Comment on Stilmant et al. Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model. Water 2022, 14, 2337
<p>Irrotational flow over a spillway. (<b>a</b>) Sketch of the flow net depicting the streamlines <span class="html-italic">ψ</span> = const. and equipotential lines <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> = const. The crest equipotential is marked in blue. The head over the ogee weir is <span class="html-italic">H</span> and the unit discharge <span class="html-italic">q</span>, determining the discharge coefficient <span class="html-italic">C<sub>d</sub></span> = <span class="html-italic">q</span>/(<span class="html-italic">gH</span><sup>3</sup>)<sup>1/2</sup>. (<b>b</b>) ogee crest model test by Hunter Rouse, showing a streamline curving along the crest. Natural coordinates (<span class="html-italic">s</span>, <span class="html-italic">n</span>) marked using the colored streamline for reference (image courtesy of IIHR Hydroscience and Engineering, Iowa, from Hunter Rouse’s educational film “Fluid motion in a gravitational field”, 1961).</p> "> Figure 2
<p>Potential flow over curved bottom from Jaeger [<a href="#B2-water-16-00231" class="html-bibr">2</a>] (adapted from NHF17); note that the bed-normal velocity component is neglected.</p> "> Figure 3
<p>Jaeger’s [<a href="#B2-water-16-00231" class="html-bibr">2</a>] theory applied to an ogee crest assuming critical flow at the apex. Comparison of modeled <span class="html-italic">C<sub>d</sub></span>, <span class="html-italic">h</span>/<span class="html-italic">H<sub>D</sub></span>, <span class="html-italic">p<sub>b</sub></span>/(<span class="html-italic">ρgH</span>) and <span class="html-italic">u</span>/(2<span class="html-italic">gH<sub>D</sub></span>)<sup>1/2</sup> with experiments by Hager [<a href="#B15-water-16-00231" class="html-bibr">15</a>] (<b>a</b>) Discharge coefficient, (<b>b</b>) crest flow depth, (<b>c</b>) crest bottom pressure head, (<b>d</b>) crest velocity profiles.</p> "> Figure 4
<p>Computed flow profiles of spillway flow using <span class="html-italic">K</span> = 2 based on the theory by Jaeger [<a href="#B2-water-16-00231" class="html-bibr">2</a>] and the Bélanger–Böss theorem [<a href="#B3-water-16-00231" class="html-bibr">3</a>]. The critical point is indicated, along with the critical depth profile and the minimum total energy head profile. Deviations of the predicted <span class="html-italic">C<sub>d</sub></span> from the semi-empirical Equation (21) are also plotted. (<b>a</b>) <span class="html-italic">H</span>/<span class="html-italic">H<sub>D</sub></span> = 1, (<b>b</b>) <span class="html-italic">H</span>/<span class="html-italic">H<sub>D</sub></span> = 2, (<b>c</b>) <span class="html-italic">H</span>/<span class="html-italic">H<sub>D</sub></span> = 3.</p> "> Figure 5
<p>Impact of the curvature parameter <span class="html-italic">K</span> in Jaeger’s [<a href="#B1-water-16-00231" class="html-bibr">1</a>] theory on computed free surface, relative bottom pressure, and crest velocity profile for design conditions.</p> ">
Abstract
:1. Jaeger’s Theory for Irrotational Flow over Curved Beds
1.1. General Hydrodynamic Statements
1.2. Equipotential Lines
1.3. Taylor Expansion of Streamline Radius of Curvature
1.4. Velocity Profile
1.5. Free Surface Definition
1.6. Discharge and Specific Energy
2. Application: Flow over an Ogee Profile
2.1. Assumption of Critical Flow at the Ogee Crest
2.2. Free Surface Profile Determination Using the Bélanger–Böss Theorem
- Divide the ogee profile in various discrete nodes i where the equations will be solved.
- Select H and assume a Cd; start typically with (2/3)3/2.
- Determine the critical depth profile hc(i) from Equations (26) using Equation (28).
- Compute Emin(i) at each x of the mesh for the corresponding value of the critical depth by using Equation (27).
- Compute Hmin(i) = Emin(i)+ zb(i) at each x position.
- Determine the maximum of Hmin(i), Hmax.
- If Hmax < H go back to 2 and increase Cd. If Hmax > H, then reduce Cd.
- Once the critical point is located (Hmax = H, within a prescribed tolerance), numerically solve Equation (29) from it in the upstream direction to determine a subcritical flow profile. Repeat the process in the downstream direction from the critical point and determine the supercritical root of Equation (29) at each position.
3. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stilmant, F.; Erpicum, S.; Peltier, Y.; Archambeau, P.; Dewals, B.; Pirotton, M. Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model. Water 2022, 14, 2337. [Google Scholar] [CrossRef]
- Jaeger, C. Remarques sur quelques écoulements le long des lits à pente variant graduellement (Remarks on some flows along bottoms of gradually varied slope). Schweiz. Bauztg. 1939, 114, 231–234. (In French) [Google Scholar]
- Jaeger, C. Engineering Fluid Mechanics; Blackie and Son: Edinburgh, UK, 1956. [Google Scholar]
- Castro-Orgaz, O.; Hager, W.H. Non-Hydrostatic Free Surface Flows. In Advances in Geophysical and Environmental Mechanics and Mathematics; Springer: Berlin/Heidelberg, Germany, 2017; p. 696. [Google Scholar]
- Peltier, Y.; Dewals, B.; Archambeau, P.; Pirotton, M.; Erpicum, S. Pressure and Velocity on an Ogee Spillway Crest Operating at High Head Ratio: Experimental Measurements and Validation. J. Hydro-Environ. Res. 2018, 19, 128–136. [Google Scholar] [CrossRef]
- Thom, A.; Apelt, C. Field Computations in Engineering and Physics; Van Nostrand: London, UK, 1961. [Google Scholar]
- Milne-Thomson, L.M. Theoretical Hydrodynamics. Macmillan: London, UK,, 1962. [Google Scholar]
- Rouse, H. The Distribution of Hydraulic Energy in Weir Flow in Relation to Spillway Design. Master’s Thesis, MIT, Boston, MA, USA, 1932. [Google Scholar]
- Rouse, H. Fluid Mechanics for Hydraulic Engineers; McGraw-Hill: New York, NY, USA, 1938. [Google Scholar]
- Hager, W.H.; Hutter, K. Approximate treatment of plane channel flow. Acta Mech. 1984, 51, 31–48. [Google Scholar] [CrossRef]
- Prandtl, L. Abriss der Strömungslehre; Vieweg & Sohn: Braunschweig, Germany, 1935. [Google Scholar]
- Kozeny, J. Hydraulik; Springer: Wien, Germany, 1953. (In German) [Google Scholar]
- Montes, J.S. Flow over round crested weirs. L´Energ. Elettr. 1970, 47, 155–164. [Google Scholar]
- Montes, J.S. Hydraulics of Open Channel Flow; ASCE Press: Reston, VA, USA, 1998. [Google Scholar]
- Hager, W.H. Experiments on standard spillway flow. Proc. ICE 1991, 91, 399–416. [Google Scholar]
- Hager, W.H.; Schleiss, A.J.; Boes, R.M.; Pfister, M. Hydraulic Engineering of Dams; CRC Press: London, UK, 2021. [Google Scholar]
- Ishihara, T.; Iwasa, Y.; Ihda, K. Basic studies on hydraulic performances of overflow spillways and diversion weirs. Bull. Disaster Prev. Res. Inst. 1960, 33, 1–30. [Google Scholar]
- Castro-Orgaz, O.; Hager, W.H. Analytical determination of irrotational flow profiles in open-channel transitions. Water 2023, 15, 4217. [Google Scholar] [CrossRef]
- Hager, W.H. Continuous crest profile for standard spillway. J. Hydraul. Engng. 1987, 113, 1453–1457. [Google Scholar] [CrossRef]
- Knapp, F.H. Ausfluss, Überfall und Durchfluss im Wasserbau; Braun: Karlsruhe, Germany, 1960. (In German) [Google Scholar]
- Castro-Orgaz, O.; Giraldez, J.V.; Ayuso, J.L. Higher order critical flow condition in curved streamline flow. J. Hydraul. Res. 2008, 46, 849–853. [Google Scholar] [CrossRef]
- Hager, W.H. Critical flow condition in open channel hydraulics. Acta Mech. 1985, 54, 157–179. [Google Scholar] [CrossRef]
- Castro-Orgaz, O.; Hager, W.H. Shallow Water Hydraulics; Springer: Berlin/Heidelberg, Germany, 2019; p. 563. [Google Scholar] [CrossRef]
- Jaeger, C. Contribution à l’étude des courants liquides à surface libre. Bull. Tech. De La Suisse Rom. 1943, 69, 185–192. (In French) [Google Scholar]
- Jaeger, C. Contribution à l’étude des courants liquides à surface libre. Rev. Générale De L’hydraulique 1943, 9, 111–120. (In French) [Google Scholar]
- Castro-Orgaz, O. Approximate modeling of 2D curvilinear open channel flows. J. Hydraul. Res. 2010, 48, 213–224. [Google Scholar] [CrossRef]
- Castro-Orgaz, O. Steady open channel flows with curved streamlines: The Fawer approach revised. Env. Fluid Mech. 2010, 10, 297–310. [Google Scholar] [CrossRef]
- Ramamurthy, A.S.; Vo, N.D.; Balachandar, R. A note on irrotational curvilinear flow past a weir. J. Fluids Engng. 1994, 116, 378–381. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Orgaz, O.; Hager, W.H. Comment on Stilmant et al. Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model. Water 2022, 14, 2337. Water 2024, 16, 231. https://doi.org/10.3390/w16020231
Castro-Orgaz O, Hager WH. Comment on Stilmant et al. Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model. Water 2022, 14, 2337. Water. 2024; 16(2):231. https://doi.org/10.3390/w16020231
Chicago/Turabian StyleCastro-Orgaz, Oscar, and Willi H. Hager. 2024. "Comment on Stilmant et al. Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model. Water 2022, 14, 2337" Water 16, no. 2: 231. https://doi.org/10.3390/w16020231
APA StyleCastro-Orgaz, O., & Hager, W. H. (2024). Comment on Stilmant et al. Flow at an Ogee Crest Axis for a Wide Range of Head Ratios: Theoretical Model. Water 2022, 14, 2337. Water, 16(2), 231. https://doi.org/10.3390/w16020231