Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

The latitudinal ionospheric response of the three strongest geomagnetic storms of 2015 of the current solar cycle 24 during 16–19 March 2015, 21–24 June 2015 and 19–22 December 2015 is investigated using the total electron content data derived from a latitudinal chain of Global Positioning System (GPS) receivers extending from 70°N to 70°S. The storm time perturbations of the ionosphere during main and recovery phase is presented by the GPS derived vertical total electron content (VTEC) data which is further supported by ionospheric F region critical frequency (foF2) and F region peak height (hmF2) data. We observed symmetrical hemispheric response of the ionosphere during the strongest 17th March (St. Patrick’s Day) storm whereas asymmetrical hemispheric response of the ionosphere during 22nd June and 20th December storm over the Asian-Australian sector. The observations are explained by the combined transport of background inter-hemispheric seasonal wind and storm time disturbed meridional wind and by the global thermospheric compositional variation [O/N2] data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abdu MA (1997) Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J Atmos Sol Terr Phys 59:1505–1519

    Article  Google Scholar 

  • Astafyeva E, Zakharenkova I, Förster M (2015) Ionospheric response to the 2015 St. Patrick’s Day storm: a global multi-instrumental overview. J Geophys Res Space Phys 120:9023–9037. https://doi.org/10.1002/2015JA021629

    Article  Google Scholar 

  • Astafyeva E, Zakharenkova I, Alken P (2016) Prompt penetration electric fields and the extreme topside ionospheric response to the June 22–23, 2015 geomagnetic storm as seen by the Swarm constellation. Earth Planets Space 68:152. https://doi.org/10.1186/s40623-016-0526-x

    Article  Google Scholar 

  • Bagiya MS, Iyer KN, Joshi HP, Thampi SV, Tsugawa T, Ravindran S, Sridharan R, Pathan BM (2011) Low-latitude ionospheric-thermospheric response to storm time electrodynamical coupling between high and low latitudes. J Geophys Res 116:A01303. https://doi.org/10.1029/2010JA015845

    Article  Google Scholar 

  • Bagiya MS, Hazarika R, Laskar FI, Sunda S, Gurubaran S, Chakrabarty D, Bhuyan PK, Sridharan R, Veenadhari B, Pallamraju D (2014) Effects of prolonged southward interplanetary magnetic field on low-latitude ionospheric electron density. J Geophys Res Space Phys. https://doi.org/10.1002/2014JA020156

    Article  Google Scholar 

  • Basu S et al (2005) Two components of ionospheric plasma structuring at midlatitudes observed during the large magnetic storm of October 30, 2003. Geophys Res Lett 32:L12S06. https://doi.org/10.1029/2004GL021669

    Article  Google Scholar 

  • Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686. https://doi.org/10.1029/JA085iA04p01669

    Article  Google Scholar 

  • Buonsanto MJ (1999) Ionospheric storms—a review. Space Sci Rev 88:563–601. https://doi.org/10.1023/A:1005107532631

    Article  Google Scholar 

  • Burns AG, Killeen TL, Roble RG (1991) A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J Geophys Res 96:14153–14167. https://doi.org/10.1029/91JA00678

    Article  Google Scholar 

  • Chakrabarty D, Sekar R, Narayanan R, Patra AK, Devasia CV (2006) Effects of interplanetary electric field on the development of an equatorial spread-F event. J Geophys Res 111:A12316. https://doi.org/10.1029/2006JA011884

    Article  Google Scholar 

  • Chakraborty M, Kumar S, De BK, Guha A (2014) Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model. Ann Geophys 57:5

    Google Scholar 

  • Chakraborty M, Kumar S, De BK, Guha A (2015) Effects of geomagnetic storm on low latitude ionospheric total electron content: a case study from Indian sector. J Earth Syst Sci 124(5):1115–1126

    Article  Google Scholar 

  • Crowley G, Reynolds A, Thayer JP, Lei J, Paxton LJ, Christensen AB, Zhang Y, Meier RR, Strickland DJ (2008) Periodic modulations in thermospheric composition by solar wind high speed streams. Geophys Res Lett 35:L21106. https://doi.org/10.1029/2008GL035745

    Article  Google Scholar 

  • Fejer BG (1986) Equatorial ionospheric electric fields associated with magnetospheric disturbances. In: Kamide Y, Slavin JA (eds) Solar wind magnetosphere coupling. Terra Sci, Tokyo, pp 519–545

    Chapter  Google Scholar 

  • Fejer BG (2002) Low latitude storm time ionospheric electrodynamics. J Atmos Sol Terr Phys 64:1401–1408

    Article  Google Scholar 

  • Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial zonal electric fields. J Geophys Res 102(A11):24047–24056

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Risbeth H, Moffett RJ, Quegan S (1996) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101:2343–2354. https://doi.org/10.1029/95JA01614

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Roble RG, Richmond AD (1998) How does the thermosphere and ionosphere react to a geomagnetic storm? In: Tsurutani BT et al (eds) Geophysical monograph, vol 98. AGU, Washington, pp 203–225

    Google Scholar 

  • Gonzalez WD, Tsurutani BT (1987) Criteria of interplanetary parameters causing intense magnetic storms (Dst < − 100 nT). Planet Space Sci 35:1101–1109

    Article  Google Scholar 

  • Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space Phys 99(A41):5771–5792

    Article  Google Scholar 

  • Guha A, Paul B, Chakraborty M, De BK (2016) Tropical cyclone effects on the equatorial ionosphere: first result from the Indian sector. J Geophys Res Space Phys 121(6):5764–5777

    Article  Google Scholar 

  • Horne RB, Glauert SA, Meredith NP, Boscher D, Maget V, Heynderickx Dand Pitchford D (2013) Space weather impacts on satellite and forecasting the Earth’s electron radiation belts with SPACECAST. Space Weather 11:1–18. https://doi.org/10.1002/swe.20023

    Article  Google Scholar 

  • Immel TJ, Crowley G, Craven JD, Roble RG (2001) Dayside enhancements of thermospheric O/N2 following magnetic storm onset. J Geophys Res 106(A8):15471–15488. https://doi.org/10.1029/2000JA000096

    Article  Google Scholar 

  • Kalita BR, Hazarika R, Kakoti G, Bhuyan PK, Chakrabarty D, Seemala GK, Wang K, Sharma S, Yokoyama T, Supnithi P, Komolmis T, Yatini CY, Huy ML, Roy P (2016) Conjugate hemisphere ionospheric response to the St. Patrick’s Day storms of 2013 and 2015 in the 100°E longitude sector. J Geophys Res Space Phys 121:11364–11390. https://doi.org/10.1002/2016JA023119

    Article  Google Scholar 

  • Klobuchar J (1986) Design and characteristics of the GPS ionospheric time-delay algorithm for single frequency users. In: Proceedings of PLANS’86—position location and navigation symposium Las Vegas, Nevada, pp 280–286

  • Kozyra JU, Fok MC, Sanchez ER, Evans DS, Hamilton DC, Nagy AF (1998) The role of precipitation losses in producing the rapid early recovery phase of the great magnetic storm of February 1986. J Geophys Res 103:6801

    Article  Google Scholar 

  • Lakhina GS, Tsurutani BT (2016) Geomagnetic storms: historical prespective to modern view. Geosci Lett 3:5. https://doi.org/10.1186/s40562-016-0037-4

    Article  Google Scholar 

  • Lei J, Burns AG, Tsugawa T, Wang W, Solomon SC, Wiltberger M (2008) Observations and simulations of quasiperiodic ionospheric oscillations and large-scale traveling ionospheric disturbances during the December 2006 geomagnetic storm. J Geophys Res 113:A06310. https://doi.org/10.1029/2008JA013090

    Article  Google Scholar 

  • Lu G, Richmond D, Emery BA, Roble RG (1995) Magnetosphere–ionosphere–thermosphere coupling: effect of neutral winds on energy transfer and field-aligned current. J Geophys Res 100:19643–19659

    Article  Google Scholar 

  • MacMahon RM, Gonzalez WD (1997) Energetics during the main phase of geomagnetic superstorms. J Geophys Res 102:14199–14202

    Article  Google Scholar 

  • Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween storms”. Geophys Res Lett 32:L12S02. https://doi.org/10.1029/2004GL021467

    Article  Google Scholar 

  • Nava B, Rodríguez-Zuluaga J, Alazo-Cuartas K, Kashcheyev A, Migoya-Orué Y, Radicella SM, Amory-Mazaudier C, Fleury R (2016) Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J Geophys Res Space Phys 121:3421–3438. https://doi.org/10.1002/2015JA022299

    Article  Google Scholar 

  • Nayak C, Tsai LC, Su SY, Galkin IA, Tan ATK, Nofri E, Jamjareegulgarn P (2016) Peculiar features of the low-latitude and midlatitude ionospheric response to the St. Patrick’s Day geomagnetic storm of 17 March 2015. J Geophys Res Space Phys 121:7941–7960. https://doi.org/10.1002/2016JA022489

    Article  Google Scholar 

  • Pi X, Mendillo M, Fox MW, Anderson DN (1993) Diurnal double maxima patterns in the F region ionosphere: substorm-related aspects. J Geophys Res 98(A8):13677–13691

    Article  Google Scholar 

  • Proelss GW (1987) Storm-induced changes in the thermospheric composition at middle latitudes. Planet Space Sci 35:807–811. https://doi.org/10.1016/0032-0633(87)90041-9

    Article  Google Scholar 

  • Prölss GW (1976) On explaining the negative phase of ionospheric storms. Planet Space Sci 24:607–609

    Article  Google Scholar 

  • Prölss GW (1980) Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers. Rev Geophys Space Phys 18:183–202

    Article  Google Scholar 

  • Prölss GW (1993) Common origin of positive ionospheric storms at middle latitudes and the geomagnetic activity effect at low latitudes. J Geophys Res 98:5981–5991. https://doi.org/10.1029/92JA02777

    Article  Google Scholar 

  • Prölss GW, Werner S (2002) Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms. J Geophys Res 107(A2):1016. https://doi.org/10.1029/2001JA900126

    Article  Google Scholar 

  • Prölss GW, Brace LH, Mayr HG, Carignan GR, Killeen TL (1991) Ionospheric storm effects at subauroral latitudes—a case study. J Geophys Res 96:1275–1288. https://doi.org/10.1029/90JA02326

    Article  Google Scholar 

  • Rama Rao PVS, Gopi Krishna S, Prasad JV, Prasad SNVS, Prasad DSVVD, Niranjan K (2009) Geomagnetic storm effects on GPS based navigation. Ann Geophys 27:2101–2110

    Article  Google Scholar 

  • Ramsingh Sripathi S, Sreekumar S, Banola S, Emperumal K, Tiwari P, Kumar BS (2015) Low-latitude ionosphere response to super geomagnetic storm of 17/18 March 2015: results from a chain of groundbased observations over Indian sector. J Geophys Res Space Phys 120:10864–10882. https://doi.org/10.1002/2015JA021509

    Article  Google Scholar 

  • Reddy A (1992) Magnetospheric substorms and nighttime height changes of the F2 region at middle and low latitudes. J Geophy. Res 97:3039–3061. https://doi.org/10.1029/91JA01512

    Article  Google Scholar 

  • Rishbeth H, Fuller-Rowell TJ, Rodger AS (1987) F-layer storms and thermospheric composition. Phys Scr 36:327–336

    Article  Google Scholar 

  • Roble RG, Dickinson RE, Ridley EC (1977) Seasonal and solar cycle variations in the zonal mean circulation in the thermosphere. J Geophys Res 82:5493–5504. https://doi.org/10.1029/JA082i035p05493

    Article  Google Scholar 

  • Sastri JH (1990) Equatorial anomaly in F-region—a review. Indian J Radio Space Phys 19:225–240

    Google Scholar 

  • Sastri JH, Abdu MA, Sobral JHA (1997) Response of equatorial ionosphere to episodes of asymmetric ring current activity. Ann Geophys 15:1316–1323. https://doi.org/10.1007/s00585-997-1316-3

    Article  Google Scholar 

  • Sastri JH, Jyoti N, Somayajulu VV, Chandra H, Devasia CV (2000) Ionospheric storm of early November 1993 in the Indian equatorial region. J Geophys Res 105:18443–18455. https://doi.org/10.1029/1999JA000372

    Article  Google Scholar 

  • Simi KG, Thampi SV, Chakrabarty D, Pathan BM, Prabhakaran Nayar SR, Pant TK (2012) Extreme changes in the equatorial electrojet under the influence of interplanetary electric field and the associated modification in the low-latitude F region plasma distribution. J Geophys Res 117:A03331. https://doi.org/10.1029/2011JA01732

    Article  Google Scholar 

  • Spiro RW, Wolf RA, Fejer BG (1988) Penetration of high-latitude electric field effects to low latitude during SUNDIAL, 1984. Ann Geophys 6:39–50

    Google Scholar 

  • Tanna HJ, Karia SP, Pathak KN (2013) A study of L band scintillations during the initial phase of rising solar activity at an Indian low latitude station. J Adv Space Res 52:412–421

    Article  Google Scholar 

  • Tsurutani B et al (2004) Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res 109:A08302. https://doi.org/10.1029/2003JA010342

    Article  Google Scholar 

  • Zhong J, Wang W, Yue X, Burns AG, Dou X, Lei J (2016) Long-duration depletion in the topside ionospheric total electron content during the recovery phase of the March 2015 strong storm. J Geophys Res Space Phys 121:4733–4747. https://doi.org/10.1002/2016JA022469

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Department of Physics, Tripura University for providing infrastructure to carry out the research. The authors are thankful to International GNSS Service, IGS (geoftp01.ucsd.edu/pub/rinex/2015) for GPS TEC RINEX data; IZMIRAN (Pushkov Institute of Terrestrial Magnetism, the Ionosphere and Radio Wave Propagation), Russian Academy of Sciences for daily foF2 (http://www.izmiran.ru/services/iweather/foF2/) and hmF2 (http://www.izmiran.ru/services/iweather/hmF2/) data. The authors are also thankful to OMNIWeb services (https://omniweb.gsfc.nasa.gov/form/omni_min.html) for solar, interplanetary and geomagnetic index data; World Data Center for Geomagnetism, Kyoto (wdc.kugi.kyoto-u.ac.jp/dstdir/) for international quiet and disturbed day’s data; Global UltraViolet Imager (guvitimed.jhuapl.edu/guvi-galleryl3on2) for global [O/N2] maps. The geomagnetic latitudes and longitudes of the stations are converted from corresponding geographic latitudes and longitudes from the website Kyoto (http://wdc.kugi.kyoto-u.ac.jp/igrf/gggm/index.html). The authors would like to thank specially Dr. Gopi Krishna Seemala, Indian Institute of Geomagnetism (IIG) for his help and suggestions for the improvement of the manuscript. This work is funded by DST FIST fund reference SR/FST/PSI-191/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Guha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B., De, B.K. & Guha, A. Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geod Geophys 53, 579–606 (2018). https://doi.org/10.1007/s40328-018-0221-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-018-0221-4

Keywords

Navigation