Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere
<p>Map of GNSS receivers’ stations.</p> "> Figure 2
<p>Map of magnetometer stations.</p> "> Figure 3
<p>State of the interplanetary medium from 6 to 30 June 2015. (<b>a</b>) Velocity of the solar wind (Vsw). In addition, (<b>b</b>) shows the IMF Bz (interplanetary magnetic field in the Z direction), (<b>c</b>) presents the y-component of interplanetary electric field, (<b>d</b>) portrays the aurora electrojet (AL: aurora lower boundary, AU: aurora upper boundary), (<b>e</b>) demonstrates the H-component symmetry of Earth’s magnetic field observed at various low latitudes, and (<b>f</b>) illustrates <span class="html-italic">DP2</span> currents in Belem (dip lat: <math display="inline"><semantics> <mo>−</mo> </semantics></math>0.47°) and Alta Floresta (<math display="inline"><semantics> <mo>−</mo> </semantics></math>3.75°). Further, (<b>g</b>) shows the day-to-day variations of EEJ current (red legend) and magnetically five-quiet day average (black legend).</p> "> Figure 4
<p>Phase comparison between <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> currents at Belem from 6 to 30 June 2015. (<b>a</b>) <span class="html-italic">Sq</span> current in Belem from 6 to 30 June 2015. (<b>b</b>) Continuous wavelet transforms (<span class="html-italic">CWT</span>) of the <span class="html-italic">Sq</span> current at Belem, and (<b>c</b>) <span class="html-italic">Diono</span> current at Belem from 6–30 June 2015. (<b>d</b>) Continuous wavelet transforms (<span class="html-italic">CWT</span>) of the <span class="html-italic">Diono</span> current at Belem. (<b>e</b>) Semblance between <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> current. The value <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> represents the <span class="html-italic">anti-Sq</span> current, and +1 represents the phase correction of the <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> currents. (<b>f</b>) Amplitude of semblance analysis between <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> currents.</p> "> Figure 5
<p>Variation in diurnal component of <span class="html-italic">Ddyn</span> alongside the AE index, Akasofu index, and ASYM-H index from 6 to 30 June 2015. (<b>a</b>) Day-to-day variation of the AE index (right-hand side of (<b>a</b>), presented in the black legend) and Akasofu index left-hand side of (<b>a</b>) presented in the red legend (<b>b</b>) ASYM-H index presented in (<b>b</b>). (<b>c</b>) Diurnal component of <span class="html-italic">Ddyn</span> at magnetic stations in Belem represented in the red legend and Alta Floresta represented in the black legend.</p> "> Figure 6
<p>Development of <span class="html-italic">anti-Sq</span> amplitude computed from semblance cross-correlation wavelet analysis between <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> currents in relation to AE index activity and Akasofu index from 6 to 30 June 2015. (<b>a</b>) AE index plotted on the right-hand side (black legend) and Akasofu index plotted on the left-hand side (red legend) in (<b>a</b>). (<b>b</b>) <span class="html-italic">Anti-Sq</span> of semblance analysis of local phase comparison between <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> current at Belem (dip lat: <math display="inline"><semantics> <mo>−</mo> </semantics></math>0.47°). (<b>c</b>) <span class="html-italic">Anti-Sq</span> of semblance analysis of local phase comparison between <span class="html-italic">Sq</span> and <span class="html-italic">Diono</span> currents at Alta Floresta (dip lat: <math display="inline"><semantics> <mo>−</mo> </semantics></math>3.75°).</p> "> Figure 7
<p>Temporal variation of VTEC alongside the SYM-H index and <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>×</mo> <mi>B</mi> </mrow> </semantics></math> drift velocity from 6 to 30 June 2015. (<b>a</b>) Day-to-day variability of SYM-H index from 6 to 30 June 2015. (<b>b</b>) Day-to-day variability of vertical drift velocity (<span class="html-italic">DVDV</span>: red legend) and average of five magnetically quiet days in June 2015 (<span class="html-italic">QVDV</span>; black legend). (<b>c</b>–<b>l</b>) Day-to-day variations of VTEC from 6 to 30 June 2015 (red legend) and average of five magnetically quiet days in June 2015 (black legend).</p> "> Figure 8
<p>Spatial-temporal variation of VTEC from 8 to 30 June 2015. (<b>a</b>) Change in EEJ (ΔEEJ) from 6 to 30 June 2015, plotted on left-hand-side of (<b>a</b>) (black legend) and <span class="html-italic">Diono</span> current from 6–30 June 2015, plotted on right-hand side of Panel a of <a href="#atmosphere-15-00597-f008" class="html-fig">Figure 8</a> (red legend). (<b>b</b>) Day-to-day variability of VTEC from 6 to 30 June 2015 shown on TEC-MAP and day-to-day variability of SYM-H index plotted on right-hand side of (<b>b</b>) (red legend). (<b>c</b>) Change in VTEC (ΔVTEC) from 6 to 30 June 2015, shown on TEC-MAP and day-to-day variability of SYM-H index plotted on right-hand side (red legend) from 6 to 30 June 2015.</p> "> Figure 9
<p><span class="html-italic">SAMI2 model-VTEC</span> comparison with <span class="html-italic">GPS-VTEC</span> from 6 to 19 June 2015.</p> "> Figure 10
<p>SAMI2 model comparison with <span class="html-italic">GPS-VTEC</span> from 20 to 30 June 2015.</p> "> Figure 11
<p>IMF Bz Fluctuations alongside <span class="html-italic">DP2</span> and EEJ from 7–8 June 2015.</p> "> Figure 12
<p><span class="html-italic">IMF Bz</span> fluctuations alongside the <span class="html-italic">DP2</span> and <span class="html-italic">EEJ</span> currents from 22 to 23 June 2015.</p> ">
Abstract
:1. Introduction
2. Data Source, Data Processing, and Model
2.1. Data Source
2.2. Data Processing
2.2.1. GPS Data
2.2.2. Computation of Equatorial Electrojet (EEJ)
2.2.3. Computation of Ionospheric Electric Current Disturbance (Diono)
- Semblance cross-correlation wavelet analysis [54,64]. Interested readers can refer to the article published by Younas (2021) [54,64,65]. We performed a semblance analysis by comparing the local phase between the Sq and the Diono currents as a function of time and wavelength. The details of this new method to isolates anti-Sq from Diono can be found in [54]. The positive phase is represented by +1 and the negative phase is represented by −1 (which is anti-Sq current).
2.2.4. Computation of Akasofu’s Parameter
- = Akasofu epsilon parameter
- = effective cross-sectional area of the merging region
2.3. SAMI2 Model
3. Results
3.1. Impact of June 2015 Geomagnetic Storms on Brazilian Ionosphere
3.1.1. The State of the Interplanetary Medium from 6 to 30 June 2015
3.1.2. Phase Comparison between the Sq and Diono Currents in Belem from 6 to 30 June 2015
3.1.3. Effect of Cowling Conductivity on the Strength of Ddyn
3.1.4. Response of Brazilian Equatorial and Low-Latitude Ionospheric Vertical Total Electron Content to Geomagnetic Disturbances of June 2015
3.2. SAMI2 Model Run Results
4. Discussion and Conclusions
4.1. Effects of IMF Bz Oscillations on DP2 Current Fluctuations in Brazilian Equatorial Latitude
4.2. Development of Disturbance Dynamo Electric Field during Recovery Phase of June 2015 Geomagnetic Storm and Associated Positive and Negative Ionospheric Storms
- During the main phase of the 22–23 June geomagnetic storm and in the early stage of the recovery phase, we observed the intensification of auroral activities due to the interaction between the solar wind and the magnetosphere, which caused considerable energy input into the high-latitude auroral ionosphere (see Figure 5a and Figure 6a). The deposition of energy at high latitudes heats the thermosphere, drives equatorward wind surges, and changes global circulation. The change in the global circulation drives downwelling at low latitudes, which decreases molecular species and causes a slight positive ionospheric phase during the main phase on the nightside and early stages of the recovery phase (see Figure 8c). The dynamo effect of the altered wind circulation opposes the normal diurnal variation on 23 June (see Figure 7b), with downward drift velocity during the day and drives the negative ionospheric storm during the daytime on 23 June 2015 (see Figure 7c–l and Figure 8c). The westward flow of EEJ on 23 June was caused by westward disturbance dynamo electric field.
- The interplay between the eastward prompt penetration of magnetospheric electric field and westward disturbance dynamo electric field caused short-lived positive ionospheric storms during the main phase on 22 June 2015 (see Figure 8c)
- The positive ionospheric storm observed during the recovery phase of the 8 June geomagnetic storm was not connected to the eastward prompt penetration of the magnetospheric convection electric field and HSSWs, but the possible driver could be solar flux (F10.7 cm).
- A comparison between the SAMI2 model-VTEC and GSP-VTEC revealed notable dis parities in the context of this study. Specifically, the SAMI2 model underestimated the VTEC from −9° to −24° magnetic latitude in the Brazilian longitudinal sector from 6 to 17 June 2015. However, satisfactory agreement with the GPS-VTEC was observed from −9° to 10° magnetic latitudes from 8 to 15 June 2015. In contrast, the SAMI2 model overestimated the VTEC between ±10° magnetic latitudes from 16 to 28 June 2015. The highest root mean square error (RMSE) values, notably 10.30 and 5.48 TECU, were recorded on 22 and 23 June 2015, coinciding with periods of intense geomagnetic disturbances. The increase in the RSME value during the main phase on 22 June can be attributed to the interplay between the eastward PPMEF and westward DDEF. We recommend that the SAMI2 model should incorporate disturbance winds to optimally perform during intense geomagnetic storms.
- In summary, we observed that the EUVAC model that provides the EUV flux overestimated the ionization during the daytime, particularly from 10:00 to 20:00 LT. These results are not presented to avoid making them cumbersome. Another remarkable observation is that the summer-to-winter hemispheric circulation of meridional neutral wind raised the ionized plasma between ±10° magnetic latitude and lowered it in the Southern Hemisphere, which might be the reason for the overestimation of VTEC by the SAMI2 model between ±10°, as shown in Figure 9 and Figure 10. Finally, we observed that the SAMI2 model failed to reproduce the negative ionospheric storm caused by the westward disturbance dynamo on the VTEC during the daytime on 23 June, as we observed when we compared the SAMI2 model-VTEC on 20 June (quiet day) with that on 23 June (disturbed day). However, when we replaced the Fejer–Scherliess empirical model with the ExB drift velocity estimated from the ground-based magnetometer, the SAMI2 model reproduced the effect of the westward disturbance dynamo on the VTEC on 23 June 2015 (we did not present this result in this study to avoid redundancy) [19]. Hence, we recommend incorporating disturbed winds into the SAMI2 code to achieve optimal performance during geomagnetic storms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knipp, D.; McQuade, M.K.; Kirkpatrick, D. Understanding Space Weather and the Physics Behind It; McGraw-Hill: New York, NY, USA, 2011. [Google Scholar]
- Abdu, M.A. Outstanding Problems in the Equatorial Ionosphere-Thermosphere Electrodynamics Relevant to Spread F. J. Atmos. Sol.-Terr. Phys. 2001, 63, 869–884. Available online: www.elsevier.nl/locate/jastp (accessed on 10 November 2023). [CrossRef]
- Greenspan, M.E.; Rasmussen, C.E.; Burke, W.J.; Abdu, M.A. Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989. J. Geophys. Res. Space Phys. 1991, 96, 13931–13942. [Google Scholar] [CrossRef]
- Balan, N.; Batista, I.S.; Abdu, M.A.; MacDougall, J.; Bailey, G.J. Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere. J. Geophys. Res. Space Phys. 1998, 103, 29169–29181. [Google Scholar] [CrossRef]
- De Paula, E.R.; de Oliveira, C.B.A.; Caton, R.G.; Negreti, P.M.; Batista, I.S.; Martinon, A.R.F.; Neto, A.C.; Abdu, M.A.; Monico, J.F.G.; Sousasantos, J.; et al. Ionospheric irregularity behavior during the September 6–10, 2017 magnetic storm over Brazilian equatorial–low latitudes. Earth Planets Space 2019, 71, 42. [Google Scholar] [CrossRef]
- Raghavarao, R.; Wharton, L.E.; Spencer, N.W.; Mayr, H.G.; Brace, L.H. An equatorial temperature and wind anomaly (ETWA). Geophys. Res. Lett. 1991, 18, 1193–1196. [Google Scholar] [CrossRef]
- Mridula, N.; Pant, T.K. On the possible role of zonal dynamics in the formation and evolution of F3 layers over equator. J. Atmos. Sol. Terr. Phys. 2015, 134, 69–77. [Google Scholar] [CrossRef]
- Mridula, N.; Pant, T.K.; Manju, G. On the variability of the Equatorial Ionization Anomaly Trough over Indian region: A novel analysis using Beacon TEC measurements. Adv. Space Res. 2020, 66, 646–654. [Google Scholar] [CrossRef]
- Martinis, C.; Daniell, R.; Eastes, R.; Norrell, J.; Smith, J.; Klenzing, J.; Solomon, S.; Burns, A. Longitudinal Variation of Postsunset Plasma Depletions from the Global-Scale Observations of the Limb and Disk (GOLD) Mission. J. Geophys. Res. Space Phys. 2021, 126, 028510. [Google Scholar] [CrossRef]
- Cai, X.; Wang, W.; Eastes, R.W.; Qian, L.; Pedatella, N.; Aa, E.; Zhang, S.; Coster, A.; Daniell, R.E.; McClintock, W.E. Equatorial Ionization Anomaly Discontinuity Observed by GOLD, COSMIC-2, and Ground-Based GPS Receivers’ Network. Geophys. Res. Lett. 2023, 50, e2023GL102994. [Google Scholar] [CrossRef]
- Alagbe, G.A.; Afolabi, O.O.; Adagunodo, T.A.; Rabiu, A.B.; Akinwumi, S.A.; Omotosho, T.V. Study of Ionospheric Amplitude Scintillation during Geomagnetic Activities of 2012 at Low Latitude Region. J. Inform. Math. Sci. 2017, 9, 251–256. Available online: http://www.rgnpublications.com (accessed on 26 August 2023).
- Alagbe, G.A.; Afolabi, O.O.; Fayomi, E.S.; Ayorinde, T.T.; Rabiu, A.B. Latitudinal Variation of Occurrence of Amplitude Scintillations over Lagos and Ilorin. Int. J. Innov. Res. Adv. Stud. (IJIRAS) 2017, 4. Available online: www.ijiras.com (accessed on 28 August 2023).
- Afolabi, O.O.; Adagunodo, T.A.; Akinwumi, S.A.; Usikalu, M.R.; Ayorinde, T.T.; Rabiu, A.B. Impact of magnetic activity on occurrence of ionospheric amplitude scintillation over Lagos, Nigeria. In Proceedings of the 2017 IEEE Radio and Antenna Days of the Indian Ocean, RADIO 2017, Cape Town, South Africa, 25–28 September 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Nishida, A. The origin of fluctuations in the equatorial electrojet; a new type of geomagnetic variation. Ann. Geophys. 1966, 22, 478. [Google Scholar]
- Nishida, A. Geomagnetic DP2 fluctuations and associated magnetospheric phenomena. J. Geophys. Res. 1968, 73, 1795–1803. [Google Scholar] [CrossRef]
- Nishida, A. Coherence of geomagnetic DP 2 fluctuations with interplanetary magnetic variations. J. Geophys. Res. 1968, 73, 5549–5559. [Google Scholar] [CrossRef]
- Mayaud, P.N. Comment on ‘The Ionospheric Disturbance Dynamo’ by M. Blanc and A.D. Richmond. J. Geophys. Res. 1982, 87, 6353–6355. [Google Scholar] [CrossRef]
- Vasyliunas, V.H. Mathematical model of magnetospheric convection and its coupling to the ionosphere. In Particles and Fields in the Magnetosphere; Mc Cormac, B.M., Ed.; D. Reidel Publ. Co.: Dordrecht, The Netherlands, 1970. [Google Scholar]
- Tsurutani, B.T.; Verkhoglyadova, O.P.; Mannucci, A.J.; Saito, A.; Araki, T.; Yumoto, K.; Tsuda, T.; Abdu, M.A.; Sobral, J.H.A.; Gonzalez, W.D.; et al. Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30–31 October 2003. J. Geophys. Res. Space Phys. 2008, 113, 1–10. [Google Scholar] [CrossRef]
- Wolf, R.A. Effects of ionospheric conductivity on convective flow of plasma in the magnetosphere. J. Geophys. Res. 1970, 75, 4677–4698. [Google Scholar] [CrossRef]
- Spiro, R.W.; Wolf, R.A.; Fejer, B.G. Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984. Ann. Geophys. 1988, 6, 39–50. [Google Scholar]
- Peymirat, C.; Richmond, A.D.; Kobea, A.T. Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. J. Geophys. Res. Space Phys. 2000, 105, 22991–23003. [Google Scholar] [CrossRef]
- Richmond, A.D.; Matsushita, S. Thermospheric response to a magnetic substorm. J. Geophys. Res. 1975, 80, 2839–2850. [Google Scholar] [CrossRef]
- Blanc, M.; Profile, S.; Richmond, A.D. The Ionospheric Disturbance Dynamo. J. Geophys. Res. Space Phys. 1980, 85, 1669–1686. Available online: https://www.researchgate.net/publication/349725008 (accessed on 26 August 2023). [CrossRef]
- Fejer, B.G.; De Paula, E.R.; Heelis, R.A.; Hanson, W.B. Hanson Global equatorial ionospheric vertical drifts measured by the AE-E satellite. J. Geophys. Res. 1995, 100, 5769–5776. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L. Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res. Space Phys. 1997, 102, 24047–24056. [Google Scholar] [CrossRef]
- Kavanagh, L.D.; Freeman, J.W.; Chen, A.J. Plasma flow in the magnetosphere. J. Geophys. Res. 1968, 73, 5511–5519. [Google Scholar] [CrossRef]
- McPherron, R.L.; Russell, C.T.; Aubry, M.P. Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 1973, 78, 3131–3149. [Google Scholar] [CrossRef]
- McPherron, R.L. Physical Processes Producing magnetospheric substorms and magnetic storms. Geomagnetism 1991, 4, 593–739. [Google Scholar]
- Strangeway, R.J.; Russell, C.T.; Carlson, C.W.; McFadden, J.P.; Ergun, R.E.; Temerin, M.; Klumpar, D.M.; Peterson, W.K.; Moore, T.E. Cusp field-aligned currents and ion outflows. J. Geophys. Res. Space Phys. 2000, 105, 21129–21141. [Google Scholar] [CrossRef]
- Wei, Y.; Zhao, B.; Li, G.; Wan, W. Electric field penetration into Earth’s ionosphere: A brief review for 2000–2013. Sci. Bull. 2015, 60, 748–761. [Google Scholar] [CrossRef]
- Ren, Z.; Wan, W.; Wei, Y.; Liu, L.; Yu, T. A theoretical model for mid- and low-latitude ionospheric electric fields in realistic geomagnetic fields. Sci. Bull. 2008, 53, 3883–3890. [Google Scholar] [CrossRef]
- Knipp, D.J.; Bernstein, V.; Wahl, K.; Hayakawa, H. Timelines as a tool for learning about space weather storms. J. Space Weather Space Clim. 2021, 11, 29. [Google Scholar] [CrossRef]
- Jaggi, R.K.; Wolf, R.A. Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 1973, 78, 2852–2866. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Balan, N.; Le, H.; Chen, Y.; Zhao, B. Equatorial Ionospheric Disturbance Field-Aligned Plasma Drifts Observed by C/NOFS. J. Geophys. Res. Space Phys. 2018, 123, 4192–4201. [Google Scholar] [CrossRef]
- Tsurutani, B. Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 2004, 109, A08302. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Lakhina, G.S.; Hajra, R. The physics of space weather/solar-terrestrial physics (STP): What we know now and what the current and future challenges are. Nonlinear Process. Geophys. 2020, 27, 75–119. [Google Scholar] [CrossRef]
- Tsurutani, B.T.; Gonzalez, W.D.; Tang, F.; Akasofu, S.I.; Smith, E.J. Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979). J. Geophys. Res. 1988, 93, 8519. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Tsurutani, B.T.; Gonzalez, A.L.C.; Smith, E.J.; Tang, F.; Akasofu, S. Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979). J. Geophys. Res. Space Phys. 1989, 94, 8835–8851. [Google Scholar] [CrossRef]
- Yue, X.; Wan, W.; Liu, L.; Le, H.; Chen, Y.; Yu, T. Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment. Chin. Sci. Bull. 2008, 53, 94–101. [Google Scholar] [CrossRef]
- Mazaudier, C. Electric currents above Saint-Santin: 3. A preliminary study of disturbances: June 6, 1978; March 22, 1979; March 23, 1979. J. Geophys. Res. Space Phys. 1985, 90, 1355–1366. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Huba, J.D.; Doornbos, E.; Ijssel, J. Global Ionospheric and Thermospheric Effects of the June 2015 Geomagnetic Disturbances: Multi-Instrumental Observations and Modeling. J. Geophys. Res. Space Phys. 2017, 122, 11–716. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Hozumi, K.; Alken, P.; Coïsson, P.; Hairston, M.R.; Coley, W.R. Study of the Equatorial and Low-Latitude Electrodynamic and Ionospheric Disturbances during the 22–23 June 2015 Geomagnetic Storm Using Ground-Based and Spaceborne Techniques. J. Geophys. Res. Space Phys. 2018, 123, 2424–2440. [Google Scholar] [CrossRef]
- Singh, R.; Sripathi, S. Ionospheric Response to 22–23 June 2015 Storm as Investigated Using Ground-Based Ionosondes and GPS Receivers Over India. J. Geophys. Res. Space Phys. 2017, 122, 11645–11664. [Google Scholar] [CrossRef]
- Macho, E.P.; Correia, E.; Paulo, C.M.; Angulo, L.; Vieira, J.A.G. Ionospheric response to the June 2015 geomagnetic storm in the South American region. Adv. Space Res. 2020, 65, 2172–2183. [Google Scholar] [CrossRef]
- Paul, B.; De, B.K.; Guha, A. Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geod. Et Geophys. 2018, 53, 579–606. [Google Scholar] [CrossRef]
- Mansilla, G.A. Ionospheric Response to the Magnetic Storm of 22 June 2015. Pure Appl. Geophys. 2018, 175, 1139–1153. [Google Scholar] [CrossRef]
- Amaechi, P.O.; Oyeyemi, E.O.; Akala, A.O. Geomagnetic storm effects on the occurrences of ionospheric irregularities over the African equatorial/low-latitude region. Adv. Space Res. 2018, 61, 2074–2090. [Google Scholar] [CrossRef]
- Gopi. GPS-TEC Analysis Software. 2011. Available online: https://www.researchgate.net/publication/255978205 (accessed on 26 August 2023).
- Rastogi, R.G.; Kitamura, T.; Kitamura, K. Geomagnetic field variations at the equatorial electrojet station in Sri Lanka, Peredinia. Ann. Geophys. 2004, 22, 2729–2739. [Google Scholar] [CrossRef]
- Agodi Onwumechili, C. The Equatorial Electrojet; Overseas Publishers Association, Amsterdam B.V. Published in the Netherlands under license by Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Rabiu, A.B.; Folarin, O.O.; Uozumi, T.; Abdul Hamid, N.S.; Yoshikawa, A. Longitudinal variation of equatorial electrojet and the occurrence of its counter electrojet. Ann. Geophys. 2017, 35, 535–545. [Google Scholar] [CrossRef]
- Amaechi, P.O.; Oyeyemi, E.O.; Akala, A.O.; Messanga, H.E.; Panda, S.K.; Seemala, G.K.; Oyedokun, J.O.; Fleury, R.; Amory-Mazaudier, C. Ground-Based GNSS and C/NOFS Observations of Ionospheric Irregularities Over Africa: A Case Study of the 2013 St. Patrick’s Day Geomagnetic Storm. Space Weather 2021, 19, e2020SW002631. [Google Scholar] [CrossRef]
- Younas, W.; Amory-Mazaudier, C.; Khan, M.; Le Huy, M. Magnetic Signatures of Ionospheric Disturbance Dynamo for CME and HSSWs Generated Storms. Space Weather 2021, 19, e2021SW002825. [Google Scholar] [CrossRef]
- Mene, N.M.; Kobea, A.T.; Obrou, O.K.; Zaka, K.Z.; Boka, K.; Amory-Mazaudier, C.; Assamoi, P. Statistical study of the DP2 enhancement at the dayside dip-equator compared to low latitudes. Ann. Geophys. 2011, 29, 2225–2233. [Google Scholar] [CrossRef]
- Amory-Mazaudier, C.; Bolaji, O.S.; Doumbia, V. On the historical origins of the CEJ, DP2, and Ddyn current systems and their roles in the predictions of ionospheric responses to geomagnetic storms at equatorial latitudes. J. Geophys. Res. Space Phys. 2017, 122, 7827–7833. [Google Scholar] [CrossRef]
- Younas, W.; Amory-Mazaudier, C.; Khan, M.; Fleury, R. Ionospheric and Magnetic Signatures of a Space Weather Event on 25–29 August 2018: CME and HSSWs. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027981. [Google Scholar] [CrossRef]
- Rodríguez-Zuluaga, J.; Radicella, S.M.; Nava, B.; Amory-Mazaudier, C.; Mora-Páez, H.; Alazo-Cuartas, K. Distinct responses of the low-latitude ionosphere to CME and HSSWS: The role of the IMF Bz oscillation frequency. J. Geophys. Res. Space Phys. 2016, 121, 11528–11548. [Google Scholar] [CrossRef]
- Le Huy, M. Magnetic signature of the ionospheric disturbance dynamo at equatorial latitudes: ‘Ddyn’. J. Geophys. Res. 2005, 110, A10301. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.; Amory-Mazaudier, C.; Fleury, R. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. A Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Flandrin, P.; Rilling, G.; Goncalves, P. Empirical Mode Decomposition as a Filter Bank. IEEE Signal Process. Lett. 2004, 11, 112–114. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Cooper, G.R.J.; Cowan, D.R. Comparing time series using wavelet-based semblance analysis. Comput. Geosci. 2008, 34, 95–102. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef]
- Cowley, S.W.H. The Earth’s magnetosphere: A brief beginner’s guide. Eos Trans. Am. Geophys. Union 1995, 76, 525. [Google Scholar] [CrossRef]
- Akasofu, S.-I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, 28, 121–190. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G.; Fedder, J.A. Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model. J. Geophys. Res. Space Phys. 2000, 105, 23035–23053. [Google Scholar] [CrossRef]
- Huba, J.D.; Joyce, G.; Fedder, J.A. The formation of an electron hole in the topside equatorial ionosphere. Geophys. Res. Lett. 2000, 27, 181–184. [Google Scholar] [CrossRef]
- Richards, P.G.; Fennelly, J.A.; Torr, D.G. EUVAC: A solar EUV flux model for aeronomic calculations. J. Geophys. Res. 1994, 99, 8981. [Google Scholar] [CrossRef]
- Iyemori, T.; Rao, D.R.K. Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm-substorm relation. Ann. Geophys. 1996, 14, 608–618. [Google Scholar] [CrossRef]
- Grocott, A.; Milan, S.E.; Baker, J.B.H.; Freeman, M.P.; Lester, M.; Yeoman, T.K. Dynamic subauroral ionospheric electric fields observed by the Falkland Islands radar during the course of a geomagnetic storm. J. Geophys. Res. Space Phys. 2011, 116, A11202. [Google Scholar] [CrossRef]
- Piersanti, M.; Alberti, T.; Bemporad, A.; Berrilli, F.; Bruno, R.; Capparelli, V.; Carbone, V.; Cesaroni, C.; Consolini, G.; Cristaldi, A.; et al. Comprehensive Analysis of the Geoeffective Solar Event of 21 June 2015: Effects on the Magnetosphere, Plasmasphere, and Ionosphere Systems. Sol. Phys. 2017, 292, 169. [Google Scholar] [CrossRef]
- Fathy, I.; Amory-Mazaudier, C.; Fathy, A.; Mahrous, A.M.; Yumoto, K.; Ghamry, E. Ionospheric disturbance dynamo associated to a coronal hole: Case study of 5–10 April 2010. J. Geophys. Res. Space Phys. 2014, 119, 4120–4133. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. 1994, 99, 3893. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Roble, R.G.; Richmond, A.D. How Does the Thermosphere and Ionosphere React to a Geomagnetic Storm? American Geophysical Union: Washington, DC, USA, 1997; pp. 203–225. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Rishbeth, H.; Moffett, R.J.; Quegan, S. On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1996, 101, 2343–2353. [Google Scholar] [CrossRef]
- Baker, W.G.; Martyn, D.F. Electric Currents in the Ionosphere I. The Conductivity. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 246, 281–294. Available online: https://royalsocietypublishing.org/ (accessed on 10 November 2023).
- Zhang, R.; Liu, L.; Le, H.; Chen, Y.; Kuai, J. The Storm Time Evolution of the Ionospheric Disturbance Plasma Drifts. J. Geophys. Res. Space Phys. 2017, 122, 11665–11676. [Google Scholar] [CrossRef]
- Yizengaw, E.; Moldwin, M.B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C.M.; Rabiu, A.B.; Obrou, O.K.; Bamba, Z.; de Paula, E.R. Response of the equatorial ionosphere to the geomagnetic DP2 current system. Geophys. Res. Lett. 2016, 43, 7364–7372. [Google Scholar] [CrossRef]
- Clauer, C.R.; Kamide, Y. DP 1 and DP 2 current systems for the March 22, 1979 substorms. J. Geophys. Res. Space Phys. 1985, 90, 343–1354. [Google Scholar] [CrossRef]
- Kikuchi, T.; Lühr, H.; Schlegel, K.; Tachihara, H.; Shinohara, M.; Kitamura, T.-I. Penetration of auroral electric fields to the equator during a substorm. J. Geophys. Res. Space Phys. 2000, 105, 23251–23261. [Google Scholar] [CrossRef]
- Kikuchi, T.; Lühr, H.; Kitamura, T.; Saka, O.; Schlegel, K. Direct penetration of the polar electric field to the equator during a DP 2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J. Geophys. Res. Space Phys. 1996, 101, 17161–17173. [Google Scholar] [CrossRef]
- Xiong, C.; Lühr, H.; Fejer, B.G. The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input. J. Geophys. Res. Space Phys. 2016, 121, 5653–5663. [Google Scholar] [CrossRef]
- Fejer, B.G.; Scherliess, L. Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys. Res. Lett. 1995, 22, 851–854. [Google Scholar] [CrossRef]
- Richmond, A.D.; Peymirat, C.; Roble, R.G. Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J. Geophys. Res. Space Phys. 2003, 108, 1118. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Millward, G.H.; Richmond, A.D.; Codrescu, M.V. Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol. Terr. Phys. 2002, 64, 1383–1391. [Google Scholar] [CrossRef]
- Emmert, J.T.; Fejer, B.G.; Shepherd, G.G.; Solheim, B.H. Average nighttime F region disturbance neutral winds measured by UARS WINDII: Initial results. Geophys. Res. Lett. 2004, 31, L22807. [Google Scholar] [CrossRef]
Day | Bz (nT) | Vsw (km/s) | IEyF (mV/m) | AL (nT) | AU (nT) | SYM-H (nT) | ASYM-H(nT) | EEJ (nT) | DP2 (nT) Belem | DP2 (nT) Alta Floresta | |
---|---|---|---|---|---|---|---|---|---|---|---|
6 | Min | −7.07 | 276.10 | −2.01 | −178 | 15 | 5 | 4 | −41.65 | −2.15 | −1.18 |
time | 11.43 | 0:01 | 13:23 | 13:35 | 18:17 | 17:17 | 3.28 | 12:05 | 12:00 | 5.55 | |
Max | 6.67 | 329.20 | 2.23 | 0 | 197 | 28 | 33 | 10.86 | 2.34 | 1.34 | |
time | 4:40 | 18:20 | 11:43 | 5:47 | 12:28 | 5:53 | 16:20 | 18:30 | 12:35 | 0:13 | |
7 | Min | −9.92 | 292.40 | −5.07 | −270 | 12 | −16 | 5 | −7.96 | −1.70 | −1.48 |
time | 20:47 | 02:59 | 22:46 | 21:24 | 01:53 | 07:37 | 04:17 | 10:09 | 19:22 | 23:37 | |
Max | 14.21 | 402 | 3.62 | −1 | 238 | 28 | 47 | 58.56 | 1.82 | 1.80 | |
time | 16:56 | 23:31 | 20:47 | 18:14 | 05:23 | 13:3 | 20:55 | 15:26 | 19:44 | 00:00 | |
8 | Min | −20.16 | 371 | −6.36 | −1068 | 23 | −105 | 5 | −29.55 | −13.16 | −5.21 |
time | 06:25 | 00:17 | 10:17 | 07:23 | 07:17 | 07:46 | 03:34 | 10:25 | 11:20 | 11:19 | |
Max | 12.25 | 680.40 | 9.38 | −14 | 642 | 23 | 116 | 59.61 | 12.95 | 5.48 | |
time | 09:34 | 11:52 | 06:25 | 04:27 | 06:31 | 00:08 | 07:07 | 16:21 | 11:46 | 11:43 | |
9 | Min | −5.32 | 578.40 | −3.75 | −710 | 13 | −47 | 7 | −11.99 | −7.81 | −5.05 |
time | 01:05 | 04:27 | 10:01 | 02:34 | 10:54 | 00:01 | 13:05 | 10:16 | 14:43 | 14:41 | |
Max | 6.18 | 667.90 | 3.33 | −22 | 368 | −21 | 69 | 61.70 | 7.31 | 4.69 | |
Time | 10:01 | 13:18 | 01:05 | 11:02 | 22:56 | 13:14 | 02:47 | 16:52 | 16:52 | 15:01 | |
10 | Min | −3.94 | 591.20 | −2.61 | −674 | 16 | −38 | 7 | −26.80 | −5.01 | −4.00 |
time | 00:10 | 00:45 | 01:53 | 00:54 | 14:38 | 00:53 | 13:26 | 10:58 | 10:57 | 01:22 | |
max | 4.17 | 667.90 | 2.46 | −13 | 304 | −18 | 55 | 31.53 | 4.57 | 4.72 | |
time | 01:53 | 15:25 | 17:04 | 03:17 | 08:56 | 05:54 | 06:28 | 15:57 | 13:16 | 01:00 | |
11 | Min | −3.82 | 495.70 | −2.13 | −722 | 8 | −37 | 4 | −42.00 | −3.38 | −3.47 |
time | 02:41 | 00:00 | 09:11 | 04:04 | 09:53 | 03:55 | 15:24 | 11:27 | 13:50 | 03:42 | |
max | 3.58 | 624.70 | 2.28 | −9 | 282 | −16 | 59 | 29.10 | 3.90 | 2.46 | |
time | 09:11 | 03:30 | 02:39 | 20:40 | 03:34 | 07:07 | 03:59 | 14:42 | 12:04 | 04:04 | |
12 | min | −4.72 | 445.30 | −3.25 | −268 | 8 | −24 | 5 | −27.45 | −6.13 | −3.79 |
time | 15:47 | 15:42 | 20:42 | 05:31 | 09:30 | 00:14 | 23:17 | 10:35 | 15:50 | 15:49 | |
max | 7.19 | 555.10 | 2.14 | −12 | 179 | 30 | 51 | 32.27 | 6.5 | 3.61 | |
time | 20:42 | 23:04 | 15:47 | 20:51 | 05:32 | 17:57 | 18:44 | 17:59 | 16:10 | 16:10 | |
13 | min | −5.95 | 449.40 | −3.02 | −444 | 24 | −24 | 8 | −15.91 | −4.29 | −2.59 |
time | 23:52 | 19:30 | 22:27 | 06:38 | 15:02 | 18:54 | 16:24 | 10:22 | 15:45 | 15:43 | |
max | 6.1 | 533.10 | 2.94 | −6 | 276 | 2 | 49 | 45.36 | 4.19 | 2.50 | |
time | 22:27 | 00:13 | 23:52 | 21:23 | 07:31 | 23:23 | 06:28 | 16:07 | 16:07 | 16:05 | |
14 | min | −7.29 | 441.60 | −5.86 | −925 | 16 | −35 | 5 | −38.39 | −5.38 | −2.98 |
time | 08:48 | 04:03 | 11:08 | 09:43 | 16:01 | 09:26 | 19:26 | 10:40 | 11:24 | 16:58 | |
max | 10.61 | 635.30 | 3.54 | −6 | 512 | −6 | 82 | 41.87 | 7.03 | 3.91 | |
time | 11:08 | 15:39 | 08:54 | 14:18 | 09:40 | 07:21 | 07:48 | 16:36 | 16:39 | 16:37 | |
15 | min | −4.94 | 484.40 | −3.86 | −968 | 14 | −31 | 6 | −48.39 | −6.55 | −3.96 |
time | 11:50 | 23:39 | 00:20 | 09:50 | 01:54 | 12:20 | 07:43 | 11:35 | 14:02 | 14:01 | |
max | 6.69 | 628.80 | 2.89 | −16 | 465 | −5 | 60 | 16.98 | 6.52 | 3.77 | |
time | 00:23 | 00:13 | 11:50 | 01:11 | 14:10 | 18:13 | 18:32 | 14:32 | 14:26 | 14:24 | |
16 | min | −5.93 | 460.60 | −4.50 | −588 | 18 | −36 | 8 | −19.58 | −4.10 | −2.53 |
time | 00:24 | 15:22 | 20:12 | 01:15 | 22:56 | 08:59 | 13:34 | 10:41 | 15:19 | 15:17 | |
max | 8.12 | 587.2 | 3.24 | 6 | 306 | −8 | 64 | 38.72 | 4.89 | 2.10 | |
time | 20:06 | 19:53 | 00:24 | 20:19 | 00:30 | 21:34 | 08:30 | 15:40 | 15:40 | 15:38 | |
17 | min | −6.79 | 410.20 | −4.12 | −677 | 14 | −47 | 11 | −27.07 | −10.72 | −4.16 |
time | 14:12 | 23:23 | 00:35 | 10:32 | 23:56 | 09:53 | 01:07 | 10:49 | 13:51 | 15:00 | |
max | 7.71 | 554.60 | 3.12 | 0 | 428 | −12 | 75 | 38.77 | 13.33 | 5.70 | |
time | 00:35 | 00:23 | 14:14 | 20:55 | 09:34 | 00:38 | 13:46 | 14:35 | 13:29 | 13:27 | |
18 | min | −4.51 | 394.70 | −2.14 | −351 | 13 | −32 | 3 | −16.78 | −2.80 | −2.18 |
time | 12:20 | 18:37 | 06:29 | 02:26 | 00:14 | 00:11 | 12:02 | 11:15 | 15:20 | 15:18 | |
max | 4.99 | 465.20 | 1.97 | −10 | 249 | −16 | 36 | 53.45 | 3.03 | 2.33 | |
time | 06:29 | 12:36 | 12:20 | 20:33 | 02:54 | 23:27 | 13:01 | 16:43 | 13:21 | 02:32 | |
19 | min | −3.79 | 309.20 | −1.43 | −292 | 13 | −25 | 2 | −26.58 | −1.83 | −1.04 |
time | 10:57 | 23:49 | 14:28 | 01:26 | 22:19 | 01:47 | 19:30 | 10:53 | 11:57 | 00:51 | |
max | 4.26 | 412.30 | 1.36 | −8 | 206 | −12 | 37 | 39.83 | 1.71 | 1.15 | |
time | 14:29 | 00:05 | 10:57 | 17:32 | 04:28 | 16:21 | 01:20 | 16:47 | 12:20 | 01:11 | |
20 | min | −2.26 | 279.70 | −0.94 | −53 | 9 | −16 | 2 | −24.21 | −1.46 | −1.22 |
time | 03:23 | 20:24 | 01:41 | 13:15 | 02:56 | 00:01 | 01:16 | 11:02 | 00:32 | 00:33 | |
max | 2.76 | 342.70 | 0.68 | −8 | 39 | −1 | 18 | 33.39 | 3.29 | 2.80 | |
time | 01:41 | 01:30 | 03:23 | 07:49 | 13:47 | 21:04 | 12:57 | 16:44 | 00:10 | 00:10 | |
21 | min | −5.73 | 277.10 | −3.41 | −151 | 8 | −9 | 2 | −37.57 | −2.55 | −3.74 |
time | 20:27 | 08:44 | 23:31 | 21:48 | 04:27 | 07:54 | 06:36 | 10:58 | 16:39 | 16:31 | |
max | 10.06 | 360.30 | 1.98 | −1 | 113 | 46 | 70 | 20.64 | 3.35 | 4.69 | |
time | 23:31 | 21:42 | 20:27 | 06:58 | 17:18 | 17:55 | 16:51 | 19:05 | 17:00 | 16:51 | |
22 | min | −38.98 | 328.20 | −18.35 | −1508 | 4 | −139 | 9 | −65.23 | −24.33 | −22.58 |
time | 19:24 | 00:29 | 20:36 | 18:57 | 19:57 | 20:18 | 12:44 | 18:35 | 18:29 | 20:01 | |
max | 29.70 | 712.10 | 26.57 | 2 | 1473 | 88 | 363 | 88.96 | 21.32 | 24.52 | |
time | 20:36 | 18:55 | 19:24 | 11:45 | 20:08 | 18:38 | 19:50 | 19:26 | 18:50 | 19:39 | |
23 | min | −28.05 | 516.80 | −21.09 | −1535 | −23 | −208 | 57 | −147.78 | −7.94 | −6.67 |
time | 02:05 | 13:06 | 00:38 | 04:39 | 09:05 | 04:25 | 02:18 | 12:53 | 14:40 | 01:41 | |
max | 32.21 | 781.80 | 20.01 | 19 | 1503 | −57 | 172 | 19.20 | 9.25 | 8.14 | |
time | 00:38 | 03:56 | 02:06 | 01:48 | 01:46 | 19:32 | 04:45 | 00:14 | 14:20 | 01:17 | |
24 | min | −6.70 | 530.10 | −4.94 | −792 | 14 | −99 | 5 | −54.63 | −4.05 | −4.15 |
time | 00:11 | 11:02 | 14:37 | 00:41 | 21:05 | 00:43 | 08:15 | 11:28 | 18:12 | 00:36 | |
max | 7.19 | 792.90 | 4.03 | 6 | 420 | −37 | 77 | 46.40 | 4.60 | 5.22 | |
time | 14:37 | 14:21 | 14:19 | 19:41 | 09:24 | 16:16 | 00:49 | 16:45 | 00:12 | 00:11 | |
25 | min | −11.91 | 529.10 | −8.68 | −1005 | 17 | −90 | 6 | −72.66 | −10.16 | −4.94 |
time | 08:50 | 22:29 | 07:57 | 07:48 | 04:37 | 19:44 | 08:35 | 14:54 | 13:33 | 13:28 | |
max | 13.13 | 688.30 | 7.63 | −20 | 586 | −19 | 88 | 42.05 | 6.52 | 4.75 | |
time | 07:57 | 09:34 | 08:50 | 05:52 | 13:49 | 05:39 | 07:44 | 17:56 | 13:52 | 09:13 | |
26 | min | −3.79 | 456.50 | −1.77 | −638 | −6 | −72 | 12 | −37.36 | −2.59 | −2.66 |
time | 08:09 | 23:15 | 07:42 | 09:22 | 12:42 | 01:17 | 08:57 | 11:16 | 02:52 | 02:51 | |
max | 3.34 | 580.30 | 2.14 | −17 | 229 | −36 | 67 | 5.40 | 2.19 | 2.32 | |
time | 07:38 | 10:18 | 08:09 | 17:50 | 02:45 | 23:23 | 00:12 | 23:57 | 03:12 | 02:31 | |
27 | min | −6.08 | 390.50 | −5.84 | −329 | −2 | −48 | 5 | −41.07 | −3.74 | −2.20 |
time | 23:45 | 21:51 | 04:34 | 23:25 | 21:19 | 01:10 | 22:52 | 10:46 | 13:23 | 13:21 | |
max | 9.02 | 825.10 | 3 | −8 | 268 | −22 | 45 | 13.76 | 4.00 | 2.33 | |
time | 15:02 | 04:56 | 23:45 | 15:19 | 00:00 | 03:19 | 09:32 | 16:16 | 13:45 | 13:43 | |
28 | min | −7.23 | 386.90 | −1.82 | −673 | 7 | −63 | 6 | −41.80 | −6.83 | −3.96 |
time | 05:29 | 21:07 | 19:36 | 05:51 | 23:53 | 06:23 | 00:32 | 11:40 | 15:05 | 15:03 | |
max | 4.62 | 519.90 | 3.34 | −21 | 341 | −28 | 68 | 19.31 | 8.45 | 5.01 | |
time | 19:36 | 01:59 | 05:29 | 23:24 | 05:52 | 18:10 | 05:28 | 14:41 | 14:43 | 14:41 | |
29 | min | −5.59 | 336.40 | −2.53 | −397 | −1 | −41 | 5 | −42.27 | −3.32 | −1.81 |
time | 07:29 | 22:39 | 09:09 | 08:48 | 03:42 | 00:01 | 11:37 | 11:02 | 11:54 | 07:52 | |
max | 6.63 | 449.50 | 2.33 | −6 | 150 | −15 | 32 | 3.08 | 3.66 | 1.63 | |
time | 09:09 | 04:37 | 07:29 | 17:04 | 05:19 | 16:21 | 15:47 | 15:14 | 11:34 | 06:28 | |
30 | min | −5.28 | 356 | −1.94 | −207 | 5 | −29 | 2 | −15.52 | −3.26 | −2.77 |
time | 05:39 | 22:00 | 02:04 | 17:51 | 03:10 | 00:01 | 10:26 | 10:12 | 23:50 | 23:48 | |
max | 4.96 | 414.50 | 2.13 | −6 | 308 | −2 | 35 | 33.45 | 1.94 | 2.17 | |
time | 02:04 | 08:25 | 05:39 | 05:17 | 05:54 | 21:57 | 17:32 | 15:01 | 06:14 | 06:16 |
DAY | Akasofu Index (GW) | AE Index (nT) | ASYM-H Index (nT) | Ddyn (nT) at Belem (dip lat: −0.47°) | Ddyn (nT) at Alta Floresta (dip lat: 3.75°) | |
---|---|---|---|---|---|---|
6 | Min | 1.4 × 10−5 | 23 | 4 | −4.58 | −4.62 |
Time | 22:09 | 18:09 | 03:17 | 00:00 | 00:00 | |
Max | 7.06 × 106 | 336 | 33 | 2.51 | 5.38 | |
Time | 12:02 | 12:43 | 16:12 | 00:01 | 15:41 | |
7 | Min | 0 | 32 | 5 | −12.84 | −9.07 |
Time | 04:45 | 17:16 | 04:17 | 23:57 | 23:57 | |
Max | 3.77 × 107 | 458 | 47 | 13.06 | 8.07 | |
Time | 23:53 | 21:24 | 20:55 | 13:43 | 13:53 | |
8 | Min | 2.09 × 10−5 | 128 | 5 | −12.84 | −9.02 |
Time | 17:24 | 03:26 | 03:34 | 00:01 | 00:01 | |
Max | 5.10 × 107 | 1310 | 116 | 7.57 | 8.71 | |
time | 06:12 | 07:52 | 07:07 | 09:47 | 08:57 | |
9 | Min | 0 | 41 | 7 | −1.25 | −2.22 |
Time | 08:21 | 10:56 | 13:05 | 09:09 | 18:42 | |
Max | 1.04 × 107 | 969 | 69 | 2.55 | 3.48 | |
Time | 12:32 | 02:34 | 02:47 | 18:20 | 05:06 | |
10 | Min | 5.55 × 10−5 | 41 | 7 | −3.70 | −7.69 |
Time | 13:47 | 04:50 | 13:26 | 14:46 | 15:05 | |
Max | 5.63 × 106 | 945 | 55 | 4.52 | 5.02 | |
Time | 04:08 | 09:06 | 06:28 | 00:00 | 00:00 | |
11 | Min | 0 | 40 | 4 | −3.90 | −4.30 |
Time | 12:14 | 10:22 | 15:24 | 14:19 | 17:40 | |
Max | 3.28 × 106 | 933 | 59 | 4.78 | 5.88 | |
Time | 04:51 | 04:04 | 03:59 | 01:10 | 02:04 | |
12 | Min | 0 | 36 | 5 | −6.32 | −4.17 |
Time | 10:33 | 20:51 | 23:17 | 14:03 | 19:00 | |
Max | 1.12 × 107 | 437 | 51 | 5.52 | 4.28 | |
Time | 20:22 | 05:32 | 18:44 | 03:22 | 06:14 | |
13 | Min | 3.89 × 10−5 | 54 | 8 | −3.57 | −4.58 |
Time | 13:49 | 21:22 | 16:24 | 19:52 | 22:23 | |
Max | 5.88 × 106 | 701 | 49 | 3.30 | 4.97 | |
Time | 10:44 | 06:38 | 06:28 | 09:08 | 08:45 | |
14 | Min | 1.90 × 10−5 | 46 | 5 | −2.56 | −4.33 |
Time | 20:11 | 15:38 | 19:26 | 15:18 | 00:01 | |
Max | 2.20 × 107 | 1418 | 82 | 5.36 | 3.87 | |
Time | 14:49 | 09:42 | 07:48 | 00:00 | 00:00 | |
15 | Min | 0 | 39 | 6 | −20.52 | −12.30 |
Time | 07:54 | 01:59 | 07:43 | 16:03 | 17:27 | |
Max | 1.20 × 107 | 1271 | 60 | 12.03 | 7.45 | |
Time | 23:10 | 09:51 | 18:32 | 04:56 | 06:58 | |
16 | Min | 0.0041 | 32 | 8 | −14.39 | −10.55 |
Time | 15:16 | 20:19 | 13:34 | 17:45 | 19:13 | |
Max | 1.33 × 107 | 758 | 64 | 17.31 | 11.04 | |
Time | 23:05 | 01:11 | 08:30 | 03:58 | 05:31 | |
17 | Min | 6.35 × 10−4 | 31 | 11 | −13.43 | −10.88 |
Time | 23:30 | 22:20 | 01:07 | 16:02 | 16:41 | |
Max | 8.46 × 106 | 1007 | 75 | 15.22 | 12.12 | |
Time | 00:58 | 10:32 | 13:46 | 05:42 | 06:33 | |
18 | Min | 0 | 37 | 3 | −3.24 | −3.04 |
Time | 15:29 | 21:05 | 12:02 | 11:09 | 14:05 | |
Max | 4.02 × 106 | 523 | 36 | 7.52 | 6.56 | |
Time | 10:30 | 02:27 | 13:01 | 01:45 | 02:52 | |
19 | Min | 0.0047 | 30 | 2 | −3.55 | −2.95 |
Time | 04:48 | 16:26 | 19:30 | 13:51 | 17:12 | |
Max | 3.30 × 106 | 472 | 37 | 5.057 | 1.92 | |
Time | 13:03 | 01:26 | 01:20 | 00:00 | 00:00 | |
20 | Min | 3.11 | 28 | 2 | −5.52 | −3.42 |
Time | 08:27 | 04:16 | 01:16 | 12:12 | 11:53 | |
Max | 2.90 × 106 | 88 | 18 | 5.85 | 4.11 | |
Time | 02:04 | 13:15 | 12:57 | 00:00 | 02:11 | |
21 | Min | 0 | 29 | 2 | −10.45 | −3.67 |
Time | 15:10 | 06:44 | 06:36 | 13:52 | 13:43 | |
Max | 9.21 × 106 | 223 | 70 | 7.38 | 2.43 | |
Time | 18:27 | 21:48 | 16:51 | 23:39 | 00:01 | |
22 | Min | 3.41 × 10−4 | 48 | 9 | −16.33 | −20.13 |
Time | 19:38 | 02:31 | 12:44 | 19:25 | 21:31 | |
Max | 2.32 × 108 | 2698 | 363 | 7.33 | 11.38 | |
Time | 20:13 | 20:10 | 19:50 | 00:01 | 11:47 | |
23 | Min | 0.0058 | 39 | 57 | −51.20 | −15.75 |
Time | 05:41 | 19:22 | 02:18 | 15:00 | 17:22 | |
Max | 9.73 × 107 | 1966 | 172 | 39.09 | 20.75 | |
Time | 01:30 | 12:14 | 04:45 | 05:01 | 07:19 | |
24 | Min | 2.91 × 10−4 | 20 | 5 | −24.85 | −9.62 |
Time | 08:23 | 21:05 | 08:15 | 12:59 | 14:27 | |
Max | 3.33 × 107 | 984 | 77 | 40.40 | 11.61 | |
Time | 14:46 | 09:32 | 00:49 | 01:38 | 04:01 | |
25 | Min | 1.71 × 10−5 | 50 | 6 | −19.64 | −9.34 |
Time | 02:49 | 04:36 | 08:35 | 13:24 | 14:46 | |
Max | 7.21 × 107 | 1483 | 88 | 19.88 | 8.70 | |
Time | 08:26 | 07:50 | 07:44 | 00:00 | 00:00 | |
26 | Min | 1.65 × 10−4 | 26 | 12 | −21.84 | −8.39 |
Time | 06:52 | 13:00 | 08:57 | 13:42 | 13:15 | |
Max | 2.29 × 106 | 860 | 67 | 21.34 | 10.18 | |
Time | 09:47 | 09:21 | 00:12 | 01:29 | 01:58 | |
27 | Min | 3.05 × 10−4 | 18 | 5 | −12.34 | −2.17 |
Time | 14:11 | 06:28 | 22:52 | 14:33 | 20:43 | |
Max | 7.99 × 106 | 585 | 45 | 17.07 | 5.21 | |
Time | 21:32 | 23:56 | 09:32 | 01:07 | 00:01 | |
28 | Min | 4.67 × 10−5 | 36 | 6 | −15.54 | −7.34 |
Time | 00:37 | 23:48 | 00:32 | 15:08 | 16:30 | |
Max | 1.07 × 107 | 994 | 68 | 13.42 | 5.81 | |
Time | 18:54 | 05:52 | 05:28 | 03:45 | 06:30 | |
29 | Min | 8.23 | 21 | 5 | −16.39 | −7.32 |
Time | 11:40 | 04:14 | 11:37 | 14:28 | 15:06 | |
Max | 1.06 × 107 | 523 | 32 | 16.08 | 7.14 | |
Time | 08:28 | 08:48 | 15:47 | 02:50 | 03:41 | |
30 | Min | 0 | 23 | 2 | −6.82 | −5.03 |
Time | 16:35 | 04:26 | 10:26 | 16:06 | 15:30 | |
Max | 4.35 × 106 | 356 | 35 | 10.71 | 5.93 | |
Time | 01:41 | 05:55 | 17:32 | 01:51 | 02:40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afolabi, O.O.; Candido, C.M.N.; Becker-Guedes, F.; Amory-Mazaudier, C. Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere. Atmosphere 2024, 15, 597. https://doi.org/10.3390/atmos15050597
Afolabi OO, Candido CMN, Becker-Guedes F, Amory-Mazaudier C. Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere. Atmosphere. 2024; 15(5):597. https://doi.org/10.3390/atmos15050597
Chicago/Turabian StyleAfolabi, Oladayo O., Claudia Maria Nicoli Candido, Fabio Becker-Guedes, and Christine Amory-Mazaudier. 2024. "Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere" Atmosphere 15, no. 5: 597. https://doi.org/10.3390/atmos15050597
APA StyleAfolabi, O. O., Candido, C. M. N., Becker-Guedes, F., & Amory-Mazaudier, C. (2024). Study and Modelling of the Impact of June 2015 Geomagnetic Storms on the Brazilian Ionosphere. Atmosphere, 15(5), 597. https://doi.org/10.3390/atmos15050597