Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics
Abstract
:1. Introduction
2. Pseudomonas aeruginosa Infections
2.1. Pseudomonas aeruginosa Acute Infections
2.2. Pseudomonas aeruginosa Chronic Infections
2.3. P. aeruginosa Infections in Immunocompromised Patients
3. P. aeruginosa Infection Animal Models
3.1. Acute and Chronic Pneumonia Infection Models
3.2. Urinary Tract and Kidney Infection Models
3.3. Blood Stream and Systemic Infection Models
3.4. Keratitis and Corneal Ulcers Infection Models
3.5. Endocarditis Infection Models
3.6. Wound and Surgical Site Infection Models
3.7. Immunocompromised Infection Models
3.8. Cystic Fibrosis Infection Animal Models
4. Current Treatments for P. aeruginosa Infections
4.1. β-Lactam Antibiotics (Alone and Combination Therapies)
4.2. Fluoroquinolones
4.3. Eravacycline (Tetracyclin)
4.4. Aminoglycosides
4.5. Polymyxins (Colistin, Polymyxin B)
5. Antibiotic Resistance in P. aeruginosa
6. The Mechanisms of Antibiotic Resistance
7. Emerging Therapies to Combat P. aeruginosa Infections
7.1. Immune System-Based Approaches against P. aeruginosa Infections
7.1.1. Antimicrobial Peptides (AMPs)-Based Approaches against Bacterial Infections
7.1.2. Immunomodulator-Based Approaches against P. aeruginosa Infections
7.2. Phage-Based Therapeutics against P. aeruginosa Infections
7.3. Therapeutics Targeting P. aeruginosa Virulence Factors
7.4. Vaccine Development against P. aeruginosa
7.5. Other Antibiotic-Free Therapies for P. aeruginosa Infection
7.5.1. Silver
7.5.2. Honey
7.5.3. Hyperbaric Oxygen Therapy (HBOT)
7.5.4. Negative Pressure Wound Therapy (NPWT)
8. Concluding Remarks
Acute Infections | ||
Site | Reported Prevalence | Infection Model |
Respiratory Tract Infections [48,49] | See pneumonia & CF infections below | Various murine models lung infection [155,156,158,159,160,161,162,440] |
Hospital acquired pneumonia [50] | 21.8% [61,62], 15.6% [64] 17.8% [65] | Intratracheal inoculation in various animal models infection [155,156,158,159,160,161,162,440] |
Ventilator-associated pneumonia [50] | 23.2% [63], 25.9% [64], 19.4% [65] | Intratracheal inoculation in various animal models infection [155,156,158,159,160,161,162,440] |
Keratitis and corneal ulcers [52,53] | 6.8% to 55% [72,73,74,75,76] | Eye infection in murine models [178,179,180,181]. |
Urinary tract infections [54] | 7% to 17% [77,78] | -Mouse intravenous injection [162,163] -Surgical implantation of bacteria coated beads or bladder catheterization [167,168,169,170,171] |
Blood stream infections [54,55,56] | 18% to 61% [81,82] | Bacteria injection via intravenous, intraperitoneal, or retro-orbital routes [172,173,174,175] |
Osteomyelitis [57,58] | - 10.8% of all osteomyelitis [441] - 66% of all P. aeruginosa osteomyelitis were acute, 44% chronic osteomyelitis [442] | Chronic osteomyelitis animal murine model [443] |
Endocarditis [59,60] | 0.015% [444]; 3% [60] | Rats [184]; Rabbits [185,186] |
Chronic Infections | ||
Site | Reported Prevalence | Infection Model |
Cystic Fibrosis [88,89,90] | 60% to 70% infections in adult CF [445,446,447] | Transgenic mutant CFTR mice, rats, rabbits, ferrets, pigs, and sheep animal models [156,211,212,213,214,215,216,217,219,220,221,222] |
Wounds [13,92,93,94,95,96,97,98,448] | - Diabetic ulcers; 10% [449]; 14.3% [450];18.8% [451]; 29.8% [97] - Burn wounds; 12.4–57% [141,143,452,453,454] | Full thickness excision skin wounds and burn wounds in mice, rats, [8,9,104,188,199,200] |
Infection in Immunocompromised Patients [102,103,104,105,106,107,108,109,110] | - 8% to 25% in HIV patients [43,81,116,117,118,119,455] - >21% in acute leukemia [126,127] - 9% of solid organ transplant infections [137] - 57% of major burn wounds [143] | Drug-induced and transgenic immunosuppression in rodents & guinea pig [205,206,207] |
Antibiotic Therapy | Target | Limitations & Resistance Mechanisms |
---|---|---|
b-lactam antibiotics: - Non-carbapenem b-lactam antibiotics [223,224,225,227,228] - Carbapenems [223,224] - Cephalosporins [223,224] | Peptidoglycan cell wall production via covalent binding of penicillin-binding proteins [225,456] | - Expression of antibiotic restrictive porins [314,315] - Reduced expression of outer-membrane porins reducing antibiotic permeability [313,316] -Expression of efflux pumps which reduce antibiotic concentration [313,317,318,319] - Biofilm protections against antibiotics [320,321,322,324] - Emergence of antibiotic tolerant persister bacteria [325,326,327,328,329] - Mutation of antibiotic targets [330,331,332] - Acquisition of resistance genes via HGT [289,333,334,335] |
Fluoroquinolones [223,224] | DNA synthesis via inhibition of DNA gyrase and topoisomerase IV [256,457] | |
Tetracycline [223,224] | Protein synthesis via inhibition of 30S and 50S ribosomal subunits [458,459] | |
Aminoglycosides [223,224] | Protein synthesis via inhibition of 30S ribosomal subunit [460,461] | |
Polymyxins [223,224] | Lipid A moiety in outer membrane LPS [462,463] |
Therapy | Target | Therapy imitations & Resistance Mechanisms |
---|---|---|
Antimicrobial peptides (AMPs) | Membrane integrity, DNA replication, protein synthesis [356,357] | Cellular toxicity, limited spectrum of activity, Multiple resistance mechanisms, including alteration in cell wall & degradation by proteases [359,364,365] |
Immunomodulators | Activation of host cellular immunity [8,188] | No cellular toxicity; Resistance not reported but highly unlikely as they activate multiple immune responses [8,188,189] |
Phage-based therapeutics | Membrane lysis [374,375] | - Low clinical efficacy, Development of resistance, & side-effects in patients [382,383,384] |
Therapies against Virulence factors | - T3SS inhibition by small molecule or antibody [389,394] - Quorum sensing activity [390,394] - Secreted virulence factors [398,399] | Not reported but bacteria can potentially become resistant to these therapies in similar mechanisms to antibiotics |
Vaccines | - LPS O-antigens [407] - Outer membrane vesicles [408] - PcrV (T3SS) [403,405] - OprF-OprI [401,402,404,412] | Vaccines have not been clinically effective, Variant subtype antigens and serologic variability, & animal model variability in determining formulations [400,404,409,410,411,413] |
Silver | Various [415] | - Cytotoxic to keratinocytes [420] - Potentially ineffective as medical device coating [421] |
Honey | Various [424,425] | Not Reported |
Hyperbaric oxygen therapy | Activation of innate immunity and enhanced ROS production in bacteria [191,429] | Not Reported |
Negative pressure wound therapy | Bacterial proliferation [435,436,437] | Not Reported |
Author Contributions
Funding
Conflicts of Interest
References
- Pitt, T. Pseudomonas, Burkholderia and related genera. Microbiol. Microb. Infect. 1998, 2, 1109–1138. [Google Scholar]
- Gessard, C. Classics in infectious diseases. On the blue and green coloration that appears on bandages. By Carle Gessard (1850–1925). Rev. Infect. Dis. 1984, 6 (Suppl. 3), S775–S776. [Google Scholar] [CrossRef]
- Gessard, C. Des races du bacille pyocyanique. Ann. Inst. Pasteur 1891, 5, 65. [Google Scholar]
- Yamaguchi, T.; Yamada, H. Role of mechanical injury on airway surface in the pathogenesis of Pseudomonas aeruginosa. Am. Rev. Respir. Dis. 1991, 144, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Zahm, J.M.; Chevillard, M.; Puchelle, E. Wound repair of human surface respiratory epithelium. Am. J. Respir. Cell Mol. Biol. 1991, 5, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.W.T.; Rutman, A.; Tanaka, E.; Lundt, V.; Dewar, A.; Cole, P.J.; Wilson, R. Interaction of Pseudomonas aeruginosa with human respiratory mucosa in vitro. Eur. Respir. J. 1994, 7, 1746–1753. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.F.; Gupta, K.; Goldufsky, J.W.; Roy, R.; Kuzel, T.M.; Reiser, J.; Shafikhani, S.H. CrkII/Abl Phosphorylation Cascade Is Critical for NLRC4 Inflammasome Activity and Is Blocked by Pseudomonas ExoT. Nat. Commun. 2022, in press. [CrossRef]
- Roy, R.; Zayas, J.; Singh, S.K.; Delgado, K.; Wood, S.J.; Mohamed, M.F.; Frausto, D.M.; Estupinian, R.; Giurini, E.F.; Kuzel, T.M.; et al. Overriding impaired FPR chemotaxis signaling in diabetic neutrophil stimulates infection control in murine diabetic wound. eLife 2022, 11. [Google Scholar] [CrossRef]
- Goldufsky, J.; Wood, S.J.; Jayaraman, V.; Majdobeh, O.; Chen, L.; Qin, S.; Zhang, C.; DiPietro, L.A.; Shafikhani, S.H. Pseudomonas aeruginosa uses T3SS to inhibit diabetic wound healing. Wound Repair Regen. 2015, 23, 557–564. [Google Scholar] [CrossRef] [Green Version]
- De Bentzmann, S.; Plotkowski, C.; Puchelle, E. Receptors in the Pseudomonas aeruginosa adherence to injured and repairing airway epithelium. Am. J. Respir. Crit. Care Med. 1996, 154, S155–S162. [Google Scholar] [CrossRef]
- Madsen, S.M.; Westh, H.; Danielsen, L.; Rosdahl, V.T. Bacterial colonization and healing of venous leg ulcers. Acta Pathol. Microbiol. Immunol. Scand. 1996, 104, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Halbert, A.R.; Stacey, M.C.; Rohr, J.B.; Jopp-McKay, A. The effect of bacterial colonization on venous ulcer healing. Australas. J. Dermatol. 1992, 33, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Gjodsbol, K.; Christensen, J.J.; Karlsmark, T.; Jorgensen, B.; Klein, B.M.; Krogfelt, K.A. Multiple bacterial species reside in chronic wounds: A longitudinal study. Int. Wound J. 2006, 3, 225–231. [Google Scholar] [CrossRef]
- Winstanley, C.; Kaye, S.B.; Neal, T.J.; Chilton, H.J.; Miksch, S.; Hart, C.A. Genotypic and phenotypic characteristics of Pseudomonas aeruginosa isolates associated with ulcerative keratitis. J. Med. Microbiol. 2005, 54, 519–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tindall, B.J.; Kampfer, P.; Euzeby, J.P.; Oren, A. Valid publication of names of prokaryotes according to the rules of nomenclature: Past history and current practice. Int. J. Syst. Evol. Microbiol. 2006, 56, 2715–2720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jessen, O. Pseudomonas aeruginosa and Other Green Fluorescent Pseudomonads: A Taxonomic Study; Munksgaard: Copenhagen, Demark, 1965. [Google Scholar]
- Stover, C.; Pham, X.; Erwin, A.; Mizoguchi, S.; Warrener, P.; Hickey, M.; Brinkman, F.; Hufnagle, W.; Kowalik, D.; Lagrou, M.; et al. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 2000, 406, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.G.; Urbach, J.M.; Wu, G.; Liberati, N.T.; Feinbaum, R.L.; Miyata, S.; Diggins, L.T.; He, J.; Saucier, M.; Déziel, E. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol. 2006, 7, R90. [Google Scholar] [CrossRef] [Green Version]
- Roy, P.H.; Tetu, S.G.; Larouche, A.; Elbourne, L.; Tremblay, S.; Ren, Q.; Dodson, R.; Harkins, D.; Shay, R.; Watkins, K. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS ONE 2010, 5, e8842. [Google Scholar] [CrossRef]
- Vancanneyti, M.; Witt, S.; Abraham, W.-R.; Kersters, K.; Fredrickson, H.L. Fatty acid content in whole-cell hydrolysates and phospholipid and phospholipid fractions of Pseudomonads: A taxonomic evaluation. Syst. Appl. Microbiol. 1996, 19, 528–540. [Google Scholar] [CrossRef]
- Motoshima, M.; Yanagihara, K.; Fukushima, K.; Matsuda, J.; Sugahara, K.; Hirakata, Y.; Yamada, Y.; Kohno, S.; Kamihira, S. Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagn. Microbiol. Infect. Dis. 2007, 58, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Haynes, W. Pseudomonas aeruginosa—Its Characterization and Identification. Microbiology 1951, 5, 939–950. [Google Scholar] [CrossRef] [Green Version]
- Lyczak, J.B.; Cannon, C.L.; Pier, G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect 2000, 2, 1051–1060. [Google Scholar] [CrossRef]
- Valot, B.; Guyeux, C.; Rolland, J.Y.; Mazouzi, K.; Bertrand, X.; Hocquet, D. What it takes to be a Pseudomonas aeruginosa? The core genome of the opportunistic pathogen updated. PLoS ONE 2015, 10, e0126468. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.J.; Goldufsky, J.W.; Dorafshar, A.H.; Shafikhani, S.H. Pseudomonas aeruginosa Cytotoxins: Mechanisms of Cytotoxicity and Impact on Inflammatory Responses. Cells 2023, in press.
- Freschi, L.; Jeukens, J.; Kukavica-Ibrulj, I.; Boyle, B.; Dupont, M.-J.; Laroche, J.; Larose, S.; Maaroufi, H.; Fothergill, J.L.; Moore, M. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front. Microbiol. 2015, 6, 1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.S.; Hennigan, R.F.; Hilliard, G.M.; Ochsner, U.A.; Parvatiyar, K.; Kamani, M.C.; Allen, H.L.; DeKievit, T.R.; Gardner, P.R.; Schwab, U.; et al. Pseudomonas aeruginosa anaerobic respiration in biofilms: Relationships to cystic fibrosis pathogenesis. Dev. Cell 2002, 3, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Foght, J.M.; Westlake, D.W.; Johnson, W.M.; Ridgway, H.F. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques. Microbiology 1996, 142, 2333–2340. [Google Scholar] [CrossRef] [Green Version]
- Morrison, A.J., Jr.; Wenzel, R.P. Epidemiology of infections due to Pseudomonas aeruginosa. Rev. Infect. Dis. 1984, 6 (Suppl. 3), S627–S642. [Google Scholar] [CrossRef]
- Cogen, A.L.; Nizet, V.; Gallo, R.L. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.A.; Goodman, L.; Levin, S. Community-acquired Pseudomonas aeruginosa pneumonia associated with the use of a home humidifier. West. J. Med. 1984, 141, 521–523. [Google Scholar] [PubMed]
- Pollack, M. Pseudomonas aeruginosa. In Principles and Practices of Infectious Diseases; Mandell, G.L., Dolin, R., Bennett, J.E., Eds.; Churchill Livingstone: New York, NY, USA, 1995; pp. 1820–2003. [Google Scholar]
- Chitkara, Y.K.; Feierabend, T.C. Endogenous and exogenous infection with Pseudomonas aeruginosa in a burns unit. Int. Surg. 1981, 66, 237–240. [Google Scholar]
- Phillips, L.G.; Heggers, J.P.; Robson, M.C.; Boertman, J.A.; Meltzer, T.; Smith, D.J., Jr. The effect of endogenous skin bacteria on burn wound infection. Ann. Plast. Surg. 1989, 23, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Koch, C. Early infection and progression of cystic fibrosis lung disease. Pediatr. Pulmonol. 2002, 34, 232–236. [Google Scholar] [CrossRef]
- Engel, J.N. Molecular pathogenesis of acute Pseudomonas aeruginosa infections. In Severe Infections Caused by Pseudomonas aeruginosa; Hauser, A., Rello, J., Eds.; Kluwer Academic/Plenum Press: New York, NY, USA, 2003; pp. 201–230. [Google Scholar]
- Harbarth, S.; Ferriere, K.; Hugonnet, S.; Ricou, B.; Suter, P.; Pittet, D. Epidemiology and prognostic determinants of bloodstream infections in surgical intensive care. Arch. Surg. 2002, 137, 1353–1359, discussion 1359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osmon, S.; Ward, S.; Fraser, V.J.; Kollef, M.H. Hospital mortality for patients with bacteremia due to Staphylococcus aureus or Pseudomonas aeruginosa. Chest 2004, 125, 607–616. [Google Scholar] [CrossRef]
- Parkins, M.D.; Somayaji, R.; Waters, V.J. Epidemiology, biology, and impact of clonal Pseudomonas aeruginosa infections in cystic fibrosis. Clin. Microbiol. Rev. 2018, 31, e00019-18. [Google Scholar] [CrossRef] [Green Version]
- Matos, E.C.O.d.; Andriolo, R.B.; Rodrigues, Y.C.; Lima, P.D.L.d.; Carneiro, I.C.d.R.S.; Lima, K.V.B. Mortality in patients with multidrug-resistant Pseudomonas aeruginosa infections: A meta-analysis. Rev. Soc. Bras. Med. Trop. 2018, 51, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Shepp, D.H.; Tan, I.; Ramundo, M.B.; Kaplan, M.H. Serious Pseudomonas aeruginosa infection in AIDS. J. Acq. Immun. Defic. Synd. 1994, 7, 823–831. [Google Scholar]
- Kielhofner, M.; Atmar, R.L.; Hamill, R.J.; Musher, D.M. Life-threatening Pseudomonas aeruginosa infections in patients with human immunodeficiency virus infection. Clin. Infect. Dis. 1992, 14, 403–411. [Google Scholar] [CrossRef]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- CDC, Antibiotic Resistance Threats in the United States. 2019. Available online: https://www.cdc.gov/drugresistance/biggest-threats.html (accessed on 1 November 2022).
- Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. J. Med. Soc. 2018, 32, 76. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE; The University of Chicago Press: Chicago, IL, USA, 2008; Volume 197, pp. 1079–1081. [Google Scholar]
- Neuhauser, M.M.; Weinstein, R.A.; Rydman, R.; Danziger, L.H.; Karam, G.; Quinn, J.P. Antibiotic resistance among gram-negative bacilli in US intensive care units: Implications for fluoroquinolone use. JAMA 2003, 289, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.H.; Shorr, A.; Tabak, Y.P.; Gupta, V.; Liu, L.Z.; Johannes, R. Epidemiology and outcomes of health-care–associated pneumonia: Results from a large US database of culture-positive pneumonia. Chest J. 2005, 128, 3854–3862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadikot, R.T.; Blackwell, T.S.; Christman, J.W.; Prince, A.S. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 1209–1223. [Google Scholar] [CrossRef] [PubMed]
- Rello, J.; Mariscal, D.; March, F.; Jubert, P.; Sanchez, F.; Valles, J.; Coll, P. Recurrent Pseudomonas aeruginosa pneumonia in ventilated patients: Relapse or reinfection? Am. J. Respir. Crit. Care Med. 1998, 157, 912–916. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Dart, J.; Seal, D.; Matheson, M. Epidemiology of Pseudomonas aeruginosa keratitis in contact lens wearers. Epidemiol. Infect. 1995, 114, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Burns, R.P. Pseudomonas aeruginosa keratitis: Mixed infections of the eye. Am. J. Ophthalmol. 1969, 67, 257–262. [Google Scholar] [CrossRef]
- Diekema, D.J.; Hsueh, P.-R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The microbiology of bloodstream infection: 20-year trends from the SENTRY antimicrobial surveillance program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef] [Green Version]
- Montero, M.M.; López Montesinos, I.; Knobel, H.; Molas, E.; Sorlí, L.; Siverio-Parés, A.; Prim, N.; Segura, C.; Duran-Jordà, X.; Grau, S. Risk factors for mortality among patients with Pseudomonas aeruginosa bloodstream infections: What is the influence of XDR phenotype on outcomes? J. Clin. Med. 2020, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Fabre, V.; Amoah, J.; Cosgrove, S.E.; Tamma, P.D. Antibiotic therapy for Pseudomonas aeruginosa bloodstream infections: How long is long enough? Clin. Infect. Dis. 2019, 69, 2011–2014. [Google Scholar] [CrossRef] [PubMed]
- Norden, C.W.; Shinners, E. Ciprofloxacin as therapy for experimental osteomyelitis caused by Pseudomonas aeruginosa. J. Infect. Dis. 1985, 151, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Carek, P.J.; Dickerson, L.M.; Sack, J.L. Diagnosis and management of osteomyelitis. Am. Fam. Physician 2001, 63, 2413–2420. [Google Scholar] [PubMed]
- Reyes, M.P.; Lerner, A.M. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev. Infect. Dis. 1983, 5, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-I.; Huang, Y.-F.; Liu, P.-Y.; Chou, C.-A.; Chen, Y.-S.; Chen, Y.-Y.; Hsieh, K.-S.; Chen, Y.-S. Pseudomonas aeruginosa infective endocarditis in patients who do not use intravenous drugs: Analysis of risk factors and treatment outcomes. J. Microbiol. Immunol. Infect. 2016, 49, 516–522. [Google Scholar] [CrossRef]
- Jones, R.N. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin. Infect. Dis. 2010, 51, S81–S87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herkel, T.; Uvizl, R.; Doubravska, L.; Adamus, M.; Gabrhelik, T.; Htoutou Sedlakova, M.; Kolar, M.; Hanulik, V.; Pudova, V.; Langova, K. Epidemiology of hospital-acquired pneumonia: Results of a Central European multicenter, prospective, observational study compared with data from the European region. Biomed. Pap. 2016, 160, 448–455. [Google Scholar] [CrossRef]
- He, S.; Chen, B.; Li, W.; Yan, J.; Chen, L.; Wang, X.; Xiao, Y. Ventilator-associated pneumonia after cardiac surgery: A meta-analysis and systematic review. J. Thorac. Cardiovasc. Surg. 2014, 148, 3148–3155.e5. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.R.; Song, J.-H.; Kim, S.H.; Thamlikitkul, V.; Huang, S.-G.; Wang, H.; So, T.M.-k.; Yasin, R.M.; Hsueh, P.-R.; Carlos, C.C. High prevalence of multidrug-resistant nonfermenters in hospital-acquired pneumonia in Asia. Am. J. Respir. Crit. Care Med. 2011, 184, 1409–1417. [Google Scholar] [CrossRef]
- Ding, C.; Yang, Z.; Wang, J.; Liu, X.; Cao, Y.; Pan, Y.; Han, L.; Zhan, S. Prevalence of Pseudomonas aeruginosa and antimicrobial-resistant Pseudomonas aeruginosa in patients with pneumonia in mainland China: A systematic review and meta-analysis. Int. J. Infect. Dis. 2016, 49, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Tumbarello, M.; De Pascale, G.; Trecarichi, E.M.; Spanu, T.; Antonicelli, F.; Maviglia, R.; Pennisi, M.A.; Bello, G.; Antonelli, M. Clinical outcomes of Pseudomonas aeruginosa pneumonia in intensive care unit patients. Intensive Care Med. 2013, 39, 682–692. [Google Scholar] [CrossRef] [PubMed]
- Duszynska, W.; Idziak, M.; Smardz, K.; Burkot, A.; Grotowska, M.; Rojek, S. Frequency, Etiology, Mortality, Cost, and Prevention of Respiratory Tract Infections—Prospective, One Center Study. J. Clin. Med. 2022, 11, 3764. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.R.; Cobb, E.; Bodi, M.; Mariscal, D.; Valles, J.; Engel, J.N.; Rello, J. Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit. Care Med. 2002, 30, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Estrada, S.; Borgatta, B.; Rello, J. Pseudomonas aeruginosa ventilator-associated pneumonia management. Infect. Drug Resist. 2016, 9, 7. [Google Scholar] [PubMed] [Green Version]
- Karaiskos, I.; Giamarellou, H. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: Current and emerging therapeutic approaches. Expert Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- McEachern, R.; Campbell, G.D., Jr. Hospital-acquired pneumonia: Epidemiology, etiology, and treatment. Infect. Dis. Clin. N. Am. 1998, 12, 761–779. [Google Scholar] [CrossRef]
- Teweldemedhin, M.; Gebreyesus, H.; Atsbaha, A.H.; Asgedom, S.W.; Saravanan, M. Bacterial profile of ocular infections: A systematic review. BMC Ophthalmol. 2017, 17, 212. [Google Scholar] [CrossRef] [Green Version]
- Green, M.; Carnt, N.; Apel, A.; Stapleton, F. Queensland microbial keratitis database: 2005–2015. Br. J. Ophthalmol. 2019, 103, 1481–1486. [Google Scholar] [CrossRef]
- Soleimani, M.; Tabatabaei, S.A.; Masoumi, A.; Mirshahi, R.; Ghahvechian, H.; Tayebi, F.; Momenaei, B.; Mahdizad, Z.; Mohammadi, S.S. Infectious keratitis: Trends in microbiological and antibiotic sensitivity patterns. Eye 2021, 35, 3110–3115. [Google Scholar] [CrossRef]
- Green, M.; Apel, A.; Stapleton, F. Risk factors and causative organisms in microbial keratitis. Cornea 2008, 27, 22–27. [Google Scholar] [CrossRef]
- Enzor, R.; Bowers, E.M.; Perzia, B.; Perera, C.; Palazzolo, L.; Mammen, A.; Dhaliwal, D.K.; Kowalski, R.P.; Jhanji, V. Comparison of Clinical Features and Treatment Outcomes of Pseudomonas aeruginosa Keratitis in Contact Lens and Non–Contact Lens Wearers. Am. J. Ophthalmol. 2021, 227, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shirley, R.; Moore, J. Pseudomonas aeruginosa urinary-tract infection. N. Engl. J. Med. 1965, 273, 283. [Google Scholar]
- Bitsori, M.; Maraki, S.; Koukouraki, S.; Galanakis, E. Pseudomonas aeruginosa urinary tract infection in children: Risk factors and outcomes. J. Urol. 2012, 187, 260–264. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.W.; Floyd, R.V.; Fothergill, J.L. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, J.W. Catheter-associated urinary tract infections. Int. J. Antimicrob. Agents 2001, 17, 299–303. [Google Scholar] [CrossRef]
- Vidal, F.; Mensa, J.; Almela, M.; Martinez, J.; Marco, F.; Casals, C.; Gatell, J.; Soriano, E.; Jimenez de Anta, M. Epidemiology and Outcome of Pseudomonas aeruginosa Bacteremia, With Special Emphasis on the Influence of Antibiotic Treatment. Arch. Intern. Med. 1996, 156, 2121–2126. [Google Scholar] [CrossRef]
- Nielsen, S.L.; Lassen, A.T.; Gradel, K.O.; Jensen, T.G.; Kolmos, H.J.; Hallas, J.; Pedersen, C. Bacteremia is associated with excess long-term mortality: A 12-year population-based cohort study. J. Infect. 2015, 70, 111–126. [Google Scholar] [CrossRef]
- Thaden, J.T.; Park, L.P.; Maskarinec, S.A.; Ruffin, F.; Fowler, V.G.; Van Duin, D. Results from a 13-year prospective cohort study show increased mortality associated with bloodstream infections caused by Pseudomonas aeruginosa compared to other bacteria. Antimicrob. Agents Chemother. 2017, 61, e02671-16. [Google Scholar] [CrossRef] [Green Version]
- Dalager-Pedersen, M.; Søgaard, M.; Schønheyder, H.C.; Thomsen, R.W.; Baron, J.A.; Nielsen, H. Venous thromboembolism after community-acquired bacteraemia: A 20-year Danish cohort study. PLoS ONE 2014, 9, e86094. [Google Scholar] [CrossRef]
- Dalager-Pedersen, M.; Søgaard, M.; Schønheyder, H.C.; Nielsen, H.; Thomsen, R.W. Risk for myocardial infarction and stroke after community-acquired bacteremia: A 20-year population-based cohort study. Circulation 2014, 129, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Tal, S.; Guller, V.; Levi, S.; Bardenstein, R.; Berger, D.; Gurevich, I.; Gurevich, A. Profile and prognosis of febrile elderly patients with bacteremic urinary tract infection. J. Infect. 2005, 50, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Bright, H.R.; Babata, K.; Allred, E.N.; Erdei, C.; Kuban, K.C.; Joseph, R.M.; O’Shea, T.M.; Leviton, A.; Dammann, O.; Ware, J. Neurocognitive outcomes at 10 years of age in extremely preterm newborns with late-onset bacteremia. J. Pediatr. 2017, 187, 43–49.e41. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.M.; Pereira, M.O. Pseudomonas aeruginosa diversification during infection development in cystic fibrosis lungs—A review. Pathogens 2014, 3, 680–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winstanley, C.; O’Brien, S.; Brockhurst, M.A. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016, 24, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer-Hamblett, N.; Kloster, M.; Rosenfeld, M.; Gibson, R.L.; Retsch-Bogart, G.Z.; Emerson, J.; Thompson, V.; Ramsey, B.W. Impact of sustained eradication of new Pseudomonas aeruginosa infection on long-term outcomes in cystic fibrosis. Clin. Infect. Dis. 2015, 61, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kosorok, M.R.; Farrell, P.M.; Laxova, A.; West, S.E.; Green, C.G.; Collins, J.; Rock, M.J.; Splaingard, M.L. Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 2005, 293, 581–588. [Google Scholar] [CrossRef]
- Malik, A.; Mohammad, Z.; Ahmad, J. The diabetic foot infections: Biofilms and antimicrobial resistance. Diabetes Metab. Syndr. 2013, 7, 101–107. [Google Scholar] [CrossRef]
- Ramakant, P.; Verma, A.K.; Misra, R.; Prasad, K.N.; Chand, G.; Mishra, A.; Agarwal, G.; Agarwal, A.; Mishra, S.K. Changing microbiological profile of pathogenic bacteria in diabetic foot infections: Time for a rethink on which empirical therapy to choose? Diabetologia 2011, 54, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; MacDonald, D.; Hait, H.; Lipsky, B.; Zasloff, M.; Holroyd, K. Microbiological profile of infected diabetic foot ulcers. Diabet. Med. 2002, 19, 1032–1034. [Google Scholar]
- James, G.A.; Swogger, E.; Wolcott, R.; Pulcini, E.; Secor, P.; Sestrich, J.; Costerton, J.W.; Stewart, P.S. Biofilms in chronic wounds. Wound Repair Regen. 2008, 16, 37–44. [Google Scholar] [CrossRef]
- Dowd, S.E.; Sun, Y.; Secor, P.R.; Rhoads, D.D.; Wolcott, B.M.; James, G.A.; Wolcott, R.D. Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 2008, 8, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, E.M.; Mohan, V.; Premalatha, G.; Srinivasan, R.S.; Usha, A.R. Bacterial etiology of diabetic foot infections in South India. Eur. J. Intern. Med. 2005, 16, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Redel, H.; Gao, Z.; Li, H.; Alekseyenko, A.V.; Zhou, Y.; Perez-Perez, G.I.; Weinstock, G.; Sodergren, E.; Blaser, M.J. Quantitation and composition of cutaneous microbiota in diabetic and nondiabetic men. J. Infect. Dis. 2013, 207, 1105–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldufsky, J.; Wood, S.; Hajihossainlou, B.; Rehman, T.; Majdobeh, O.; Kaufman, H.L.; Ruby, C.E.; Shafikhani, S.H. Pseudomonas aeruginosa exotoxin T induces potent cytotoxicity against a variety of murine and human cancer cell lines. J. Med. Microbiol. 2015, 64, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Bjarnsholt, T.; Kirketerp-Moller, K.; Jensen, P.O.; Madsen, K.G.; Phipps, R.; Krogfelt, K.; Hoiby, N.; Givskov, M. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen. 2008, 16, 2–10. [Google Scholar] [CrossRef]
- Oyibo, S.O.; Jude, E.B.; Tarawneh, I.; Nguyen, H.C.; Armstrong, D.G.; Harkless, L.B.; Boulton, A.J. The effects of ulcer size and site, patient’s age, sex and type and duration of diabetes on the outcome of diabetic foot ulcers. Diabet. Med. 2001, 18, 133–138. [Google Scholar] [CrossRef]
- Mendes, J.J.; Leandro, C.I.; Bonaparte, D.P.; Pinto, A.L. A rat model of diabetic wound infection for the evaluation of topical antimicrobial therapies. Comp. Med. 2012, 62, 37–48. [Google Scholar]
- Zhao, G.; Hochwalt, P.C.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Delayed wound healing in diabetic (db/db) mice with Pseudomonas aeruginosa biofilm challenge: A model for the study of chronic wounds. Wound Repair Regen. 2010, 18, 467–477. [Google Scholar] [CrossRef]
- Zhao, G.; Usui, M.L.; Underwood, R.A.; Singh, P.K.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model. Wound Repair Regen. 2012, 20, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Geiser, T.; Kazmierczak, B.; Garrity-Ryan, L.; Matthay, M.; Engel, J. Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol. 2001, 3, 223–236. [Google Scholar] [CrossRef] [Green Version]
- Garrity-Ryan, L.; Shafikhani, S.; Balachandran, P.; Nguyen, L.; Oza, J.; Jakobsen, T.; Sargent, J.; Fang, X.; Cordwell, S.; Matthay, M.A.; et al. The ADP ribosyltransferase domain of Pseudomonas aeruginosa ExoT contributes to its biological activities. Infect. Immun. 2004, 72, 546–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathews, W.C.; Caperna, J.; Toerner, J.G.; Barber, R.E.; Morgenstern, H. Neutropenia is a risk factor for gram-negative bacillus bacteremia in human immunodeficiency virus-infected patients: Results of a nested case-control study. Am. J. Epidemiol. 1998, 148, 1175–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markou, P.; Apidianakis, Y. Pathogenesis of intestinal Pseudomonas aeruginosa infection in patients with cancer. Front. Cell. Infect. Microbiol. 2014, 3, 115. [Google Scholar] [CrossRef] [PubMed]
- Afessa, B.; Green, B. Bacterial pneumonia in hospitalized patients with HIV infection: The Pulmonary Complications, ICU Support, and Prognostic Factors of Hospitalized Patients with HIV (PIP) Study. Chest 2000, 117, 1017–1022. [Google Scholar] [CrossRef] [PubMed]
- Manfredi, R.; Nanetti, A.; Ferri, M.; Chiodo, F. Pseudomonas spp. complications in patients with HIV disease: An eight-year clinical and microbiological survey. Eur. J. Epidemiol. 2000, 16, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Meynard, J.L.; Barbut, F.; Guiguet, M.; Batisse, D.; Lalande, V.; Lesage, D.; Guiard-Schmid, J.B.; Petit, J.C.; Frottier, J.; Meyohas, M.C. Pseudomonas aeruginosa infection in human immunodeficiency virus infected patients. J. Infect. 1999, 38, 176–181. [Google Scholar] [CrossRef]
- Zylberberg, H.; Vargaftig, J.; Barbieux, C.; Pertuiset, N.; Rothschild, C.; Viard, J.P. Prolonged efficiency of secondary prophylaxis with colistin aerosols for respiratory infection due to Pseudomonas aeruginosa in patients infected with human immunodeficiency virus. Clin. Infect. Dis. 1996, 23, 641–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santin Cerezales, M.; Aranda Sanchez, M.; Podzamczer Palter, D.; Maiques Llacer, J.M.; Rufi Rigau, G.; Gudiol Munte, F. The spectrum of bronchopulmonary infection caused by Pseudomonas aeruginosa in patients infected with the human immunodeficiency virus. Rev. Clin. Esp. 1996, 196, 692–697. [Google Scholar]
- Ali, N.J.; Kessel, D.; Miller, R.F. Bronchopulmonary infection with Pseudomonas aeruginosa in patients infected with human immunodeficiency virus. Genitourin. Med. 1995, 71, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Nesher, L.; Rolston, K.V. The current spectrum of infection in cancer patients with chemotherapy related neutropenia. Infection 2014, 42, 5–13. [Google Scholar] [CrossRef]
- Allen, S.; Brennan-Benson, P.; Nelson, M.; Asboe, D.; Bower, M.; Azadian, B.; Gazzard, B.; Stebbing, J. Pneumonia due to antibiotic resistant Streptococcus pneumoniae and Pseudomonas aeruginosa in the HAART era. Postgrad. Med. J. 2003, 79, 691–694. [Google Scholar] [PubMed]
- Shenoy, M.K.; Iwai, S.; Lin, D.L.; Worodria, W.; Ayakaka, I.; Byanyima, P.; Kaswabuli, S.; Fong, S.; Stone, S.; Chang, E. Immune response and mortality risk relate to distinct lung microbiomes in patients with HIV and pneumonia. Am. J. Respir. Crit. Care Med. 2017, 195, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cribbs, S.K.; Park, Y.; Guidot, D.M.; Martin, G.S.; Brown, L.A.; Lennox, J.; Jones, D.P. Metabolomics of bronchoalveolar lavage differentiate healthy HIV-1-infected subjects from controls. AIDS Res. Hum. Retrovir. 2014, 30, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis. 2004, 39, 309–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paprocka, P.; Durnaś, B.; Mańkowska, A.; Król, G.; Wollny, T.; Bucki, R. Pseudomonas aeruginosa infections in cancer patients. Pathogens 2022, 11, 679. [Google Scholar] [CrossRef]
- Vidal, F.; Mensa, J.; Martinez, J.A.; Almela, M.; Marco, F.; Gatell, J.M.; Richart, C.; Soriano, E.; Jimenez de Anta, M.T. Pseudomonas aeruginosa bacteremia in patients infected with human immunodeficiency virus type 1. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 473–477. [Google Scholar] [CrossRef]
- Crawford, J.; Dale, D.C.; Lyman, G.H. Chemotherapy-induced neutropenia. Cancer 2004, 100, 228–237. [Google Scholar] [CrossRef]
- Chrischilles, E.A.; Link, B.K.; Scott, S.D.; Delgado, D.J.; Fridman, M. Factors associated with early termination of CHOP therapy and the impact on survival among patients with chemosensitive intermediate-grade non-Hodgkin’s lymphoma. Cancer Control 2003, 10, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Gudiol, C.; Royo-Cebrecos, C.; Laporte, J.; Ardanuy, C.; Garcia-Vidal, C.; Antonio, M.; Arnan, M.; Carratala, J. Clinical features, aetiology and outcome of bacteraemic pneumonia in neutropenic cancer patients. Respirology 2016, 21, 1411–1418. [Google Scholar] [CrossRef]
- Marin, M.; Gudiol, C.; Ardanuy, C.; Garcia-Vidal, C.; Calvo, M.; Arnan, M.; Carratalà, J. Bloodstream infections in neutropenic patients with cancer: Differences between patients with haematological malignancies and solid tumours. J. Infect. 2014, 69, 417–423. [Google Scholar] [CrossRef]
- Chatzinikolaou, I.; Abi-Said, D.; Bodey, G.P.; Rolston, K.V.; Tarrand, J.J.; Samonis, G. Recent experience with Pseudomonas aeruginosa bacteremia in patients with cancer: Retrospective analysis of 245 episodes. Arch. Intern. Med. 2000, 160, 501–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funada, H.; Matsuda, T. Changes in the incidence and etiological patterns of bacteremia associated with acute leukemia over a 25-year period. Intern. Med. 1998, 37, 1014–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, X.; Liu, T.; Wu, D.; Wan, Q. Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR Gram-negative bacteria among kidney transplant recipients with urinary tract infections. Infect. Drug Resist. 2018, 11, 707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kritikos, A.; Manuel, O. Bloodstream infections after solid-organ transplantation. Virulence 2016, 7, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Wan, Q.; Ming, Y.; Ma, Y. A clinical analysis of 96 patients with bloodstream infections after solid organ transplantation. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2012, 37, 509–512. [Google Scholar] [CrossRef]
- Fishman, J.A. Infection in solid-organ transplant recipients. N. Engl. J. Med. 2007, 357, 2601–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, A.; Cervera, C.; Gavalda, J.; Rovira, M.; De La Cámara, R.; Jarque, I.; Montejo, M.; De La Torre-Cisneros, J.; Miguel Cisneros, J.; Fortún, J. Bloodstream infections among transplant recipients: Results of a Nationwide Surveillance in Spain 1. Am. J. Transplant. 2007, 7, 2579–2586. [Google Scholar] [CrossRef]
- McClean, K.; Kneteman, N.; Taylor, G. Comparative risk of bloodstream infection in organ transplant recipients. Infect. Control. Hosp. Epidemiol. 1994, 15, 582–584. [Google Scholar] [CrossRef]
- Lee, S.O.; Kang, S.H.; Abdel-Massih, R.C.; Brown, R.A.; Razonable, R.R. Spectrum of early-onset and late-onset bacteremias after liver transplantation: Implications for management. Liver Transplant. 2011, 17, 733–741. [Google Scholar] [CrossRef]
- Palmer, S.M.; Alexander, B.D.; Sanders, L.L.; Edwards, L.J.; Reller, L.B.; Davis, R.D.; Tapson, V.F. Significance of blood stream infection after lung transplantation: Analysis in 176 consecutive patients1. Transplantation 2000, 69, 2360–2366. [Google Scholar] [CrossRef]
- Van Delden, C.; Stampf, S.; Hirsch, H.H.; Manuel, O.; Meylan, P.; Cusini, A.; Hirzel, C.; Khanna, N.; Weisser, M.; Garzoni, C. Burden and timeline of infectious diseases in the first year after solid organ transplantation in the Swiss Transplant Cohort Study. Clin. Infect. Dis. 2020, 71, e159–e169. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Zhao, J.; Wan, Q.; Qiao, B.; Zhou, J. Frequency and clinical outcomes of ESKAPE bacteremia in solid organ transplantation and the risk factors for mortality. Transpl. Infect. Dis. 2014, 16, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Duke, J.M.; Bauer, J.; Fear, M.W.; Rea, S.; Wood, F.M.; Boyd, J. Burn injury, gender and cancer risk: Population-based cohort study using data from Scotland and Western Australia. BMJ Open 2014, 4, e003845. [Google Scholar] [CrossRef] [PubMed]
- Fear, V.S.; Boyd, J.H.; Rea, S.; Wood, F.M.; Duke, J.M.; Fear, M.W. Burn injury leads to increased long-term susceptibility to respiratory infection in both mouse models and population studies. PLoS ONE 2017, 12, e0169302. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.E.; Miller, C.L.; Trunkey, D.D. The immune consequences of trauma. Surg. Clin. N. Am. 1982, 62, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yang, L.; Cheng, L.; Hu, X.-H.; Shen, Y.-M. Distribution and drug resistance of pathogens in burn patients in China from 2006 to 2019. World J. Clin. Cases 2021, 9, 2228. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.; Huan, J.; Guo, F.; Zhou, Z.; Shi, Y. Pseudomonas aeruginosa prevalence, antibiotic resistance and antimicrobial use in Chinese burn wards from 2007 to 2014. J. Int. Med. Res. 2017, 45, 1124–1137. [Google Scholar] [CrossRef] [Green Version]
- Estahbanati, H.K.; Kashani, P.P.; Ghanaatpisheh, F. Frequency of Pseudomonas aeruginosa serotypes in burn wound infections and their resistance to antibiotics. Burns 2002, 28, 340–348. [Google Scholar] [CrossRef]
- Panghal, M.; Singh, K.; Kadyan, S.; Chaudary, U.; Yadav, J. The analysis of distribution of multidrug resistant Pseudomonas and Bacillus species from burn patients and burn ward environment. Burns 2015, 41, 812–819. [Google Scholar] [CrossRef]
- Lari, A.R.; Alaghehbandan, R. Nosocomial infections in an Iranian burn care center. Burns 2000, 26, 737–740. [Google Scholar] [CrossRef]
- Song, W.; Lee, K.M.; Kang, H.J.; Shin, D.H.; Kim, D.K. Microbiologic aspects of predominant bacteria isolated from the burn patients in Korea. Burns 2001, 27, 136–139. [Google Scholar] [CrossRef]
- Sheridan, R.L. Sepsis in pediatric burn patients. Pediatr. Crit. Care Med. 2005, 6, S112–S119. [Google Scholar] [CrossRef]
- Redmond, M.T.; Scherzer, R.; Prince, B.T. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin. Rev. Allergy Immunol. 2022, 63, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Stergiopoulou, T.; Walsh, T.J.; Seghaye, M.-C.; Netea, M.G.; Casanova, J.-L.; Moutschen, M.; Picard, C. Deficiency of interleukin-1 receptor-associated kinase 4 presenting as fatal Pseudomonas aeruginosa bacteremia in two siblings. Pediatr. Infect. Dis. J. 2015, 34, 299–300. [Google Scholar] [CrossRef] [PubMed]
- Asgari, S.; McLaren, P.J.; Peake, J.; Wong, M.; Wong, R.; Bartha, I.; Francis, J.R.; Abarca, K.; Gelderman, K.A.; Agyeman, P. Exome sequencing reveals primary immunodeficiencies in children with community-acquired Pseudomonas aeruginosa sepsis. Front. Immunol. 2016, 7, 357. [Google Scholar]
- Picard, C.; Von Bernuth, H.; Ghandil, P.; Chrabieh, M.; Levy, O.; Arkwright, P.D.; McDonald, D.; Geha, R.S.; Takada, H.; Krause, J.C. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 2010, 89, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flinn, A.; McDermott, M.; Butler, K.M. A child with septic shock and purpura. JAMA Pediatr. 2016, 170, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Al-Herz, W.; Bousfiha, A.; Casanova, J.-L.; Chatila, T.; Conley, M.E.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Gaspar, H.B.; Holland, S.M. Primary immunodeficiency diseases: An update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 2011, 2, 54. [Google Scholar] [PubMed] [Green Version]
- Prasad, C.B. A review on drug testing in animals. Transl. Biomed. 2016, 7, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Cash, H.A.; Woods, D.E.; McCullough, B.; Johanson, W.G.; Bass, J.A. A rat model of chronic respiratory infection with Pseudomonas aeruginosa. Am. Rev. Resp. Dis. 1979, 119, 453–459. [Google Scholar]
- Van Heeckeren, A.M.; Schluchter, M. Murine models of chronic Pseudomonas aeruginosa lung infection. Lab. Anim. 2002, 36, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Comolli, J.C.; Hauser, A.R.; Waite, L.; Whitchurch, C.B.; Mattick, J.S.; Engel, J.N. Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in vitro and virulence in a mouse model of acute pneumonia. Infect. Immun. 1999, 67, 3625–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gras, E.; Vu, T.; Vu Vi Tran, G.; Quynh Nhu Nguyen, T.; Schneider-Smith, E.; Povoa, N.; Povoa, H.; Delaye, T.; Valour, F.; An Diep, B. 2202. Validation of a Rabbit Model of Pseudomonas aeruginosa Acute Pneumonia. Open Forum Infect. Dis. 2019, 6, S750–S751. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Gras, E.; Tran, N.D.; Nguyen, N.N.; Lam, H.T.; Weiss, W.J.; Doan, T.N.; Diep, B.A. Pseudomonas aeruginosa ventilator-associated pneumonia rabbit model for preclinical drug development. Antimicrob. Agents Chemother. 2021, 65, e02724-02720. [Google Scholar] [CrossRef] [PubMed]
- Li Bassi, G.; Rigol, M.; Marti, J.-D.; Saucedo, L.; Ranzani, O.T.; Roca, I.; Cabanas, M.; Muñoz, L.; Giunta, V.; Luque, N. A novel porcine model of ventilator-associated pneumonia caused by oropharyngeal challenge with Pseudomonas aeruginosa. Anesthesiology 2014, 120, 1205–1215. [Google Scholar] [CrossRef] [Green Version]
- Dear, J.D. Bacterial pneumonia in dogs and cats: An update. Vet. Clin. Small Anim. Pract. 2020, 50, 447–465. [Google Scholar] [CrossRef]
- Gorrill, R. The Fate of Pseudontonas aeruginosa, Proteus mirabilis and Escherichia coli in the Mouse Kidney. J. Pathol. Bacteriol. 1965, 89, 81–88. [Google Scholar] [CrossRef]
- Gorrill, R. Bacterial localisation in the kidney with particular reference to Pseudomonas pyocyanea. J. Pathol. Bacteriol. 1952, 64, 857–864. [Google Scholar] [CrossRef]
- Montgomerie, J.; Guze, L. The renal response to infection. Kidney 1976, 2, 1079–1112. [Google Scholar]
- Comber, K. Pathogenesis of an experimental pyelonephritis model in the mouse and its use in the evaluation of antibiotics. In Laboratory Aspects of Infections; Springer: Berlin/Heidelberg, Germany, 1976; pp. 311–316. [Google Scholar]
- Nishi, T.; Tsuchiya, K. Experimental urinary tract infection with Pseudomonas aeruginosa in mice. Infect. Immun. 1978, 22, 508–515. [Google Scholar] [CrossRef] [Green Version]
- Rocha, H.; De Almeida, S.S. Experimental pyelonephritis in rats with a glass bead in the bladder. J. Pathol. Bacteriol. 1965, 90, 668–672. [Google Scholar] [CrossRef]
- Rocha, H.; Guze, L.B.; Freedman, L.R.; Beeson, P.B. Experimental pyelonephritis: III. The influence of localized injury in different parts of the kidney on susceptibility to bacillary infection. Yale J. Biol. Med. 1958, 30, 341. [Google Scholar] [PubMed]
- Niijima, T.; Hinman, F. Effect of prior bacterial immunization on the pathogenesis of retrograde pyelonephritis. J. Urol. 1966, 95, 476–484. [Google Scholar] [CrossRef]
- Hung, C.-S.; Dodson, K.W.; Hultgren, S.J. A murine model of urinary tract infection. Nat. Protoc. 2009, 4, 1230–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Penaranda, C.; Chumbler, N.M.; Hung, D.T. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog. 2021, 17, e1009534. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Mohammad, M.; Hu, Z.; Fei, Y.; Moore, E.R.; Pullerits, R.; Ali, A. A novel mouse model for septic arthritis induced by Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 16868. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.R.; Overall, J.; Glasgow, L.A. Synergistic effect on mortality in mice with murine cytomegalovirus and Pseudomonas aeruginosa, Staphylococcus aureus, or Candida albicans infections. Infect. Immun. 1976, 14, 982–989. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, F.; Shen, Y.; Hou, H.; Liu, W.; Liu, C.; Jian, C.; Wang, Y.; Sun, M.; Sun, Z. Pseudomonas aeruginosa inhibits the growth of pathogenic fungi: In vitro and in vivo studies. Exp. Ther. Med. 2014, 7, 1516–1520. [Google Scholar] [CrossRef] [Green Version]
- Chahin, A.; Opal, S.M.; Zorzopulos, J.; Jobes, D.V.; Migdady, Y.; Yamamoto, M.; Parejo, N.; Palardy, J.E.; Horn, D.L. The novel immunotherapeutic oligodeoxynucleotide IMT504 protects neutropenic animals from fatal Pseudomonas aeruginosa bacteremia and sepsis. Antimicrob. Agents Chemother. 2015, 59, 1225–1229. [Google Scholar] [CrossRef] [Green Version]
- Bachta, K.E.; Allen, J.P.; Cheung, B.H.; Chiu, C.-H.; Hauser, A.R. Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat. Commun. 2020, 11, 543. [Google Scholar] [CrossRef] [Green Version]
- Sutterwala, F.S.; Mijares, L.A.; Li, L.; Ogura, Y.; Kazmierczak, B.I.; Flavell, R.A. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 2007, 204, 3235–3245. [Google Scholar] [CrossRef] [Green Version]
- Kwong, M.S.; Evans, D.J.; Ni, M.; Cowell, B.A.; Fleiszig, S.M. Human tear fluid protects against Pseudomonas aeruginosa keratitis in a murine experimental model. Infect. Immun. 2007, 75, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.C.; Reins, R.Y.; Gallo, R.L.; McDermott, A.M. Cathelicidin-deficient (Cnlp-/-) mice show increased susceptibility to Pseudomonas aeruginosa keratitis. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4498–4508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, N.; Bao, S.; Stapleton, F.; Thakur, A.; Husband, A.J.; Beagley, K.W.; Willcox, M.D. Pseudomonas aeruginosa keratitis in IL-6-deficient mice. Int. Arch. Allergy Immunol. 2003, 130, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, K.; Ishida, W.; Uchiyama, J.; Rashel, M.; Kato, S.-i.; Morita, T.; Muraoka, A.; Sumi, T.; Matsuzaki, S.; Daibata, M. Pseudomonas aeruginosa keratitis in mice: Effects of topical bacteriophage KPP12 administration. PLoS ONE 2012, 77, e47742. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.; Hoerr, V.; Tuchscherr, L.; Kuhlmann, M.T.; Löffler, B.; Faber, C. MRI visualization of Staphyloccocus aureus-induced infective endocarditis in mice. PLoS ONE 2014, 9, e107179. [Google Scholar] [CrossRef]
- Entenza, J.; Vouillamoz, J.; Glauser, M.; Moreillon, P. Levofloxacin versus ciprofloxacin, flucloxacillin, or vancomycin for treatment of experimental endocarditis due to methicillin-susceptible or-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 1997, 41, 1662–1667. [Google Scholar] [CrossRef] [Green Version]
- Oechslin, F.; Piccardi, P.; Mancini, S.; Gabard, J.; Moreillon, P.; Entenza, J.M.; Resch, G.; Que, Y.-A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J. Infect. Dis. 2017, 215, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Archer, G.; Fekety, F.R. Experimental endocarditis due to Pseudomonas aeruginosa. I. Description of a model. J. Infect. Dis. 1976, 134, 1–7. [Google Scholar] [CrossRef]
- Archer, G.; Fekety, F.R., Jr. Experimental endocarditis due to Pseudomonas aeruginosa. II. Therapy with carbenicillin and gentamicin. J. Infect. Dis. 1977, 136, 327–335. [Google Scholar] [CrossRef]
- Coates, M.; Blanchard, S.; MacLeod, A.S. Innate antimicrobial immunity in the skin: A protective barrier against bacteria, viruses, and fungi. PLoS Pathog. 2018, 14, e1007353. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, F.; Roy, R.; Mohamed, M.F.; Aboonabi, A.; Moric, M.; Ghoreishi, K.; Bayat, M.; Kuzel, T.M.; Reiser, J.; Shafikhani, S.H. Therapeutic evaluation of immunomodulators in reducing surgical wound infection. FASEB J. 2022, 36, e22090. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.L.; Mohamed, M.F.; Witt, B.R.; Wimmer, M.A.; Shafikhani, S.H. Therapeutic assessment of N-formyl-methionyl-leucyl-phenylalanine (fMLP) in reducing periprosthetic joint infection. Eur. Cells Mater. 2021, 41, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Kroin, J.S.; Buvanendran, A.; Li, J.; Moric, M.; Im, H.-J.; Tuman, K.J.; Shafikhani, S.H. Short-term glycemic control is effective in reducing surgical site infection in diabetic rats. Anesth. Analg. 2015, 120, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Kroin, J.S.; Li, J.; Goldufsky, J.W.; Gupta, K.H.; Moghtaderi, M.; Buvanendran, A.; Shafikhani, S.H. Perioperative high inspired oxygen fraction therapy reduces surgical site infection with Pseudomonas aeruginosa in rats. J. Med. Microbiol. 2016, 65, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Kroin, J.S.; Li, J.; Shafikhani, S.; Gupta, K.H.; Moric, M.; Buvanendran, A. Local vancomycin effectively reduces surgical site infection at implant site in rodents. Reg. Anesth. Pain Med. 2018, 43, 795–804. [Google Scholar] [CrossRef]
- Shandley, S.; Matthews, K.P.; Cox, J.; Romano, D.; Abplanalp, A.; Kalns, J. Hyperbaric oxygen therapy in a mouse model of implant-associated osteomyelitis. J. Orthop. Res. 2012, 30, 203–208. [Google Scholar] [CrossRef]
- Cirioni, O.; Ghiselli, R.; Silvestri, C.; Minardi, D.; Gabrielli, E.; Orlando, F.; Rimini, M.; Brescini, L.; Muzzonigro, G.; Guerrieri, M. Effect of the combination of clarithromycin and amikacin on Pseudomonas aeruginosa biofilm in an animal model of ureteral stent infection. J. Antimicrob. Chemother. 2011, 66, 1318–1323. [Google Scholar] [CrossRef] [Green Version]
- Rahim, M.I.; Szafrański, S.P.; Ingendoh-Tsakmakidis, A.; Stiesch, M.; Mueller, P.P. Evidence for inoculum size and gas interfaces as critical factors in bacterial biofilm formation on magnesium implants in an animal model. Colloids Surf. B Biointerfaces 2020, 186, 110684. [Google Scholar] [CrossRef]
- Tosh, P.K.; Disbot, M.; Duffy, J.M.; Boom, M.L.; Heseltine, G.; Srinivasan, A.; Gould, C.V.; Berrios-Torres, S.I. Outbreak of Pseudomonas aeruginosa surgical site infections after arthroscopic procedures: Texas, 2009. Infect. Control Hosp. Epidemiol. 2011, 32, 1179–1186. [Google Scholar] [CrossRef] [Green Version]
- Kirketerp-Moller, K.; Jensen, P.O.; Fazli, M.; Madsen, K.G.; Pedersen, J.; Moser, C.; Tolker-Nielsen, T.; Hoiby, N.; Givskov, M.; Bjarnsholt, T. Distribution, organization, and ecology of bacteria in chronic wounds. J. Clin. Microbiol. 2008, 46, 2717–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti. Infect Ther. 2015, 13, 605–613. [Google Scholar] [CrossRef]
- Wood, S.; Jayaraman, V.; Huelsmann, E.J.; Bonish, B.; Burgad, D.; Sivaramakrishnan, G.; Qin, S.; Dipietro, L.A.; Zloza, A.; Zhang, C.; et al. Pro-inflammatory chemokine CCL2 (MCP-1) promotes healing in diabetic wounds by restoring the macrophage response. PLoS ONE 2014, 9, e91574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, R.; Zayas, J.; Mohamed, M.F.; Aboonabi, A.; Delgado, K.; Wallace, J.; Bayat, M.; Kuzel, T.M.; Reiser, J.; Shafikhani, S.H. IL-10 Dysregulation Underlies Chemokine Insufficiency, Delayed Macrophage Response, and Impaired Healing in Diabetic Wounds. J. Investig. Dermatol. 2022, 142, 692–704.e41. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Li, Z.; Maitz, P.K. Pseudomonas pyocyanin inhibits wound repair by inducing premature cellular senescence: Role for p38 mitogen-activated protein kinase. Burns 2009, 35, 500–508. [Google Scholar] [CrossRef]
- Heggers, J.P.; Haydon, S.; Ko, F.; Hayward, P.G.; Carp, S.; Robson, M.C. Pseudomonas aeruginosa Exotoxin A: Its Role in Retardation of Wound Healing The 1992 Lindberg Award. J. Burn Care Rehabil. 1992, 13, 512–518. [Google Scholar] [CrossRef]
- Ha, U.; Jin, S. Expression of the soxR gene of Pseudomonas aeruginosa is inducible during infection of burn wounds in mice and is required to cause efficient bacteremia. Infect. Immun. 1999, 67, 5324–5331. [Google Scholar] [CrossRef] [Green Version]
- Nakagami, G.; Morohoshi, T.; Ikeda, T.; Ohta, Y.; Sagara, H.; Huang, L.; Nagase, T.; Sugama, J.; Sanada, H. Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in pressure ulcer infection in rats. Wound Repair Regen. 2011, 19, 214–222. [Google Scholar] [CrossRef]
- Takase, H.; Nitanai, H.; Hoshino, K.; Otani, T. Impact of siderophore production on Pseudomonas aeruginosa infections in immunosuppressed mice. Infect. Immun. 2000, 68, 1834–1839. [Google Scholar] [CrossRef] [Green Version]
- Cryz, S.J., Jr.; Fürer, E.; Germanier, R. Simple model for the study of Pseudomonas aeruginosa infections in leukopenic mice. Infect. Immun. 1983, 39, 1067–1071. [Google Scholar] [CrossRef] [Green Version]
- Pennington, J.E.; Ehrie, M.G. Pathogenesis of Pseudomonas aeruginosa pneumonia during immunosuppression. J. Infect. Dis. 1978, 137, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Rommens, J.M.; Iannuzzi, M.C.; Kerem, B.-S.; Drumm, M.L.; Melmer, G.; Dean, M.; Rozmahel, R.; Cole, J.L.; Kennedy, D.; Hidaka, N. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 1989, 245, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.-S.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.-L. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Welsh, M.J.; Smith, A.E. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993, 73, 1251–1254. [Google Scholar] [CrossRef] [PubMed]
- Gawenis, L.R.; Hodges, C.A.; McHugh, D.R.; Valerio, D.M.; Miron, A.; Cotton, C.U.; Liu, J.; Walker, N.M.; Strubberg, A.M.; Gillen, A.E. A BAC transgene expressing human CFTR under control of its regulatory elements rescues Cftr knockout mice. Sci. Rep. 2019, 9, 11828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilke, M.; Buijs-Offerman, R.M.; Aarbiou, J.; Colledge, W.H.; Sheppard, D.N.; Touqui, L.; Bot, A.; Jorna, H.; De Jonge, H.R.; Scholte, B.J. Mouse models of cystic fibrosis: Phenotypic analysis and research applications. J. Cyst. Fibros. 2011, 10, S152–S171. [Google Scholar] [CrossRef] [Green Version]
- Dreano, E.; Bacchetta, M.; Simonin, J.; Galmiche, L.; Usal, C.; Slimani, L.; Sadoine, J.; Tesson, L.; Anegon, I.; Concordet, J.P. Characterization of two rat models of cystic fibrosis—KO and F508del CFTR—Generated by Crispr-Cas9. Anim. Model. Exp. Med. 2019, 2, 297–311. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Yan, Z.; Yi, Y.; Li, Z.; Lei, D.; Rogers, C.S.; Chen, J.; Zhang, Y.; Welsh, M.J.; Leno, G.H. Adeno-associated virus–targeted disruption of the CFTR gene in cloned ferrets. J. Clin. Investig. 2008, 118, 1578–1583. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Rajagopolan, C.; Hou, X.; Chen, E.; Boucher, R.C.; Sun, F. Rabbit models for cystic fibrosis. Pediatr. Pulmonol. 2016, 51, 158–159. [Google Scholar]
- Fan, Z.; Perisse, I.V.; Cotton, C.U.; Regouski, M.; Meng, Q.; Domb, C.; Van Wettere, A.J.; Wang, Z.; Harris, A.; White, K.L. A sheep model of cystic fibrosis generated by CRISPR/Cas9 disruption of the CFTR gene. JCI Insight 2018, 3, e123529. [Google Scholar] [CrossRef] [Green Version]
- Heeckeren, A.v.; Walenga, R.; Konstan, M.W.; Bonfield, T.; Davis, P.B.; Ferkol, T. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Investig. 1997, 100, 2810–2815. [Google Scholar] [CrossRef] [PubMed]
- Van Heeckeren, A.M.; Schluchter, M.D.; Xue, W.; Davis, P.B. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am. J. Respir. Crit. Care Med. 2006, 173, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Elferink, R.O.; Beuers, U. Are pigs more human than mice? J. Hepatol. 2009, 50, 838–841. [Google Scholar] [CrossRef] [PubMed]
- Ng, H.P.; Zhou, Y.; Song, K.; Hodges, C.A.; Drumm, M.L.; Wang, G. Neutrophil-mediated phagocytic host defense defect in myeloid Cftr-inactivated mice. PLoS ONE 2014, 9, e106813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogan, M.P.; Reznikov, L.R.; Pezzulo, A.A.; Gansemer, N.D.; Samuel, M.; Prather, R.S.; Zabner, J.; Fredericks, D.C.; McCray, P.B., Jr.; Welsh, M.J. Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth. Proc. Natl. Acad. Sci. USA 2010, 107, 20571–20575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoltz, D.A.; Meyerholz, D.K.; Pezzulo, A.A.; Ramachandran, S.; Rogan, M.P.; Davis, G.J.; Hanfland, R.A.; Wohlford-Lenane, C.; Dohrn, C.L.; Bartlett, J.A. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci. Transl. Med. 2010, 2, 29ra31. [Google Scholar] [CrossRef] [Green Version]
- Tamma, P.; Aitken, S.; Bonomo, R. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 2.0; IDSA: Arlington, VA, USA, 2022. [Google Scholar]
- Tamma, P.; Aitken, S.; Bonomo, R.; Mathers, A.; van Duin, D.; Clancy, C. IDSA Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections: Version 1.0; A Focus on extended-spectrum β-lactamase producing enterobacterales (ESBL-E), carbapenem-resistant enterobacterales (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTRP. aeruginosa); IDSA: Arlington, VA, USA, 2022. [Google Scholar]
- Bush, K.; Bradford, P.A. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Cascella, M. Beta lactam antibiotics. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- KONG, K.F.; Schneper, L.; Mathee, K. Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. Acta Pathol. Microbiol. Immunol. Scand. 2010, 118, 1–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeli, Y.; Troillet, N.; Eliopoulos, G.M.; Samore, M.H. Emergence of antibiotic-resistant Pseudomonas aeruginosa: Comparison of risks associated with different antipseudomonal agents. Antimicrob. Agents Chemother. 1999, 43, 1379–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [Green Version]
- FDA Approves New Antibacterial Drug to Treat Complicated Urinary Tract Infections as Part of Ongoing Efforts to Address Antimicrobial Resistance. 2019. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-complicated-urinary-tract-infections-part-ongoing-efforts (accessed on 1 November 2022).
- Dobias, J.; Dénervaud-Tendon, V.; Poirel, L.; Nordmann, P. Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2319–2327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheri, Y.; Joković, N.; Vitorović, J.; Grundmann, O.; Maroyi, A.; Calina, D. The burden of the serious and difficult-to-treat infections and a new antibiotic available: Cefiderocol. Front. Pharmacol. 2021, 11, 578823. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Nishikawa, T.; Matsumoto, S.; Yoshizawa, H.; Sato, T.; Nakamura, R.; Tsuji, M.; Yamano, Y. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2016, 60, 7396–7401. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Nishikawa, T.; Ota, M.; Ito-Horiyama, T.; Ishibashi, N.; Sato, T.; Tsuji, M.; Yamano, Y. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J. Antimicrob. Chemother. 2018, 73, 3049–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef] [PubMed]
- Saderi, H.; Owlia, P. Detection of multidrug resistant (MDR) and extremely drug resistant (XDR) P. aeruginosa isolated from patients in Tehran, Iran. Iran. J. Pathol. 2015, 10, 265. [Google Scholar] [PubMed]
- Rains, C.P.; Bryson, H.M.; Peters, D.H. Ceftazidime. Drugs 1995, 49, 577–617. [Google Scholar] [CrossRef]
- Ehmann, D.E.; Jahić, H.; Ross, P.L.; Gu, R.-F.; Hu, J.; Kern, G.; Walkup, G.K.; Fisher, S.L. Avibactam is a covalent, reversible, non–β-lactam β-lactamase inhibitor. Proc. Natl. Acad. Sci. USA 2012, 109, 11663–11668. [Google Scholar] [CrossRef] [Green Version]
- Zalas-Więcek, P.; Prażyńska, M.; Pojnar, Ł.; Pałka, A.; Żabicka, D.; Orczykowska-Kotyna, M.; Polak, A.; Możejko-Pastewka, B.; Głowacka, E.A.; Pieniążek, I. Ceftazidime/Avibactam and Other Commonly Used Antibiotics Activity Against Enterobacterales and Pseudomonas aeruginosa Isolated in Poland in 2015–2019. Infect. Drug Resist. 2022, 15, 1289. [Google Scholar] [CrossRef]
- Daikos, G.L.; da Cunha, C.A.; Rossolini, G.M.; Stone, G.G.; Baillon-Plot, N.; Tawadrous, M.; Irani, P. Review of ceftazidime-avibactam for the treatment of infections caused by Pseudomonas aeruginosa. Antibiotics 2021, 10, 1126. [Google Scholar] [CrossRef] [PubMed]
- Sanz-García, F.; Hernando-Amado, S.; Martínez, J.L. Mutation-driven evolution of Pseudomonas aeruginosa in the presence of either ceftazidime or ceftazidime-avibactam. Antimicrob. Agents Chemother. 2018, 62, e01379-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, M.L.; Papp-Wallace, K.M.; Hujer, A.M.; Domitrovic, T.N.; Hujer, K.M.; Hurless, K.N.; Tuohy, M.; Hall, G.; Bonomo, R.A. Unexpected challenges in treating multidrug-resistant Gram-negative bacteria: Resistance to ceftazidime-avibactam in archived isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 1020–1029. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.L. Patent review of manufacturing routes to fifth-generation cephalosporin drugs. Part 1, Ceftolozane. Org. Process Res. Dev. 2017, 21, 430–443. [Google Scholar] [CrossRef]
- Barnes, M.D.; Taracila, M.A.; Rutter, J.D.; Bethel, C.R.; Galdadas, I.; Hujer, A.M.; Caselli, E.; Prati, F.; Dekker, J.P.; Papp-Wallace, K.M. Deciphering the evolution of cephalosporin resistance to ceftolozane-tazobactam in Pseudomonas aeruginosa. mBio 2018, 9, e02085-18. [Google Scholar] [CrossRef] [Green Version]
- Wi, Y.M.; Greenwood-Quaintance, K.E.; Schuetz, A.N.; Ko, K.S.; Peck, K.R.; Song, J.-H.; Patel, R. Activity of ceftolozane-tazobactam against carbapenem-resistant, non-carbapenemase-producing Pseudomonas aeruginosa and associated resistance mechanisms. Antimicrob. Agents Chemother. 2018, 62, e01970-17. [Google Scholar] [CrossRef] [Green Version]
- Haidar, G.; Philips, N.J.; Shields, R.K.; Snyder, D.; Cheng, S.; Potoski, B.A.; Hao, B.; Press, E.G.; Cooper, V.S.; Clancy, C.J. Ceftolozane-tazobactam for the treatment of multidrug-resistant Pseudomonas aeruginosa infections: Clinical effectiveness and evolution of resistance. Clin. Infect. Dis. 2017, 65, 110–120. [Google Scholar] [CrossRef] [Green Version]
- Skoglund, E.; Abodakpi, H.; Diaz, L.; Rios, R.; Tran, T.T.; Arias, C.A.; Tam, V.H. Ceftolozane/tazobactam resistance in Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2017, 50, S39. [Google Scholar]
- Hellinger, W.C.; Brewer, N.S. Imipenem. Mayo Clin. Proc. 1991, 66, 1074–1081. [Google Scholar] [CrossRef]
- Balfour, J.A.; Bryson, H.M.; Brogden, R.N. Imipenem/cilastatin. Drugs 1996, 51, 99–136. [Google Scholar] [CrossRef]
- Keynan, S.; Hooper, N.M.; Felici, A.; Amicosante, G.; Turner, A.J. The renal membrane dipeptidase (dehydropeptidase I) inhibitor, cilastatin, inhibits the bacterial metallo-beta-lactamase enzyme CphA. Antimicrob. Agents Chemother. 1995, 39, 1629–1631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanella, T.A.; Gallagher, J.C. A clinical review and critical evaluation of Imipenem-Relebactam: Evidence to date. Infect. Drug Resist. 2020, 13, 4297. [Google Scholar] [CrossRef] [PubMed]
- Lucasti, C.; Vasile, L.; Sandesc, D.; Venskutonis, D.; McLeroth, P.; Lala, M.; Rizk, M.L.; Brown, M.L.; Losada, M.C.; Pedley, A. Phase 2, dose-ranging study of relebactam with imipenem-cilastatin in subjects with complicated intra-abdominal infection. Antimicrob. Agents Chemother. 2016, 60, 6234–6243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motsch, J.; Murta de Oliveira, C.; Stus, V.; Köksal, I.; Lyulko, O.; Boucher, H.W.; Kaye, K.S.; File, T.M., Jr.; Brown, M.L.; Khan, I. RESTORE-IMI 1: A multicenter, randomized, double-blind trial comparing efficacy and safety of imipenem/relebactam vs colistin plus imipenem in patients with imipenem-nonsusceptible bacterial infections. Clin. Infect. Dis. 2020, 70, 1799–1808. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.-A. Imipenem/cilastatin/relebactam: A review in Gram-negative bacterial infections. Drugs 2021, 81, 377–388. [Google Scholar] [CrossRef]
- Bhatt, S.; Chatterjee, S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation–A comprehensive review. Environ. Pollut. 2022, 315, 120440. [Google Scholar] [CrossRef]
- McKeage, K. Finafloxacin: First global approval. Drugs 2015, 75, 687–693. [Google Scholar] [CrossRef]
- Wagenlehner, F.; Nowicki, M.; Bentley, C.; Lückermann, M.; Wohlert, S.; Fischer, C.; Vente, A.; Naber, K.; Dalhoff, A. Explorative randomized phase II clinical study of the efficacy and safety of finafloxacin versus ciprofloxacin for treatment of complicated urinary tract infections. Antimicrob. Agents Chemother. 2018, 62, e02317-17. [Google Scholar] [CrossRef] [Green Version]
- Kanj, S.S.; Sexton, D.J. Pseudomonas aeruginosa Skin and Soft Tissue Infections; UpToDate. The Charleston Co.: Wellesley, MA, USA, 2020. [Google Scholar]
- Ocheretyaner, E.R.; Park, T.E. Delafloxacin: A novel fluoroquinolone with activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Expert Rev. Anti-Infect. Ther. 2018, 16, 523–530. [Google Scholar] [CrossRef]
- Hooper, D.C.; Jacoby, G.A. Mechanisms of drug resistance: Quinolone resistance. Ann. N. Y. Acad. Sci. 2015, 1354, 12–31. [Google Scholar] [CrossRef] [Green Version]
- Emrich, N.-C.; Heisig, A.; Stubbings, W.; Labischinski, H.; Heisig, P. Antibacterial activity of finafloxacin under different pH conditions against isogenic strains of Escherichia coli expressing combinations of defined mechanisms of fluoroquinolone resistance. J. Antimicrob. Chemother. 2010, 65, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Lungu, I.-A.; Moldovan, O.-L.; Biriș, V.; Rusu, A. Fluoroquinolones Hybrid Molecules as Promising Antibacterial Agents in the Fight against Antibacterial Resistance. Pharmaceutics 2022, 14, 1749. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Tomida, J.; Kawamura, Y. Responses of Pseudomonas aeruginosa to antimicrobials. Front. Microbiol. 2014, 4, 422. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.R.; Burton, C.E. Eravacycline, a newly approved fluorocycline. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1787–1794. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Eravacycline: A review in complicated intra-abdominal infections. Drugs 2019, 79, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Nguyen, N.; Cruz, C. Eravacycline for the treatment of complicated intra-abdominal infections. Adv. Dig. Med. 2021, 8, 203–210. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Walkty, A.; Gin, A.S. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef]
- Sutcliffe, J.; O’brien, W.; Fyfe, C.; Grossman, T. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob. Agents Chemother. 2013, 57, 5548–5558. [Google Scholar] [CrossRef] [Green Version]
- Block, M.; Blanchard, D.L. Aminoglycosides. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Goodlet, K.J.; Benhalima, F.Z.; Nailor, M.D. A systematic review of single-dose aminoglycoside therapy for urinary tract infection: Is it time to resurrect an old strategy? Antimicrob. Agents Chemother. 2019, 63, e02165-18. [Google Scholar] [CrossRef] [Green Version]
- Cloutier, D.J.; Komirenko, A.S.; Cebrik, D.S. Plazomicin versus meropenem for complicated urinary tract infection and acute pyelonephritis: Diagnosis-specific results from the Phase 3 EPIC study. Open Forum Infect. Dis. 2017, 4, S532. [Google Scholar] [CrossRef] [Green Version]
- Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 2019, 79, 243–269. [Google Scholar] [CrossRef]
- Ramsey, B.W.; Dorkin, H.L.; Eisenberg, J.D.; Gibson, R.L.; Harwood, I.R.; Kravitz, R.M.; Schidlow, D.V.; Wilmott, R.W.; Astley, S.J.; McBurnie, M.A. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N. Engl. J. Med. 1993, 328, 1740–1746. [Google Scholar] [CrossRef]
- Niederman, M.S.; Alder, J.; Bassetti, M.; Boateng, F.; Cao, B.; Corkery, K.; Dhand, R.; Kaye, K.S.; Lawatscheck, R.; McLeroth, P. Inhaled amikacin adjunctive to intravenous standard-of-care antibiotics in mechanically ventilated patients with Gram-negative pneumonia (INHALE): A double-blind, randomised, placebo-controlled, phase 3, superiority trial. Lancet Infect. Dis. 2020, 20, 330–340. [Google Scholar] [CrossRef]
- Rattanaumpawan, P.; Lorsutthitham, J.; Ungprasert, P.; Angkasekwinai, N.; Thamlikitkul, V. Randomized controlled trial of nebulized colistimethate sodium as adjunctive therapy of ventilator-associated pneumonia caused by Gram-negative bacteria. J. Antimicrob. Chemother. 2010, 65, 2645–2649. [Google Scholar] [CrossRef]
- Kollef, M.H.; Ricard, J.-D.; Roux, D.; Francois, B.; Ischaki, E.; Rozgonyi, Z.; Boulain, T.; Ivanyi, Z.; János, G.; Garot, D. A randomized trial of the amikacin fosfomycin inhalation system for the adjunctive therapy of Gram-negative ventilator-associated pneumonia: IASIS Trial. Chest 2017, 151, 1239–1246. [Google Scholar] [CrossRef]
- Zavascki, A.P.; Goldani, L.Z.; Li, J.; Nation, R.L. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. J. Antimicrob. Chemother. 2007, 60, 1206–1215. [Google Scholar] [CrossRef] [Green Version]
- Sorlí, L.; Luque, S.; Li, J.; Campillo, N.; Danés, M.; Montero, M.; Segura, C.; Grau, S.; Horcajada, J.P. Colistin for the treatment of urinary tract infections caused by extremely drug-resistant Pseudomonas aeruginosa: Dose is critical. J. Infect. 2019, 79, 253–261. [Google Scholar] [CrossRef]
- Ayoub Moubareck, C. Polymyxins and bacterial membranes: A review of antibacterial activity and mechanisms of resistance. Membranes 2020, 10, 181. [Google Scholar] [CrossRef]
- Justo, J.A.; Bosso, J.A. Adverse reactions associated with systemic polymyxin therapy. Pharmacotherapy 2015, 35, 28–33. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K. Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Crit. Care 2006, 10, 1–13. [Google Scholar]
- Nation, R.L.; Rigatto, M.H.P.; Falci, D.R.; Zavascki, A.P. Polymyxin acute kidney injury: Dosing and other strategies to reduce toxicity. Antibiotics 2019, 8, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nation, R.L.; Velkov, T.; Li, J. Colistin and polymyxin B: Peas in a pod, or chalk and cheese? Clin. Infect. Dis. 2014, 59, 88–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch III, J.P.; Zhanel, G.G.; Clark, N.M.; Ramírez-Estrada, S.; Borgatta, B.; Rello, J.; Kollef, M.; Chastre, J.; Fagon, J.; Tumbarello, M. Emergence of Antimicrobial Resistance among Pseudomonas aeruginosa: Implications for Therapy. Semin. Respir. Crit. Care Med. 2017, 38, 326–345. [Google Scholar]
- Potron, A.; Poirel, L.; Nordmann, P. Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology. Int. J. Antimicrob. Agents 2015, 45, 568–585. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, K. Pseudomonas aeruginosa: Evolution of antimicrobial resistance and implications for therapy. Semin. Respir. Crit. Care Med. 2015, 36, 44–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, A.; Mulet, X.; López-Causapé, C.; Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updates 2015, 21, 41–59. [Google Scholar] [CrossRef]
- Lister, P.D.; Wolter, D.J.; Hanson, N.D. Antibacterial-resistant Pseudomonas aeruginosa: Clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009, 22, 582–610. [Google Scholar] [CrossRef] [Green Version]
- Pachori, P.; Gothalwal, R.; Gandhi, P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis. 2019, 6, 109–119. [Google Scholar] [CrossRef]
- Abd El-Baky, R.M.; Masoud, S.M.; Mohamed, D.S.; Waly, N.G.; Shafik, E.A.; Mohareb, D.A.; Elkady, A.; Elbadr, M.M.; Hetta, H.F. Prevalence and some possible mechanisms of colistin resistance among multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa. Infect. Drug Resist. 2020, 13, 323. [Google Scholar] [CrossRef] [Green Version]
- Obritsch, M.D.; Fish, D.N.; MacLaren, R.; Jung, R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 2004, 48, 4606–4610. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Gu, B.; Mei, Y.; Wen, Y.; Xia, W. Increasing resistance rate to carbapenem among blood culture isolates of Klebsiella pneumoniae, Acinetobacterbaumannii and Pseudomonas aeruginosa in a university-affiliated hospital in China, 2004–2011. J. Antibiot. 2015, 68, 115. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Gandra, S.; Ashok, A.; Caudron, Q.; Grenfell, B.T.; Levin, S.A.; Laxminarayan, R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014, 14, 742–750. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [PubMed]
- Karlowsky, J.A.; Jones, M.E.; Thornsberry, C.; Evangelista, A.T.; Yee, Y.C.; Sahm, D.F. Stable antimicrobial susceptibility rates for clinical isolates of Pseudomonas aeruginosa from the 2001–2003 tracking resistance in the United States today surveillance studies. Clin. Infect. Dis. 2005, 40 (Suppl. 2), S89–S98. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, D.; Raman, G.; Sulham, K.; Gavaghan, M.; Menon, V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2014, 3, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degli Atti, M.C.; Bernaschi, P.; Carletti, M.; Luzzi, I.; García-Fernández, A.; Bertaina, A.; Sisto, A.; Locatelli, F.; Raponi, M. An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect. Dis. 2014, 14, 494. [Google Scholar]
- Micek, S.T.; Wunderink, R.G.; Kollef, M.H.; Chen, C.; Rello, J.; Chastre, J.; Antonelli, M.; Welte, T.; Clair, B.; Ostermann, H.; et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: Impact of multidrug resistance. Crit. Care 2015, 19, 219. [Google Scholar] [CrossRef]
- Falagas, M.E.; Karageorgopoulos, D.E. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: Need for international harmonization in terminology. Clin. Infect. Dis. 2008, 46, 1121–1122. [Google Scholar] [CrossRef] [Green Version]
- Falagas, M.E.; Bliziotis, I.A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era? Int. J. Antimicrob. Agents 2007, 29, 630–636. [Google Scholar] [CrossRef]
- Palavutitotai, N.; Jitmuang, A.; Tongsai, S.; Kiratisin, P.; Angkasekwinai, N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PLoS ONE 2018, 13, e0193431. [Google Scholar] [CrossRef] [Green Version]
- Gill, J.; Arora, S.; Khanna, S.; Kumar, K.H. Prevalence of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa from a tertiary level Intensive Care Unit. J. Glob. Infect. Dis. 2016, 8, 155. [Google Scholar] [PubMed]
- Mayr, A.; Hinterberger, G.; Lorenz, I.H.; Kreidl, P.; Mutschlechner, W.; Lass-Flörl, C. Nosocomial outbreak of extensively drug-resistant Pseudomonas aeruginosa associated with aromatherapy. Am. J. Infect. Control 2017, 45, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Raman, G.; Avendano, E.E.; Chan, J.; Merchant, S.; Puzniak, L. Risk factors for hospitalized patients with resistant or multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obritsch, M.D.; Fish, D.N.; MacLaren, R.; Jung, R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: Epidemiology and treatment options. Pharmacotherapy 2005, 25, 1353–1364. [Google Scholar] [CrossRef]
- Hauser, A.R.; Sriram, P. Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad Med. 2005, 117, 41–48. [Google Scholar] [CrossRef]
- Swathirajan, C.R.; Rameshkumar, M.R.; Solomon, S.S.; Vignesh, R.; Balakrishnan, P. Changing drug resistance profile in Pseudomonas aeruginosa infection among HIV patients from 2010–2017—A retrospective study. J. Glob. Antimicrob. Resist. 2018, 16, 274–277. [Google Scholar] [CrossRef]
- Johnson, L.E.; D’Agata, E.M.; Paterson, D.L.; Clarke, L.; Qureshi, Z.A.; Potoski, B.A.; Peleg, A.Y. Pseudomonas aeruginosa bacteremia over a 10-year period: Multidrug resistance and outcomes in transplant recipients. Transpl. Infect. Dis. 2009, 11, 227–234. [Google Scholar] [CrossRef]
- Chatterjee, M.; Anju, C.; Biswas, L.; Kumar, V.A.; Mohan, C.G.; Biswas, R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 2016, 306, 48–58. [Google Scholar] [CrossRef]
- Hancock, R.E.; Speert, D.P. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updates 2000, 3, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Subedi, D.; Vijay, A.K.; Willcox, M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: An ocular perspective. Clin. Exp. Optom. 2017, 101, 162–171. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin. Infect. Dis. 2002, 34, 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, R.E.; Brinkman, F.S. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 2002, 56, 17–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellido, F.; Martin, N.L.; Siehnel, R.J.; Hancock, R. Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability. J. Bacteriol. 1992, 174, 5196–5203. [Google Scholar] [CrossRef] [Green Version]
- Ochs, M.M.; McCusker, M.P.; Bains, M.; Hancock, R.E. Negative regulation of the Pseudomonas aeruginosa outer membrane porin OprD selective for imipenem and basic amino acids. Antimicrob. Agents Chemother. 1999, 43, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Chuanchuen, R.; Beinlich, K.; Hoang, T.T.; Becher, A.; Karkhoff-Schweizer, R.R.; Schweizer, H.P. Cross-Resistance between Triclosan and Antibiotics in Pseudomonas aeruginosa Is Mediated by Multidrug Efflux Pumps: Exposure of a Susceptible Mutant Strain to Triclosan Selects nfxB Mutants Overexpressing MexCD-OprJ. Antimicrob. Agents Chemother. 2001, 45, 428–432. [Google Scholar] [CrossRef] [Green Version]
- Llanes, C.; Hocquet, D.; Vogne, C.; Benali-Baitich, D.; Neuwirth, C.; Plésiat, P. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob. Agents Chemother. 2004, 48, 1797–1802. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Gotoh, N.; Nishino, T. Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2002, 46, 2696–2699. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Taylor, P.K.; Yeung, A.T.; Hancock, R.E. Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. J. Biotechnol. 2014, 191, 121–130. [Google Scholar] [CrossRef]
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.W.; Mah, T.-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [Green Version]
- Rossi, E.; La Rosa, R.; Bartell, J.A.; Marvig, R.L.; Haagensen, J.A.; Sommer, L.M.; Molin, S.; Johansen, H.K. Pseudomonas aeruginosa adaptation and evolution in patients with cystic fibrosis. Nat. Rev. Microbiol. 2021, 19, 331–342. [Google Scholar] [CrossRef] [PubMed]
- Fauvart, M.; De Groote, V.N.; Michiels, J. Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. J. Med. Microbiol. 2011, 60, 699–709. [Google Scholar] [CrossRef]
- Borriello, G.; Werner, E.; Roe, F.; Kim, A.M.; Ehrlich, G.D.; Stewart, P.S. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 2004, 48, 2659–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, P.S.; Franklin, M.J.; Williamson, K.S.; Folsom, J.P.; Boegli, L.; James, G.A. Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 2015, 59, 3838–3847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amato, S.M.; Fazen, C.H.; Henry, T.C.; Mok, W.W.; Orman, M.A.; Sandvik, E.L.; Volzing, K.G.; Brynildsen, M.P. The role of metabolism in bacterial persistence. Front. Microbiol. 2014, 5, 70. [Google Scholar] [CrossRef]
- Yoshida, H.; Nakamura, M.; Bogaki, M.; Nakamura, S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 1990, 34, 1273–1275. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 2010, 327, 1010–1013. [Google Scholar] [CrossRef] [Green Version]
- Jeukens, J.; Boyle, B.; Kukavica-Ibrulj, I.; Ouellet, M.M.; Aaron, S.D.; Charette, S.J.; Fothergill, J.L.; Tucker, N.P.; Winstanley, C.; Levesque, R.C. Comparative genomics of isolates of a Pseudomonas aeruginosa epidemic strain associated with chronic lung infections of cystic fibrosis patients. PLoS ONE 2014, 9, e87611. [Google Scholar] [CrossRef] [Green Version]
- Freschi, L.; Vincent, A.T.; Jeukens, J.; Emond-Rheault, J.-G.; Kukavica-Ibrulj, I.; Dupont, M.-J.; Charette, S.J.; Boyle, B.; Levesque, R.C. The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol. Evol. 2019, 11, 109–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, M.J.; Dawan, J.; Jeon, G.; Yu, T.; He, X.; Ahn, J. The role of bacterial membrane vesicles in the dissemination of antibiotic resistance and as promising carriers for therapeutic agent delivery. Microorganisms 2020, 8, 670. [Google Scholar] [CrossRef]
- Poole, K. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2005, 49, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Korpela, K.; Salonen, A.; Virta, L.J.; Kekkonen, R.A.; Forslund, K.; Bork, P.; De Vos, W.M. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 2016, 7, 10410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [Google Scholar] [CrossRef] [Green Version]
- Kinch, M.S.; Patridge, E.; Plummer, M.; Hoyer, D. An analysis of FDA-approved drugs for infectious disease: Antibacterial agents. Drug Discov. Today 2014, 19, 1283–1287. [Google Scholar] [CrossRef]
- Davies, J. Inactivation of antibiotics and the dissemination of resistance genes. Science 1994, 264, 375–382. [Google Scholar] [CrossRef]
- Ban, K.A.; Minei, J.P.; Laronga, C.; Harbrecht, B.G.; Jensen, E.H.; Fry, D.E.; Itani, K.M.; Dellinger, E.P.; Ko, C.Y.; Duane, T.M. American College of Surgeons and Surgical Infection Society: Surgical site infection guidelines, 2016 update. J. Am. Coll. Surg. 2017, 224, 59–74. [Google Scholar] [CrossRef]
- Saunders, K.T.; Slaughter, G.T.; Mercer, L.; Gerkin, R. Antibiotic Prophylaxis in Surgical Sterilization: Following the Recommendations [29g]. Obstet. Gynecol. 2018, 131, 82S–83S. [Google Scholar] [CrossRef]
- Hughes, W.T.; Armstrong, D.; Bodey, G.P.; Bow, E.J.; Brown, A.E.; Calandra, T.; Feld, R.; Pizzo, P.A.; Rolston, K.V.; Shenep, J.L.; et al. 2002 guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin. Infect. Dis. 2002, 34, 730–751. [Google Scholar] [CrossRef] [Green Version]
- Grill, M.F.; Maganti, R.K. Neurotoxic effects associated with antibiotic use: Management considerations. Br. J. Clin. Pharmacol. 2011, 72, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Sripada, L.; Singh, R. Side effects of antibiotics during bacterial infection: Mitochondria, the main target in host cell. Mitochondrion 2014, 16, 50–54. [Google Scholar] [CrossRef]
- James, A.; Larson, T. Acute renal failure after high-dose antibiotic bone cement: Case report and review of the literature. Ren. Fail. 2015, 37, 1061–1066. [Google Scholar] [CrossRef]
- Balch, A.; Wendelboe, A.M.; Vesely, S.K.; Bratzler, D.W. Antibiotic prophylaxis for surgical site infections as a risk factor for infection with Clostridium difficile. PLoS ONE 2017, 12, e0179117. [Google Scholar] [CrossRef] [PubMed]
- Poeran, J.; Mazumdar, M.; Rasul, R.; Meyer, J.; Sacks, H.S.; Koll, B.S.; Wallach, F.R.; Moskowitz, A.; Gelijns, A.C. Antibiotic prophylaxis and risk of Clostridium difficile infection after coronary artery bypass graft surgery. J. Thorac. Cardiovasc. Surg. 2016, 151, 589–597.e2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health care–associated infections: A meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 2013, 173, 2039–2046. [Google Scholar] [CrossRef] [PubMed]
- McHugh, S.; Collins, C.; Corrigan, M.; Hill, A.; Humphreys, H. The role of topical antibiotics used as prophylaxis in surgical site infection prevention. J. Antimicrob. Chemother. 2011, 66, 693–701. [Google Scholar] [CrossRef] [Green Version]
- Akira, S.; Uematsu, S.; Takeuchi, O. Pathogen recognition and innate immunity. Cell 2006, 124, 783–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quintin, J.; Cheng, S.-C.; van der Meer, J.W.; Netea, M.G. Innate immune memory: Towards a better understanding of host defense mechanisms. Curr. Opin. Immunol. 2014, 29, 1–7. [Google Scholar] [CrossRef]
- Sotolongo, J.; Ruiz, J.; Fukata, M. The role of innate immunity in the host defense against intestinal bacterial pathogens. Curr. Infect. Dis. Rep. 2012, 14, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dovi, J.V.; Szpaderska, A.M.; DiPietro, L.A. Neutrophil function in the healing wound: Adding insult to injury? Thromb Haemost 2004, 92, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res. 2019, 11, 3919. [Google Scholar] [PubMed]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.; Leal, E.C.; Carvalho, E. Bioactive Antimicrobial Peptides as Therapeutic Agents for Infected Diabetic Foot Ulcers. Biomolecules 2021, 11, 1894. [Google Scholar] [CrossRef]
- Chen, C.H.; Lu, T.K. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef]
- Dosler, S.; Karaaslan, E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 2014, 62, 32–37. [Google Scholar] [CrossRef]
- Yasir, M.; Dutta, D.; Hossain, K.R.; Chen, R.; Ho, K.K.; Kuppusamy, R.; Clarke, R.J.; Kumar, N.; Willcox, M.D. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front. Microbiol. 2020, 10, 3053. [Google Scholar] [CrossRef]
- Cirioni, O.; Silvestri, C.; Ghiselli, R.; Orlando, F.; Riva, A.; Mocchegiani, F.; Chiodi, L.; Castelletti, S.; Gabrielli, E.; Saba, V. Protective effects of the combination of α-helical antimicrobial peptides and rifampicin in three rat models of Pseudomonas aeruginosa infection. J. Antimicrob. Chemother. 2008, 62, 1332–1338. [Google Scholar] [CrossRef] [Green Version]
- Mwangi, J.; Yin, Y.; Wang, G.; Yang, M.; Li, Y.; Zhang, Z.; Lai, R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA 2019, 116, 26516–26522. [Google Scholar] [CrossRef] [Green Version]
- Peschel, A. How do bacteria resist human antimicrobial peptides? Trends Microbiol. 2002, 10, 179–186. [Google Scholar] [CrossRef]
- El Shazely, B.; Yu, G.; Johnston, P.R.; Rolff, J. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front. Microbiol. 2020, 11, 103. [Google Scholar] [CrossRef]
- Bowie, A.G.; Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 2008, 8, 911–922. [Google Scholar] [CrossRef]
- Albrecht, C.; Boutrot, F.; Segonzac, C.; Schwessinger, B.; Gimenez-Ibanez, S.; Chinchilla, D.; Rathjen, J.P.; de Vries, S.C.; Zipfel, C. Brassinosteroids inhibit pathogen-associated molecular pattern–triggered immune signaling independent of the receptor kinase BAK1. Proc. Natl. Acad. Sci. USA 2012, 109, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Abramovitch, R.B.; Anderson, J.C.; Martin, G.B. Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell Biol. 2006, 7, 601–611. [Google Scholar] [CrossRef]
- Trdá, L.; Boutrot, F.; Claverie, J.; Brulé, D.; Dorey, S.; Poinssot, B. Perception of pathogenic or beneficial bacteria and their evasion of host immunity: Pattern recognition receptors in the frontline. Front. Plant Sci. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Taxman, D.J.; Huang, M.T.; Ting, J.P. Inflammasome inhibition as a pathogenic stealth mechanism. Cell Host Microbe 2010, 8, 7–11. [Google Scholar] [CrossRef] [Green Version]
- Kahraman, C.; Yümün, G.; Kahraman, N.K.; Namdar, N.D.; Cosgun, S. Neutrophil-to-lymphocyte ratio in diabetes mellitus patients with and without diabetic foot ulcer. Eur. J. Med. Sci. 2014, 1, 8–13. [Google Scholar] [CrossRef]
- Serban, D.; Papanas, N.; Dascalu, A.M.; Kempler, P.; Raz, I.; Rizvi, A.A.; Rizzo, M.; Tudor, C.; Silviu Tudosie, M.; Tanasescu, D. Significance of neutrophil to lymphocyte ratio (nlr) and platelet lymphocyte ratio (plr) in diabetic foot ulcer and potential new therapeutic targets. Int. J. Low. Extrem. Wounds 2021, 15347346211057742. [Google Scholar] [CrossRef]
- Watters, C.; DeLeon, K.; Trivedi, U.; Griswold, J.A.; Lyte, M.; Hampel, K.J.; Wargo, M.J.; Rumbaugh, K.P. Pseudomonas aeruginosa biofilms perturb wound resolution and antibiotic tolerance in diabetic mice. Med. Microbiol. Immunol. 2013, 202, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage therapy against Pseudomonas aeruginosa biofilms: A review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef]
- Kakasis, A.; Panitsa, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int. J. Antimicrob. Agents 2019, 53, 16–21. [Google Scholar] [CrossRef]
- Kellenberger, G.; Kellenberger, E. Electron microscopical studies of phage multiplication: III. Observation of single cell bursts. Virology 1957, 3, 275–285. [Google Scholar] [CrossRef]
- Ferry, T.; Kolenda, C.; Laurent, F.; Leboucher, G.; Merabischvilli, M.; Djebara, S.; Gustave, C.-A.; Perpoint, T.; Barrey, C.; Pirnay, J.-P. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 2022, 13, 4239. [Google Scholar] [CrossRef]
- Law, N.; Logan, C.; Yung, G.; Furr, C.-L.L.; Lehman, S.M.; Morales, S.; Rosas, F.; Gaidamaka, A.; Bilinsky, I.; Grint, P. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection 2019, 47, 665–668. [Google Scholar] [CrossRef]
- McVay, C.S.; Velásquez, M.; Fralick, J.A. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob. Agents Chemother. 2007, 51, 1934–1938. [Google Scholar] [CrossRef]
- Cafora, M.; Deflorian, G.; Forti, F.; Ferrari, L.; Binelli, G.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci. Rep. 2019, 9, 1527. [Google Scholar] [CrossRef] [Green Version]
- Chan, B.K.; Turner, P.E.; Kim, S.; Mojibian, H.R.; Elefteriades, J.A.; Narayan, D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol. Med. Public Health 2018, 2018, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef]
- Örmälä, A.-M.; Jalasvuori, M. Phage therapy: Should bacterial resistance to phages be a concern, even in the long run? Bacteriophage 2013, 3, e24219. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Van Belleghem, J.D.; de Vries, C.R.; Burgener, E.; Chen, Q.; Manasherob, R.; Aronson, J.R.; Amanatullah, D.F.; Tamma, P.D.; Suh, G.A. The safety and toxicity of phage therapy: A review of animal and clinical studies. Viruses 2021, 13, 1268. [Google Scholar] [CrossRef]
- Jurado-Martín, I.; Sainz-Mejías, M.; McClean, S. Pseudomonas aeruginosa: An audacious pathogen with an adaptable arsenal of virulence factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef]
- Foulkes, D.M.; McLean, K.; Haneef, A.S.; Fernig, D.G.; Winstanley, C.; Berry, N.; Kaye, S.B. Pseudomonas aeruginosa toxin ExoU as a therapeutic target in the treatment of bacterial infections. Microorganisms 2019, 7, 707. [Google Scholar] [CrossRef] [Green Version]
- Shaw, E.; Wuest, W.M. Virulence attenuating combination therapy: A potential multi-target synergy approach to treat Pseudomonas aeruginosa infections in cystic fibrosis patients. RSC Med. Chem. 2020, 11, 358–369. [Google Scholar] [CrossRef]
- Anantharajah, A.; Mingeot-Leclercq, M.-P.; Van Bambeke, F. Targeting the type three secretion system in Pseudomonas aeruginosa. Trends Pharmacol. Sci. 2016, 37, 734–749. [Google Scholar] [CrossRef]
- Warrener, P.; Varkey, R.; Bonnell, J.C.; DiGiandomenico, A.; Camara, M.; Cook, K.; Peng, L.; Zha, J.; Chowdury, P.; Sellman, B. A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrob. Agents Chemother. 2014, 58, 4384–4391. [Google Scholar] [CrossRef]
- Abbas, H.A.; Shaldam, M.A.; Eldamasi, D. Curtailing quorum sensing in Pseudomonas aeruginosa by sitagliptin. Curr. Microbiol. 2020, 77, 1051–1060. [Google Scholar] [CrossRef]
- Hendrix, H.; Zimmermann-Kogadeeva, M.; Zimmermann, M.; Sauer, U.; De Smet, J.; Muchez, L.; Lissens, M.; Staes, I.; Voet, M.; Wagemans, J. Metabolic reprogramming of Pseudomonas aeruginosa by phage-based quorum sensing modulation. Cell Rep. 2022, 38, 110372. [Google Scholar] [CrossRef]
- Hauser, A.R. The type III secretion system of Pseudomonas aeruginosa: Infection by injection. Nat. Rev. Microbiol. 2009, 7, 654–665. [Google Scholar] [CrossRef] [Green Version]
- Engel, J.; Balachandran, P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr. Opin. Microbiol. 2009, 12, 61–66. [Google Scholar] [CrossRef]
- Sharma, P.; Elofsson, M.; Roy, S. Attenuation of Pseudomonas aeruginosa infection by INP0341, a salicylidene acylhydrazide, in a murine model of keratitis. Virulence 2020, 11, 795–804. [Google Scholar] [CrossRef]
- Rumbaugh, K.P.; Griswold, J.A.; Hamood, A.N. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect. 2000, 2, 1721–1731. [Google Scholar] [CrossRef]
- Saqr, A.A.; Aldawsari, M.F.; Khafagy, E.-S.; Shaldam, M.A.; Hegazy, W.A.; Abbas, H.A. A novel use of Allopurinol as a quorum-sensing inhibitor in Pseudomonas aeruginosa. Antibiotics 2021, 10, 1385. [Google Scholar] [CrossRef]
- Haque, S.; Ahmad, F.; Dar, S.A.; Jawed, A.; Mandal, R.K.; Wahid, M.; Lohani, M.; Khan, S.; Singh, V.; Akhter, N. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb. Pathog. 2018, 121, 293–302. [Google Scholar] [CrossRef]
- Sandri, A.; Ortombina, A.; Boschi, F.; Cremonini, E.; Boaretti, M.; Sorio, C.; Melotti, P.; Bergamini, G.; Lleo, M. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence 2018, 9, 1008–1018. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Xie, Y.; Zhang, Y.; Liu, J.; Ding, Y.; Wu, M.; Wang, X.; Deng, X. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expert Opin. Drug Discov. 2020, 15, 1403–1423. [Google Scholar] [CrossRef]
- Pier, G.B. Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen. Carbohydr. Res. 2003, 338, 2549–2556. [Google Scholar] [CrossRef]
- Göcke, K.; Baumann, U.; Hagemann, H.; Gabelsberger, J.; Hahn, H.; Freihorst, J.; von Specht, B.U. Mucosal vaccination with a recombinant OprF-I vaccine of Pseudomonas aeruginosa in healthy volunteers: Comparison of a systemic vs. a mucosal booster schedule. FEMS Immunol. Med. Microbiol. 2003, 37, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Baumann, U.; Mansouri, E.; Von Specht, B.-U. Recombinant OprF–OprI as a vaccine against Pseudomonas aeruginosa infections. Vaccine 2004, 22, 840–847. [Google Scholar] [CrossRef]
- Sawa, T.; Yahr, T.L.; Ohara, M.; Kurahashi, K.; Gropper, M.A.; Wiener-Kronish, J.P.; Frank, D.W. Active and passive immunization with the Pseudomonas V antigen protects against type III intoxication and lung injury. Nat. Med. 1999, 5, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Rello, J.; Krenn, C.-G.; Locker, G.; Pilger, E.; Madl, C.; Balica, L.; Dugernier, T.; Laterre, P.-F.; Spapen, H.; Depuydt, P. A randomized placebo-controlled phase II study of a Pseudomonas vaccine in ventilated ICU patients. Crit. Care 2017, 21, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cheng, X.; Wan, C.; Wei, J.; Gao, C.; Zhang, Y.; Zeng, H.; Peng, L.; Luo, P.; Lu, D. Development of a chimeric vaccine against Pseudomonas aeruginosa based on the Th17-stimulating epitopes of PcrV and AmpC. Front. Immunol. 2021, 11, 601601. [Google Scholar] [CrossRef]
- DiGiandomenico, A.; Rao, J.; Goldberg, J.B. Oral vaccination of BALB/c mice with Salmonella enterica serovar Typhimurium expressing Pseudomonas aeruginosa O antigen promotes increased survival in an acute fatal pneumonia model. Infect. Immun. 2004, 72, 7012–7021. [Google Scholar] [CrossRef] [Green Version]
- Kamei, A.; Coutinho-Sledge, Y.S.; Goldberg, J.B.; Priebe, G.P.; Pier, G.B. Mucosal vaccination with a multivalent, live-attenuated vaccine induces multifactorial immunity against Pseudomonas aeruginosa acute lung infection. Infect. Immun. 2011, 79, 1289–1299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Yang, F.; Zou, J.; Wu, W.; Jing, H.; Gou, Q.; Li, H.; Gu, J.; Zou, Q.; Zhang, J. Immunization with Pseudomonas aeruginosa outer membrane vesicles stimulates protective immunity in mice. Vaccine 2018, 36, 1047–1054. [Google Scholar] [CrossRef]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2015, 44, D646–D653. [Google Scholar] [CrossRef] [PubMed]
- Boukerb, A.M.; Marti, R.; Cournoyer, B. Genome sequences of three strains of the Pseudomonas aeruginosa PA7 clade. Genome Announc. 2015, 3, e01366-15. [Google Scholar] [CrossRef] [Green Version]
- Elsen, S.; Huber, P.; Bouillot, S.; Couté, Y.; Fournier, P.; Dubois, Y.; Timsit, J.-F.; Maurin, M.; Attrée, I. A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 2014, 15, 164–176. [Google Scholar] [CrossRef] [Green Version]
- Bumann, D.; Behre, C.; Behre, K.; Herz, S.; Gewecke, B.; Gessner, J.E.; von Specht, B.U.; Baumann, U. Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: A clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 2010, 28, 707–713. [Google Scholar] [CrossRef]
- Killough, M.; Rodgers, A.M.; Ingram, R.J. Pseudomonas aeruginosa: Recent Advances in Vaccine Development. Vaccines 2022, 10, 1100. [Google Scholar] [CrossRef] [PubMed]
- Clement, J.L.; Jarrett, P.S. Antibacterial silver. Met.-Based Drugs 1994, 1, 467–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555. [Google Scholar] [CrossRef] [Green Version]
- Bjarnsholt, T.; KIRKETERP-MØLLER, K.; Kristiansen, S.; Phipps, R.; Nielsen, A.K.; Jensen, P.Ø.; Høiby, N.; Givskov, M. Silver against Pseudomonas aeruginosa biofilms. Acta Pathol. Microbiol. Immunol. Scand. 2007, 115, 921–928. [Google Scholar] [CrossRef]
- Ahmadi, M.; Adibhesami, M. The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: An experimental study. Iran. J. Pharm. Res. 2017, 16, 661. [Google Scholar]
- Wan, B.; Zhu, Y.; Tao, J.; Zhu, F.; Chen, J.; Li, L.; Zhao, J.; Wang, L.; Sun, S.; Yang, Y. Alginate lyase guided silver nanocomposites for eradicating Pseudomonas aeruginosa from lungs. ACS Appl. Mater. Interfaces 2020, 12, 9050–9061. [Google Scholar] [CrossRef]
- Kuwabara, M.; Sato, Y.; Ishihara, M.; Takayama, T.; Nakamura, S.; Fukuda, K.; Murakami, K.; Yokoe, H.; Kiyosawa, T. Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering. Wound Med. 2020, 28, 100183. [Google Scholar] [CrossRef]
- Khansa, I.; Schoenbrunner, A.R.; Kraft, C.T.; Janis, J.E. Silver in wound care—Friend or foe?: A comprehensive review. Plast. Reconstr. Surg. Glob. Open 2019, 7, e2390. [Google Scholar] [CrossRef]
- Riley, D.K.; Classen, D.C.; Stevens, L.E.; Burke, J.P. A large randomized clinical trial of a silver-impregnated urinary catheter: Lack of efficacy and staphylococcal superinfection. Am. J. Med. 1995, 98, 349–356. [Google Scholar] [CrossRef]
- Majno, G. The Healing Hand: Man and Wound in the Ancient World; Harvard University Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Albaridi, N.A. Antibacterial potency of honey. Int. J. Microbiol. 2019, 2019, 2464507. [Google Scholar] [CrossRef]
- Yupanqui Mieles, J.; Vyas, C.; Aslan, E.; Humphreys, G.; Diver, C.; Bartolo, P. Honey: An Advanced Antimicrobial and Wound Healing Biomaterial for Tissue Engineering Applications. Pharmaceutics 2022, 14, 1663. [Google Scholar] [CrossRef] [PubMed]
- Lusby, P.E.; Coombes, A.L.; Wilkinson, J.M. Bactericidal activity of different honeys against pathogenic bacteria. Arch. Med. Res. 2005, 36, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cokcetin, N.N.; Burke, C.M.; Turnbull, L.; Liu, M.; Carter, D.A.; Whitchurch, C.B.; Harry, E.J. Honey can inhibit and eliminate biofilms produced by Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 18160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzo, D.; Cokcetin, N.N.; Li, L.; Ballerin, G.; Bottomley, A.L.; Lazenby, J.; Whitchurch, C.B.; Paulsen, I.T.; Hassan, K.A.; Harry, E.J. Characterizing the mechanism of action of an ancient antimicrobial, Manuka honey, against Pseudomonas aeruginosa using modern transcriptomics. MSystems 2020, 5, e00106-20. [Google Scholar] [CrossRef] [PubMed]
- Robson, V.; Dodd, S.; Thomas, S. Standardized antibacterial honey (Medihoney™) with standard therapy in wound care: Randomized clinical trial. J. Adv. Nurs. 2009, 65, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Memar, M.Y.; Yekani, M.; Alizadeh, N.; Baghi, H.B. Hyperbaric oxygen therapy: Antimicrobial mechanisms and clinical application for infections. Biomed. Pharmacother. 2019, 109, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Çimşit, M.; Uzun, G.; Yıldız, Ş. Hyperbaric oxygen therapy as an anti-infective agent. Expert Rev. Anti-Infect. Ther. 2009, 7, 1015–1026. [Google Scholar] [CrossRef]
- Møller, S.A.; Jensen, P.Ø.; Høiby, N.; Ciofu, O.; Kragh, K.N.; Bjarnsholt, T.; Kolpen, M. Hyperbaric oxygen treatment increases killing of aggregating Pseudomonas aeruginosa isolates from cystic fibrosis patients. J. Cyst. Fibros. 2019, 18, 657–664. [Google Scholar] [CrossRef]
- Luongo, C.; Imperatore, F.; Matera, M.; Mangoni, G. Effect of hyperbaric oxygen therapy in experimental subcutaneous and pulmonary infections due to Pseudomonas aeruginosa. Undersea Hyperb. Med. 1999, 26, 21. [Google Scholar]
- Kranke, P.; Bennett, M.H.; Martyn-St James, M.; Schnabel, A.; Debus, S.E.; Weibel, S. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev. 2015, 2015, CD004123. [Google Scholar] [CrossRef]
- Dauwe, P.B.; Pulikkottil, B.J.; Lavery, L.; Stuzin, J.M.; Rohrich, R.J. Does hyperbaric oxygen therapy work in facilitating acute wound healing: A systematic review. Plast. Reconstr. Surg. 2014, 133, 208e–215e. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Darby, G.C.; Imagawa, D.K. Efficacy of negative pressure wound treatment in preventing surgical site infections after Whipple procedures. Am. Surg. 2017, 83, 1166–1169. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, R.A.; Javed, A.A.; Ronnekleiv-Kelly, S.; Wright, M.J.; Poruk, K.E.; Eckhauser, F.; Makary, M.A.; Cameron, J.L.; Wolfgang, C.L.; He, J. The use of negative pressure wound therapy to prevent post-operative surgical site infections following pancreaticoduodenectomy. HPB 2017, 19, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Q.; Wang, Y.; Liu, Z.; Dong, M.; Wang, Y.; Li, X.; Hu, D. Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving Pseudomonas aeruginosa infection. PLoS ONE 2014, 9, e90494. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, Z.; Li, T.; Wang, S.; Zhang, L.; Zhang, L.; Tang, P. Negative-pressure wound therapy in a Pseudomonas aeruginosa infection model. BioMed Res. Int. 2018, 2018, 9496183. [Google Scholar]
- Guoqi, W.; Zhirui, L.; Song, W.; Tongtong, L.; Lihai, Z.; Licheng, Z.; Peifu, T. Negative pressure wound therapy reduces the motility of Pseudomonas aeruginosa and enhances wound healing in a rabbit ear biofilm infection model. Antonie Leeuwenhoek 2018, 111, 1557–1570. [Google Scholar] [CrossRef] [Green Version]
- Comolli, J.; Hauser, A.; Waite, L.; Whitchurch, C.; Mattick, J.; Engel, J. PilU and PilT are required for cytotoxicity and virulence of Pseudomonas aeruginosa. Infect. Immun. 1999, 67, 3625–3630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pliska, N.N. Pseudomonas aeruginosa as the main causative agent of osteomyelitis and its susceptibility to antibiotics. Drug Res. 2020, 70, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Cerioli, M.; Batailler, C.; Conrad, A.; Roux, S.; Perpoint, T.; Becker, A.; Triffault-Fillit, C.; Lustig, S.; Fessy, M.-H.; Laurent, F. Pseudomonas aeruginosa implant-associated bone and joint infections: Experience in a regional reference center in France. Front. Med. 2020, 7, 513242. [Google Scholar] [CrossRef]
- Norden, C.W.; Keleti, E. Experimental osteomyelitis caused by Pseudomonas aeruginosa. J. Infect. Dis. 1980, 141, 71–75. [Google Scholar] [CrossRef]
- Gürtler, N.; Osthoff, M.; Rueter, F.; Wüthrich, D.; Zimmerli, L.; Egli, A.; Bassetti, S. Prosthetic valve endocarditis caused by Pseudomonas aeruginosa with variable antibacterial resistance profiles: A diagnostic challenge. BMC Infect. Dis. 2019, 19, 530. [Google Scholar] [CrossRef] [PubMed]
- Razvi, S.; Quittell, L.; Sewall, A.; Quinton, H.; Marshall, B.; Saiman, L. Respiratory microbiology of patients with cystic fibrosis in the United States, 1995 to 2005. Chest 2009, 136, 1554–1560. [Google Scholar] [CrossRef]
- Speert, D.P.; Henry, D.; Vandamme, P.; Corey, M.; Mahenthiralingam, E. Epidemiology of Burkholderia cepacia complex in patients with cystic fibrosis, Canada. Emerg. Infect. Dis. 2002, 8, 181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salsgiver, E.L.; Fink, A.K.; Knapp, E.A.; LiPuma, J.J.; Olivier, K.N.; Marshall, B.C.; Saiman, L. Changing epidemiology of the respiratory bacteriology of patients with cystic fibrosis. Chest 2016, 149, 390–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowd, S.E.; Callaway, T.R.; Wolcott, R.D.; Sun, Y.; McKeehan, T.; Hagevoort, R.G.; Edrington, T.S. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol. 2008, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Uçkay, I.; Lebowitz, D.; Kressmann, B.; von Dach, E.; Lipsky, B.A.; Gariani, K. Pseudomonal Diabetic Foot Infections: Vive la Différence? Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 250–256. [Google Scholar] [CrossRef]
- Sivanmaliappan, T.S.; Sevanan, M. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa from diabetes patients with foot ulcers. Int. J. Microbiol. 2011, 2011, 605195. [Google Scholar] [CrossRef] [Green Version]
- Dhanasekaran, G.; Sastry, G.; Viswanathan, M. Microbial pattern of soft tissue infections in diabetic patients in South India. Asian J. Diabet. 2003, 5, 8–10. [Google Scholar]
- Koo, D.S.; Sun, Z.; Shi, X.W.; Xiang, S.J. Assessment of topical therapy of the burn wound with silver sulphadiazine after its use for 15 years in a burn unit. Burns 1989, 15, 193–196. [Google Scholar]
- El Hamzaoui, N.; Barguigua, A.; Larouz, S.; Maouloua, M. Epidemiology of burn wound bacterial infections at a Meknes hospital, Morocco. New Microbes New Infect. 2020, 38, 100764. [Google Scholar] [CrossRef]
- Emami, A.; Pirbonyeh, N.; Keshavarzi, A.; Javanmardi, F.; Moradi Ghermezi, S.; Ghadimi, T. Three year study of infection profile and antimicrobial resistance pattern from burn patients in southwest Iran. Infect. Drug Resist. 2020, 13, 1499–1506. [Google Scholar] [CrossRef]
- Rolston, K.V. Pseudomonas aeruginosa infections in cancer patients. In Severe infections caused by Pseudomonas aeruginosa; Hauser, A.R., Rello, J., Eds.; Springer: Boston, MA, USA, 2003; Volume 7, pp. 113–125. [Google Scholar]
- Lima, L.M.; da Silva, B.N.M.; Barbosa, G.; Barreiro, E.J. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 2020, 208, 112829. [Google Scholar] [CrossRef] [PubMed]
- Ezelarab, H.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. 2018, 351, 1800141. [Google Scholar] [CrossRef] [PubMed]
- Grossman, T.H. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem. 2014, 395, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J. R. Soc. Med. 2002, 95, 22. [Google Scholar] [PubMed]
- Steyger, P.S. Mechanisms of aminoglycoside-and cisplatin-induced ototoxicity. Am. J. Audiol. 2021, 30, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Arnold, T.M.; Forrest, G.N.; Messmer, K.J. Polymyxin antibiotics for gram-negative infections. Am. J. Health-Syst. Pharm. 2007, 64, 819–826. [Google Scholar] [CrossRef]
- Trimble, M.J.; Mlynárčik, P.; Kolář, M.; Hancock, R.E. Polymyxin: Alternative mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a025288. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023, 12, 199. https://doi.org/10.3390/cells12010199
Wood SJ, Kuzel TM, Shafikhani SH. Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells. 2023; 12(1):199. https://doi.org/10.3390/cells12010199
Chicago/Turabian StyleWood, Stephen J., Timothy M. Kuzel, and Sasha H. Shafikhani. 2023. "Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics" Cells 12, no. 1: 199. https://doi.org/10.3390/cells12010199
APA StyleWood, S. J., Kuzel, T. M., & Shafikhani, S. H. (2023). Pseudomonas aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells, 12(1), 199. https://doi.org/10.3390/cells12010199