - | |
Electronic parts | 20 mm | white | 1 | - | |
Aluminum plugs | ~20 mm | gray | 2 | - | |
Textile | >30 mm | 1 | - | ||
Plastic coated wire | ~2, 10, 12 cm | gray, white, blue | 3 | - | |
Construction materials (brick, cement, etc.) | - | - | abundantly | - | |
DW Floresti left bank: under construction, cloudy water, flow rate approx. = 0.40 m/s | Fragment-foil | 10 mm | transparent | 1 | Meso |
Fragment | 30 mm | transparent | 1 | Meso | |
Sphere | <5 mm | green | 1 | Large | |
Polystyrene foam | 5 mm | white | 5 | Large | |
Foam/sponge | >30 mm | yellow | 1 | Macro | |
Fragment | >30 mm | blue | 1 | Macro | |
Plastic toy piece | >30 mm | red | 1 | Macro | |
Non–plastics and other wastes | |||||
Construction materials | - | - | abundantly | - | |
UP Cluj-Napoca WWTP left bank: low level, flow rate approx. = 0.64 m/s | Polystyrene spheres, foam | <5 mm | white | abundantly | Large |
Pieces of polystyrene | >20 mm | white | abundantly | Meso | |
Fragment | <5 mm | white | 1 | Large | |
Fragment | ~3, 5, 10 mm | white | 3 | Large/Meso | |
Non–plastics and other wastes | |||||
Cigarette butts | >10 mm | brown | 1 | Meso | |
Plastic waste from toys and packaging | >10 cm >30 cm | 2 | Macro | ||
Pet bottles | - | - | 1 | - | |
DW Cluj –Napoca WWTP left bank: waste on the bank, bags and foils under sediment and stones flow rate approx. = 0.62 m/s | Fragment | >30 mm | transparent | 1 | Macro |
Fragment | ~20 mm | black | 1 | Meso | |
Polystyrene foam spheres | ~5 mm | white | 1 | Large | |
Pieces of polystyrene | ~5 mm | white | >10 | Large | |
Non–plastics and other wastes | |||||
Textile | >30 mm | - | - | - | |
Construction material | - | - | abundantly | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, S.; Stoica, C.; Harabagiu, A.M.; Neidoni, D.-G.; Mighiu, E.D.; Bumbac, C.; Ionescu, I.A.; Pantazi, A.; Enache, L.-B.; Enachescu, M. Laboratory Assessment for Determining Microplastics in Freshwater Systems—Characterization and Identification along the Somesul Mic River. Water 2024, 16, 233. https://doi.org/10.3390/w16020233
Gheorghe S, Stoica C, Harabagiu AM, Neidoni D-G, Mighiu ED, Bumbac C, Ionescu IA, Pantazi A, Enache L-B, Enachescu M. Laboratory Assessment for Determining Microplastics in Freshwater Systems—Characterization and Identification along the Somesul Mic River. Water. 2024; 16(2):233. https://doi.org/10.3390/w16020233
Chicago/Turabian StyleGheorghe, Stefania, Catalina Stoica, Anca Maria Harabagiu, Dorian-Gabriel Neidoni, Emanuel Daniel Mighiu, Costel Bumbac, Ioana Alexandra Ionescu, Aida Pantazi, Laura-Bianca Enache, and Marius Enachescu. 2024. "Laboratory Assessment for Determining Microplastics in Freshwater Systems—Characterization and Identification along the Somesul Mic River" Water 16, no. 2: 233. https://doi.org/10.3390/w16020233
APA StyleGheorghe, S., Stoica, C., Harabagiu, A. M., Neidoni, D. -G., Mighiu, E. D., Bumbac, C., Ionescu, I. A., Pantazi, A., Enache, L. -B., & Enachescu, M. (2024). Laboratory Assessment for Determining Microplastics in Freshwater Systems—Characterization and Identification along the Somesul Mic River. Water, 16(2), 233. https://doi.org/10.3390/w16020233