Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks
<p>Scheme of the sampling strategy along the wastewater treatment stages.</p> "> Figure 2
<p>Interaction plot showing Log<sub>10</sub> <span class="html-italic">E. coli</span> data in the exit effluents under different weather conditions (dry, wet) and chlorination treatment (yes, no), separately for each WWTP: (<b>a</b>) WWTP1, (<b>b</b>) WWTP2. Error bars represent mean ± standard deviation of data distribution for each group.</p> "> Figure 3
<p>Spearman correlation matrix for <span class="html-italic">E. coli</span>, COD, BOD<sub>5</sub>, and TSS in the chlorinated effluents, separately for each WWTP: (<b>a</b>) WWTP1 (66 data for each variable) and (<b>b</b>) WWTP2 (56 data for each variable). Asterisk represents the statistical significance (<span class="html-italic">p</span>) at 0.05 level.</p> "> Figure 4
<p>Relationship between index pathogens and microbial indicators in the exit samples: (<b>a</b>) <span class="html-italic">Salmonella</span> and <span class="html-italic">E. coli</span>, (<b>b</b>) Human Adenovirus (HAdV) and somatic coliphages.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the WWTPs
2.2. Monitoring Scheme and Parameters
- (i)
- Long-term investigation on routinely collected parameters: routine parameters monitored by the sewage company for compliance with Italian Law on WWTP discharges [32] were gathered from a private sewage company database from 2018 to 2023 on a monthly basis. In particular, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), and total suspended solids (TSSs) were determined at the entrance and exit of the WWTPs, while E. coli was determined only in the exit samples.
- (ii)
- Specific short-term investigation on microbial parameters: parameters mentioned in the regulation for water reuse [25] were determined during a dedicated monitoring campaign, with weekly samples collected from July to September 2023 (hereafter fieldwork sampling). In particular, grab samples were collected at different stages of the sewage treatment process from each WWTP: at the entrance—untreated samples (16 samples, 2.5 L each); at the inlet of the chlorination units, after biological treatment—secondary effluents (16 samples, 2.5 L each); and after chlorination—tertiary samples (16 samples, 7.5 L each). They included E. coli and intestinal enterococci as indicators for bacteria, somatic coliphages for viruses, and spores of sulfite-reducing clostridia for protozoa (Annex 1, Section 2, Reg. 2020/741). Moreover, Salmonella and Human Adenovirus (HAdV) were selected as index pathogens [33,34,35], and enterovirus, norovirus, and SARS-CoV-2 were also monitored.
2.3. Routinely Collected Parameters
2.4. Microbiological Parameters during Fieldwork
2.4.1. Somatic Coliphages
2.4.2. Bacterial Indicators
2.4.3. Spores of Sulfite-Reducing Clostridia
2.4.4. Salmonella spp.
2.4.5. Human Viruses
2.5. Meteorological Data
2.6. Statistical Analysis
3. Results
3.1. Long-Term WWTP Performance According to the EU Regulation 2020/741
3.2. Specific Short-Term Investigation on Microbiological Performance
3.2.1. Microbial Indicators
3.2.2. Relationship between Index Pathogens and Microbial Indicators
3.2.3. Pathogens
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations (UN). Sustainable Development Goals. 2023. Available online: https://www.un.org/sustainabledevelopment/news/communications-material/ (accessed on 22 March 2024).
- European Environment Agency (EEA). Water Resources across Europe—Confronting Water Stress: An Updated Assessment. 2021, EEA Report No 12/2021. Available online: https://www.eea.europa.eu/publications/water-resources-across-europe-confronting (accessed on 12 January 2024).
- United Nation Development Programme (UNDP). What Are the Sustainable Development Goals? 2024. Available online: https://www.undp.org/sustainable-development-goals (accessed on 22 March 2024).
- United Nations Development Programme (UNDP). Goal 6: Clean Water and Sanitation. 2024. Available online: https://www.undp.org/sustainable-development-goals/clean-water-and-sanitation (accessed on 22 March 2024).
- European Commission (EC); European Environment Agency (EEA). The European Climate Adaptation Platform, Climate-ADAPT. Available online: https://climate-adapt.eea.europa.eu/en/about (accessed on 22 March 2024).
- United Nations. The United Nations World Water Development Report 2024: Water for Prosperity and Peace; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 2024. [Google Scholar]
- Rodriguez, D.J.; Serrano, H.A.; Delgado, A.; Nolasco, D.; Saltiel, G. From Waste to Resource: Shifting Paradigms for Smarter Wastewater Interventions in Latin America and the Caribbean; World Bank: Washington, DC, USA, 2020. [Google Scholar] [CrossRef]
- Pistocchi, A.; Aloe, A.; Dorati, C.; Alcalde Sanz, L.; Bouraoui, F.; Gawlik, B.; Grizzetti, B.; Pastori, M.; Vigiak, O. The Potential of Water Reuse for Agricultural Irrigation in the EU: A Hydro-Economic Analysis; EUR 28980 EN; Publications Office of the European Union: Luxembourg, 2018; JRC109870; ISBN 978-92-79-77210-8. [Google Scholar] [CrossRef]
- Dimane, F.; El Hammoudani, Y. Assessment of quality and potential reuse of wastewater treated with conventional activated sludge. Mater. Today Proc. 2021, 45, 7742–7746. [Google Scholar] [CrossRef]
- Ramos, M.D.N.; Gomes, T.M.; Aquino, S.F.; Aguiar, A. Sewage treatment in cities of the state of Minas Gerais, Brazil, that use the UASB reactor as the only biological treatment: A case study. J. Water Process Eng. 2023, 56, 104509. [Google Scholar] [CrossRef]
- Bonetta, S.; Pignata, C.; Gasparro, E.; Richiardi, L.; Bonetta, S.; Carraro, E. Impact of wastewater treatment plants on microbiological contamination for evaluating the risks of wastewater reuse. Environ. Sci. Eur. 2022, 34, 20. [Google Scholar] [CrossRef]
- European Commission (EC). Water Reuse—Background and Policy Context. 2024. Available online: https://environment.ec.europa.eu/topics/water/water-reuse_en (accessed on 22 March 2024).
- United Nations Environment Programme (UNEP). Options for Decoupling Economic Growth from Water Use and Water Pollution. Summary for Policy Makers. 2015. Available online: https://wedocs.unep.org/handle/20.500.11822/7539 (accessed on 12 January 2024).
- National Academy of Science (NAS), National Research Council. Water Reuse: Potential for Expanding the Nation’s Water Supply through Reuse of Municipal Wastewater; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar] [CrossRef]
- Mok, H.F.; Barker, S.F.; Hamilton, A.J. A probabilistic quantitative microbial risk assessment model of norovirus disease burden from wastewater irrigation of vegetables in Shepparton, Australia. Water Res. 2014, 54, 347–362. [Google Scholar] [CrossRef]
- Gonzales-Gustavson, E.; Rusiñol, M.; Medema, G.; Calvo, M.; Girones, R. Quantitative risk assessment of norovirus and adenovirus for the use of reclaimed water to irrigate lettuce in Catalonia. Water Res. 2019, 153, 91–99. [Google Scholar] [CrossRef]
- Gholipour, S.; Hosseini, M.; Nikaeen, M.; Hadi, M.; Sarmadi, M.; Saderi, H.; Hassanzadeh, A. Quantification of human adenovirus in irrigation water-soil-crop continuum: Are consumers of wastewater-irrigated vegetables at risk? Environ. Sci. Pollut. Res. Int. 2022, 29, 54561–54570. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Hamilton, M.T.; Johnson, W.; Jjemba, P.; Bukhari, Z.; LeChevallier, M.; Haas, C.N. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. Water Res. 2018, 134, 261–279. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Potable Reuse: Guidance for Producing Safe Drinking-Water; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151277-0. [Google Scholar]
- Carducci, A.; Verani, M.; Battistini, R.; Pizzi, F.; Rovini, E.; Andreoli, E.; Casini, B. Epidemiological surveillance of human enteric viruses by monitoring of different environmental matrices. Water Sci. Technol. 2006, 54, 239–244. [Google Scholar] [CrossRef]
- Carducci, A.; Morici, P.; Pizzi, F.; Battistini, R.; Rovini, E.; Verani, M. Study of the viral removal efficiency in a urban wastewater treatment plant. Water Sci. Technol. 2008, 58, 893–897. [Google Scholar] [CrossRef]
- Carducci, A.; Verani, M. Effects of bacterial, chemical, physical and meteorological variables on virus removal by a Wastewater Treatment Plant. Food Environ. Virol. 2013, 5, 69–76. [Google Scholar] [CrossRef]
- La Rosa, G.; Fratini, M.; della Libera, S.; Iaconelli, M.; Muscillo, M. Emerging and potentially emerging viruses in water environments. Ann. Ist. Super. Sanita 2012, 48, 397–406. [Google Scholar] [CrossRef]
- Momba, M.; Edbon, J.; Kamika, I.; Verbyla, M. Using indicators to assess microbial treatment and disinfection efficacy. In Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project); Rose, J.B., Jiménez-Cisneros, B., Eds.; (A. Farnleitner, and A. Blanch (eds), Part 2: Indicators and Microbial Source Tracking Markers), Michigan State University, E. Lansing, MI, UNESCO; 2019; Available online: https://www.waterpathogens.org/book/using-indicators-assess-microbial-treatment-and-disinfection-efficacy (accessed on 12 January 2024).
- European Union (EU), Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on Minimum Requirements for Water Reuse, Official Journal of the European Union (L 177/3). Available online: https://eur-lex.europa.eu/eli/reg/2020/741/oj (accessed on 12 January 2024).
- European Commission (EC). Commission Notice—Guidelines to Support the Application of Regulation 2020/741 on Minimum Requirements for Water Reuse (2022/C 298/01). Information from European Union Institutions, Bodies, Offices and Agencies. Official Journal of the European Union (C 298/1). Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:52022XC0805(01) (accessed on 12 January 2024).
- Maffettone, R.; Gawlik, B.M. Technical Guidance—Water Reuse Risk Management for Agricultural Irrigation Schemes in Europe; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- Carducci, A.; Federigi, I.; Lauretani, G.; Muzio, S.; Pagani, A.; Atomsa, N.T.; Verani, M. Critical Needs for Integrated Surveillance: Wastewater-Based and Clinical Epidemiology in Evolving Scenarios with Lessons Learned from SARS-CoV-2. Food Environ. Virol. 2024, 16, 38–49. [Google Scholar] [CrossRef]
- Takuissu, G.R.; Kenmoe, S.; Ebogo-Belobo, J.T.; Kengne-Ndé, C.; Mbaga, D.S.; Bowo-Ngandji, A.; Ondigui Ndzie, J.L.; Kenfack-Momo, R.; Tchatchouang, S.; Kenfack-Zanguim, J.; et al. Exploring adenovirus in water environments: A systematic review and meta-analysis. Int. J. Environ. Health Res. 2023, 34, 2504–2516. [Google Scholar] [CrossRef]
- Allard, A.; Vantarakis, A. Adenoviruses. In Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project); Rose, J.B., Jiménez-Cisneros, B., Eds.; (J.S Meschke, and R. Girones (eds), Part 3: Specific Excreted Pathogens: Environmental and Epidemiology Aspects-Section 1: Viruses), Michigan State University, E. Lansing, MI, UNESCO; 2017; Available online: https://www.waterpathogens.org/book/adenoviruses (accessed on 12 January 2024).
- World Health Organization (WHO). Quantitative Microbial Risk Assessment; Application for Water Safety Management: Geneva, Switzerland, 2016; ISBN 978 92 4 156537 0. [Google Scholar]
- Legislative Decree no. 152/2006, Environmental Regulation of the Italian Government (GU Serie Generale n.88 del 14-04-2006—Suppl. Ordinario n. 96). Available only in Italian language. Available online: https://www.normattiva.it/uri-res/N2Ls?urn:nir:stato:decreto.legislativo:2006-04-03;152 (accessed on 12 January 2024).
- Verani, M.; Federigi, I.; Donzelli, G.; Cioni, L.; Carducci, A. Human adenoviruses as waterborne index pathogens and their use for quantitative microbial risk assessment. Sci. Total Environ. 2019, 651, 1469–1475. [Google Scholar] [CrossRef]
- Federigi, I.; Bonadonna, L.; Bonanno Ferraro, G.; Briancesco, R.; Cioni, L.; Coccia, A.M.; Della Libera, S.; Ferretti, E.; Gramaccioni, L.; Iaconelli, M.; et al. Quantitative Microbial Risk Assessment as support for bathing water profiling. Mar. Pollut. Bull. 2020, 157, 111318. [Google Scholar] [CrossRef]
- Lopez-Galvez, F.; Allende, A.; Pedrero-Salcedo, F.; Alarcon, J.J.; Gil, M.I. Safety assessment of greenhouse hydroponic tomatoes irrigated with reclaimed and surface water. Int. J. Food Microbiol. 2014, 191, 97–102. [Google Scholar] [CrossRef]
- ISO 15705:2002; Water Quality—Determination of the Chemical Oxygen Demand Index (ST-COD)—Small-Scale Sealed-Tube Method. International Organization for Standardization: Geneva, Switzerland, 2002.
- UNI EN ISO 9308-2:2014; Water Quality. Enumeration of Escherichia Coli and Coliform Bacteria. Part 2: Most Probable Number Method. International Organization for Standardization: Geneva, Switzerland, 2014.
- Le, T.M.T.; Truong, T.N.S.; Nguyen, P.D.; Le, Q.D.T.; Tran, Q.V.; Le, T.T.; Nguyen, Q.H.; Kieu-Le, T.C.; Strady, E. Evaluation of microplastic removal efficiency of wastewater-treatment plants in a developing country, Vietnam. Environ. Technol. Innov. 2023, 29, 102994. [Google Scholar] [CrossRef]
- ISO 19458:2006; Water Quality—Sampling for Microbiological Analysis. International Organization for Standardization: Geneva, Switzerland, 2006.
- UNI EN ISO 10705-2:2001; Water Quality. Detection and Enumeration of Bacteriophages Part 2: Enumeration of Somatic Coliphages. International Organization for Standardization: Geneva, Switzerland, 2001.
- NF VALIDATION—Validation of analysis methods: Application to water microbiology. Validation protocol for an alternative commercial method as compared with a reference method. Revision 2 (May 2013). Reference method: NF EN ISO 7899-2 (August 2000): Water quality. Detection and enumeration of intestinal enterococci—Part 2: Membrane filtration method.
- APAT-IRSA-CNR 7060:2003. Spores of sulfite-reducing clostridia. In APAT-IRSA-CNR, Analytical Method for Waters, Vol. 3, Section 7000—Determination of Microorganisms; Manual and Guidelines 29/2003; Agenzia per la protezione dell’Ambiente e dei Servizi Tecnici (APAT), Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche (IRSA-CNR): Rome, Italy, (available only in Italian language); Available online: https://www.irsa.cnr.it/wp/?page_id=5435 (accessed on 12 January 2024).
- APAT-IRSA-CNR 7080:2003. Salmonella spp. In APAT-IRSA-CNR, Analytical Method for Waters, Vol. 3, Section 7000—Determination of Microorganisms; Manual and Guidelines 29/2003; Agenzia per la protezione dell’Ambiente e dei Servizi Tecnici (APAT), Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche (IRSA-CNR): Rome, Italy, (available only in Italian language); Available online: https://www.irsa.cnr.it/wp/?page_id=5435 (accessed on 12 January 2024).
- Carducci, A.; Federigi, I.; Balestri, E.; Lardicci, C.; Castelli, A.; Maltagliati, F.; Zhao, H.; Menicagli, V.; Valente, R.; De Battisti, D.; et al. Virus contamination and infectivity in beach environment: Focus on sand and stranded material. Mar. Pollut. Bull. 2022, 185, 114342. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- La Rosa, G.; Brandtner, D.; Bonanno Ferraro, G.; Veneri, C.; Mancini, P.; Iaconelli, M.; Lucentini, L.; Del Giudice, C.; Orlandi, L.; SARI network. Wastewater surveillance of SARS-CoV-2 variants in October-November 2022 in Italy: Detection of XBB.1, BA.2.75 and rapid spread of the BQ.1 lineage. Sci. Total Environ. 2023, 873, 162339. [Google Scholar] [CrossRef]
- Sokal, R.R.; Rohlf, F.J. Biometry: The Principles Practice of Statistics in Biological Research, 3rd ed.; W.H. Freeman and Co.: New York, NY, USA, 1995. [Google Scholar]
- Hijnen, W.A.M.; Medema, G.J. Elimination of Micro-Organisms by Drinking Water Treatment Processes: A Review; IWA Publishing: London, UK, 2010. [Google Scholar]
- Lazarova, V.; Asano, T.; Bahri, A.; Anderson, J. Milestones in Water Reuse—The Best Success Stories; IWA Publishing Alliance: London, UK, 2013. [Google Scholar]
- Tal, A. Seeking Sustainability: Israel’s evolving water management strategy. Science 2006, 313, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4. [Google Scholar]
- Chhetri, R.K.; Bonnerup, A.; Andersen, H.R. Combined sewer overflow pretreatment with chemical coagulation and a particle settler for improved peracetic acid disinfection. J. Ind. Eng. Chem. 2016, 37, 372–379. [Google Scholar] [CrossRef]
- Federigi, I.; Verani, M.; Carducci, A. Sources of bathing water pollution in northern Tuscany (Italy): Effects of meteorological variables. Mar. Pollut. Bull. 2017, 114, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Carducci, A.; Federigi, I.; Cioni, L.; Landucci, A.; Donzelli, G.; Iannelli, R.; Pretti, C.; Tardelli, F.; Casu, V.; Verani, M. Approach to a water safety plan for recreational waters: Disinfection of a drainage pumping station as an unconventional point source of fecal contamination. H2Open J. 2020, 3, 1–9. [Google Scholar] [CrossRef]
- Foschi, J.; Turolla, A.; Antonelli, M. Soft sensor predictor of E. coli concentration based on conventional monitoring parameters for wastewater disinfection control. Water Res. 2021, 191, 116806. [Google Scholar] [CrossRef] [PubMed]
- Rocher, V.; Azimi, S.; Mailler, R.; Guérin, S.; Meche, P.; Pichon, S.; Goffin, A.; Bernier, J.; Roy, J.; Varrault, G.; et al. Effectiveness of Disinfecting Wastewater Treatment Plant Discharges: Case of Chemical Disinfection Using Performic Acid; IWA Publishing: London, UK, 2021. [Google Scholar]
- Cuevas-Ferrando, E.; Pérez-Cataluña, A.; Falcó, I.; Randazzo, W.; Sánchez, G. Monitoring Human Viral Pathogens Reveals Potential Hazard for Treated Wastewater Discharge or Reuse. Front. Microbiol. 2022, 13, 836193. [Google Scholar] [CrossRef]
- NRMMC–EPHC–AHMC (Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, Australian Health Ministers’ Conference). Australian Guidelines for Water Recycling: Managing Health and Environmental Risks (Phase 1); National Water Quality Management Strategy: Canberra, Australia, 2006.
Parameters | Water Quality Classes | |||
---|---|---|---|---|
A | B | C | D | |
BOD5 (mg/L) | 10 | 25 | ||
TSS (mg/L) | 10 | 35 | ||
E. coli (MPN/100 mL) | 10 | 100 | 1000 | 10,000 |
Parameter | Effluent Treatment | Weather Condition | n. obs (n) | Compliance with Minimum Requirements (%) | |||
---|---|---|---|---|---|---|---|
Class A | Class B | Class C | Class D | ||||
BOD5 | Chlorinated | Dry | 104 | 92.3 | 100 | ||
Wet | 34 | 88.2 | 97.1 | ||||
Total | 138 | 91.3 | 99.3 | ||||
Not chlorinated | Dry | 345 | 92.5 | 99.7 | |||
Wet | 96 | 92.7 | 100 | ||||
Total | 441 | 92.5 | 99.8 | ||||
TSS | Chlorinated | Dry | 104 | 89.4 | 97.1 | ||
Wet | 34 | 82.4 | 97.1 | ||||
Total | 138 | 87.7 | 97.1 | ||||
Not chlorinated | Dry | 345 | 92.2 | 99.4 | |||
Wet | 96 | 91.7 | 100 | ||||
Total | 441 | 92.1 | 99.5 | ||||
E. coli | Chlorinated | Dry | 52 | 1.9 | 9.6 | 15.4 | 42.3 |
Wet | 14 | 0.0 | 0.0 | 0.0 | 21.4 | ||
Total | 66 | 1.5 | 7.6 | 12.1 | 36.4 | ||
Not chlorinated | Dry | 9 | 0.0 | 0.0 | 0.0 | 22.2 | |
Wet | 2 | 0.0 | 0.0 | 0.0 | 0.0 | ||
Total | 11 | 0.0 | 0.0 | 0.0 | 18.2 |
Parameter | Effluent Treatment | Weather Condition | n. obs (n) | Compliance with Minimum Requirements (%) | |||
---|---|---|---|---|---|---|---|
Class A | Class B | Class C | Class D | ||||
BOD5 | Chlorinated | Dry | 64 | 98.4 | 100 | ||
Wet | 9 | 100 | 100 | ||||
Total | 73 | 98.6 | 100 | ||||
Not chlorinated | Dry | 179 | 95.0 | 99.4 | |||
Wet | 45 | 97.8 | 100 | ||||
Total | 224 | 95.5 | 99.6 | ||||
TSS | Chlorinated | Dry | 64 | 87.5 | 100 | ||
Wet | 9 | 77.8 | 100 | ||||
Total | 73 | 86.3 | 100 | ||||
Not chlorinated | Dry | 179 | 88.8 | 99.4 | |||
Wet | 45 | 97.8 | 100 | ||||
Total | 224 | 90.6 | 99.5 | ||||
E. coli | Chlorinated | Dry | 51 | 47.1 | 70.6 | 86.3 | 96.1 |
Wet | 5 | 40.0 | 80.0 | 80.0 | 80.0 | ||
Total | 56 | 46.4 | 71.4 | 85.7 | 94.6 | ||
Not chlorinated | Dry | 55 | 3.6 | 3.6 | 5.5 | 21.9 | |
Wet | 12 | 0.0 | 0.0 | 0.0 | 16.7 | ||
Total | 67 | 3.0 | 3.0 | 4.5 | 20.9 |
Parameter | WWTP Type | Weather Condition | n. obs | Removal Efficiency % Average (10th–90th) | Mann-Whitney U (p-Value) |
---|---|---|---|---|---|
COD | WWTP1 | Dry | 449 | 93.1 (88.2–98.6) | <0.0001 |
Wet | 130 | 87.8 (77.7–100) | |||
Total | 579 | 91.9 (85.5–98.7) | - | ||
WWTP2 | Dry | 243 | 93.3 (86.0–100) | 0.9185 | |
Wet | 53 | 92.6 (84.7–100) | |||
Total | 296 | 93.2 (85.6–100) | - | ||
BOD5 | WWTP1 | Dry | 449 | 97.7 (93.5–100) | <0.01 |
Wet | 130 | 94.6 (85.2–100) | |||
Total | 579 | 97.0 (92.3–100) | - | ||
WWTP2 | Dry | 243 | 98.3 (94.4–100) | 0.9451 | |
Wet | 53 | 96.2 (92.6–100) | |||
Total | 296 | 97.9 (94.2–100) | - | ||
TSS | WWTP1 | Dry | 448 | 96.6 (90.2–100) | <0.01 |
Wet | 130 | 92.6 (79.9–100) | |||
Total | 578 | 95.7 (88.6–100) | - | ||
WWTP2 | Dry | 242 | 96.3 (88.7–100) | 0.9596 | |
Wet | 53 | 96.8 (91.2–100) | |||
Total | 295 | 96.4 (89.2–100) | - |
Microbial Parameter | WWTP Type | Log-Removal between Entrance and Secondary Treatment | Log-Removal between Secondary and Tertiary Treatment | Log-Removal of the Entire Treatment Process (Entrance Sewage–Tertiary Effluent) |
---|---|---|---|---|
E. coli | WWTP1 | 2.49 (2.33–2.89) | 0.30 (0.05–1.45) | 3.46 (2.54–4.86) |
WWTP2 | 2.84 (2.50–3.08) | 0.97 (0.20–2.34) | 4.13 (3.30–5.31) | |
Intestinal enterococci | WWTP1 | 2.63 (2.32–2.82) | 0.70 (0.02–0.99) | 3.54 (3.06–3.82) |
WWTP2 | 2.58 (2.32–2.95) | 0.56 (0.1–1.56) | 3.42 (2.93–4.40) | |
Somatic coliphages | WWTP1 | 2.43 (1.86–3.09) | 0.84 (0.36–0.99) | 3.50 (2.64–4.01) |
WWTP2 | 2.51 (1.88–2.90) | 0.99 (0.36–1.47) | 3.24 (2.30–4.19) | |
Clostridia spores | WWTP1 | 2.49 (2.04–2.76) | 0.51 (0.23–0.97) | 3.09 (2.71–3.58) |
WWTP2 | 0.96 (0.79–1.16) | 0.27 (0.12–0.59) | 1.24 (1.03–1.46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Federigi, I.; Salvadori, R.; Lauretani, G.; Leone, A.; Lippi, S.; Marvulli, F.; Pagani, A.; Verani, M.; Carducci, A. Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks. Water 2024, 16, 1399. https://doi.org/10.3390/w16101399
Federigi I, Salvadori R, Lauretani G, Leone A, Lippi S, Marvulli F, Pagani A, Verani M, Carducci A. Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks. Water. 2024; 16(10):1399. https://doi.org/10.3390/w16101399
Chicago/Turabian StyleFederigi, Ileana, Roberto Salvadori, Giulia Lauretani, Anna Leone, Simone Lippi, Francesca Marvulli, Alessandra Pagani, Marco Verani, and Annalaura Carducci. 2024. "Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks" Water 16, no. 10: 1399. https://doi.org/10.3390/w16101399
APA StyleFederigi, I., Salvadori, R., Lauretani, G., Leone, A., Lippi, S., Marvulli, F., Pagani, A., Verani, M., & Carducci, A. (2024). Wastewater Treatment Plants Performance for Reuse: Evaluation of Bacterial and Viral Risks. Water, 16(10), 1399. https://doi.org/10.3390/w16101399