MicroRNA-223 Dampens Pulmonary Inflammation during Pneumococcal Pneumonia
<p>miR-223 is differentially regulated in human serum, murine lung tissue and pulmonary neutrophils during pneumococcal pneumonia. (<b>A</b>) miR-223 was quantified in the serum of healthy subjects and CAP patients using qRT-PCR (<span class="html-italic">n</span> = 50 and <span class="html-italic">n</span> = 92, respectively). CAP patients were grouped by CURB-65 scores and the proportional odds model was utilized to analyze the correlation of serum miR-223 relative abundance and disease severity. Spearman correlation was performed to determine the relationship between CRP and serum miR-223 in CAP patients. (<b>B</b>) Expression of miR-223 in vitro and in vivo in WT naïve, sham- and <span class="html-italic">S.pn.</span> ST2-infected mice. Isolated BM-PMN were stimulated 2 and 6 hpi with <span class="html-italic">S.pn.</span> ST2 (<span class="html-italic">n</span> = 9) or sham (<span class="html-italic">n</span> = 5 and <span class="html-italic">n</span> = 7). WT mice were intranasally infected with <span class="html-italic">S.pn.</span> ST2 (<span class="html-italic">n</span> = 7; 24 hpi, <span class="html-italic">n</span> = 10; 48 hpi) or sham (<span class="html-italic">n</span> = 11; 24 hpi, <span class="html-italic">n</span> = 9; 48 hpi), followed by quantification of miR-223 in whole lungs. Expression of miR-223 was also determined in sorted lung PMN (<span class="html-italic">n</span> = 3; naïve, <span class="html-italic">n</span> = 6; 24 hpi <span class="html-italic">S.pn.</span> ST2). (<b>A</b>,<b>B</b>) Mann-Whitney U test, * <span class="html-italic">p</span> < 0.05, **** <span class="html-italic">p</span> < 0.0001. (<b>A</b>) Proportional odds model, <span class="html-italic">p</span> < 0.05, β = −0.91; Spearman correlation, <span class="html-italic">p</span> < 0.05, r = −0.2439. (<b>B</b>) 2-way ANOVA/Šidák’s multiple comparisons test, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001. Data in (<b>A</b>,<b>B</b>) display individual values and median or mean. Error bars indicate (A) minimum to maximum values (CURB-65 plot) and SEM. CAP: community-acquired pneumonia, RQ: relative quantification, CRP: C-reactive protein, CURB-65: (confusion, urea nitrogen, respiratory rate, blood pressure, 65 years of age and older), <span class="html-italic">S.pn.</span> ST2: <span class="html-italic">Streptococcus pneumoniae</span> serotype 2, hpi: hours post-infection, PBS: phosphate-buffered saline.</p> "> Figure 2
<p>miR-223<sup>−/−</sup> mice exhibit aggravated lung inflammation 48 hpi <span class="html-italic">S.pn.</span> ST2. (<b>A</b>) Physiological parameters, including changes in body temperature and body weight post-<span class="html-italic">S.pn</span>. infection in WT and miR-223<sup>−/−</sup> mice. (<b>B</b>) Bacterial burden recorded in lungs, BAL, spleen and blood in WT and miR-223<sup>−/−</sup> mice 48 hpi (<span class="html-italic">n</span> = 10–12). (<b>C</b>) Histopathological analyses of murine lungs 48 hpi. H&E staining indicates predominant neutrophilic and lymphocytic cellular infiltrates in lungs of miR-223<sup>−/−</sup> and WT mice, respectively. Pictures are representative of overall inflammation in WT and miR-223<sup>−/−</sup> mice. * denotes predominantly neutrophilic infiltrates coupled to pronounced edema, whilst # denotes perivascular lymphocytic cuff formation coupled to marginal edema. Pleuritis, steatitis, perivascular edema and hemorrhage scores collectively represent the overall inflammation score exhibited in the lungs of WT and miR-223<sup>−/−</sup> mice 48 hpi (<span class="html-italic">n</span> = 4). Scale bar indicates 100 μm. (<b>D</b>) Survival curves of <span class="html-italic">S.pn.</span> ST2-infected WT and miR-223<sup>−/−</sup> mice over the duration of 120 hpi. (<b>A</b>) 2-way ANOVA/Šidák’s multiple comparisons test, * <span class="html-italic">p</span> < 0.05. (<b>C</b>) Mann-Whitney U test was performed to analyze statistical significance in the overall inflammation score; * <span class="html-italic">p</span> < 0.05. Data in (<b>A</b>–<b>C</b>) display individual and mean values, while data in (<b>D</b>) displays censored subjects only. hpi: hours post-infection, CFU: colony-forming unit, BAL: bronchoalveolar lavage.</p> "> Figure 3
<p>Absence of miR-223 leads to an enhanced and prolonged PMN response in the lungs and BAL of miR-223<sup>−/−</sup> mice post-<span class="html-italic">S.pn.</span> ST2 infection. (<b>A</b>) PMN numbers, frequencies and representative dot plots in BAL and lungs 48 hpi (<span class="html-italic">n</span> = 10–12). (<b>B</b>) Frequencies and representative dot plots of BAL and lung PMN undergoing early and late apoptosis 48 hpi (<span class="html-italic">n</span> = 5–7). (C) CXCL1, CXCL2, CXCL5 chemokines quantified in the BAL of mice through ELISA 48 hpi (<span class="html-italic">n</span> = 10–14). (<b>A</b>,<b>C</b>) Unpaired <span class="html-italic">t</span>-test; * <span class="html-italic">p</span> < 0.05. (<b>B</b>) 2-way ANOVA/Šidák’s multiple comparisons test; *** <span class="html-italic">p</span> < 0.001. Data display individual values and means, error bars represent SEM. PMN: polymorphonuclear neutrophil, BAL: bronchoalveolar lavage, <span class="html-italic">S.pn.</span> ST2: <span class="html-italic">Streptococcus pneumoniae</span> serotype 2.</p> "> Figure 4
<p>miR-223<sup>−/−</sup> mice exhibit increased capacity of pro-inflammatory cytokine and chemokine production following <span class="html-italic">S.pn.</span> ST2 infection. Pro-inflammatory cytokines were quantified in the BAL of WT (<span class="html-italic">n</span> = 11) and miR-223<sup>−/−</sup> (<span class="html-italic">n</span> = 13) mice 48 hpi using the LEGENDPlex Mouse Inflammation Panel (BioLegend, San Diego, CA, USA), whilst MPO was quantified using the MPO Mouse ELISA kit (Hycult Biotech, Uden, Netherlands). Mann-Whitney U test was performed to analyze statistical significance. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01; data display individual values and means, error bars represent SEM. BAL: bronchoalveolar lavage, <span class="html-italic">S.pn.</span> ST2: <span class="html-italic">Streptococcus pneumoniae</span> serotype 2, MPO: myeloperoxidase.</p> "> Figure 5
<p>scRNA-seq of murine lungs 24h following <span class="html-italic">S.pn.</span> ST2 infection. (<b>A</b>) UMAP plot of identified cell populations in the lungs of WT and miR-223<sup>−/−</sup> mice following <span class="html-italic">S.pn.</span> ST2 (WT, miR-223<sup>−/−</sup>; <span class="html-italic">n</span> = 3) or sham (PBS Ctrl, WT; <span class="html-italic">n</span> = 2) infection. (<b>B</b>) Number of significant differentially expressed genes (minimum fold change 1.3) in miR-223<sup>−/−</sup> mice (relative to WT mice) infected with <span class="html-italic">S.pn.</span> (<b>C</b>) Dot plot of significantly differentially expressed genes involved in inflammation, granulocyte maturation, enzymatic digestion and antibacterial defense in WT versus miR-223<sup>−/−</sup> mice. (<b>D</b>) Pathway enrichment analysis of miR-223<sup>−/−</sup> versus WT lung cells sequenced following <span class="html-italic">S.pn.</span> infection. Coloration and point sizes indicate log<sub>2</sub>-transformed fold changes and mean expression levels, respectively. AT1: alveolar epithelial cells type I, AT2: alveolar epithelial cells type II, AM: alveolar macrophages, SMC: smooth muscle cells, MΦ & DC: interstitial and inflammatory macrophages/monocytes and dendritic cells, ly. Endothelial cells: lymphatic endothelial cells, NK cells: natural killer cells, GO:BP: Gene Ontology:Biological Process, KEGG: Kyoto Encyclopedia of Genes and Genomes, UMAP: uniform manifold approximation and projection.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice and Housing
2.2. Intranasal Infection, Monitoring of Mice, and Anesthesia
2.3. Blood Sampling
2.4. Bronchoalveolar Lavage Cells and Fluid
2.5. Co-Isolation of Murine Pulmonary Epithelial Cells and Lung Neutrophils
2.6. Bone Marrow Neutrophil Isolation
2.7. Phagocytosis and Killing Assay
2.8. Single Cell Lung Suspensions
2.9. Flow Cytometry
2.10. Histology
2.11. RNA Isolation, Reverse Transcription and Quantitative PCR of Murine Lungs and Primary Cells
2.12. RNA Isolation, Reverse Transcription and Quantitative PCR of miR-223 in Serum and Plasma of Humans and Mice
2.13. Single Cell Transcriptomics
2.14. Statistical Analyses
3. Results
3.1. miR-223 Is Reduced in Human Serum during Bacterial Pneumonia and Transiently Increases in Murine Lungs upon Pneumococcal Infection
3.2. Absence of miR-223 Renders Mice Prone to Exacerbated Lung Inflammation
3.3. miR-223 Regulates Pulmonary Neutrophil Migration, Persistence and Apoptosis
3.4. Absence of miR-223 Triggers Elevated Production of Inflammatory Mediators
3.5. miR-223 Regulates Genes Involved in Inflammation, Granulocyte Maturation and Antibacterial Defense
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schirm, S.; Ahnert, P.; Wienhold, S.; Mueller-Redetzky, H.; Nouailles-Kursar, G.; Loeffler, M.; Witzenrath, M.; Scholz, M. A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice. PLoS ONE 2016, 11, e0156047. [Google Scholar] [CrossRef]
- WHO. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 6 March 2023).
- GBS 2019 LRI Collaborators. Age-sex differences in the global burden of lower respiratory infections and risk factors, 1990–2019: Results from the Global Burden of Disease Study 2019. Lancet Infect. Dis. 2022, 22, 1626–1647. [Google Scholar] [CrossRef] [PubMed]
- Cilloniz, C.; Ferrer, M.; Liapikou, A.; Garcia-Vidal, C.; Gabarrus, A.; Ceccato, A.; Puig de La Bellacasa, J.; Blasi, F.; Torres, A. Acute respiratory distress syndrome in mechanically ventilated patients with community-acquired pneumonia. Eur. Respir. J. 2018, 51, 1702215. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, M.J.D.; McAuley, D.F.; Perkins, G.D.; Barrett, N.; Blackwood, B.; Boyle, A.; Chee, N.; Connolly, B.; Dark, P.; Finney, S.; et al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir. Res. 2019, 6, e000420. [Google Scholar] [CrossRef] [Green Version]
- Fan, E.; Beitler, J.R.; Brochard, L.; Calfee, C.S.; Ferguson, N.D.; Slutsky, A.S.; Brodie, D. COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? Lancet Respir. Med. 2020, 8, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Ouellet, N.; Pelletier, I.; Simard, M.; Rancourt, A.; Bergeron, M.G. Role of galectin-3 as an adhesion molecule for neutrophil extravasation during streptococcal pneumonia. J. Immunol. 2002, 168, 1813–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, E.P.; Lu, H.; Jacobs, H.L.; Messina, C.G.; Bolsover, S.; Gabella, G.; Potma, E.O.; Warley, A.; Roes, J.; Segal, A.W. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 2002, 416, 291–297. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Zhang, H.; Porro, G.; Orzech, N.; Mullen, B.; Liu, M.; Slutsky, A.S. Neutrophil defensins mediate acute inflammatory response and lung dysfunction in dose-related fashion. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 280, L947–L954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Lee, Y.; Yeom, K.H.; Nam, J.W.; Heo, I.; Rhee, J.K.; Sohn, S.Y.; Cho, Y.; Zhang, B.T.; Kim, V.N. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125, 887–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.S.; Nakahara, K.; Pham, J.W.; Kim, K.; He, Z.; Sontheimer, E.J.; Carthew, R.W. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 2004, 117, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Berg, N.; Lee, J.W.; Le, T.T.; Neudecker, V.; Jing, N.; Eltzschig, H. MicroRNA miR-223 as regulator of innate immunity. J. Leukoc. Biol. 2018, 104, 515–524. [Google Scholar] [CrossRef]
- Zhang, D.; Lee, H.; Wang, X.; Groot, M.; Sharma, L.; Dela Cruz, C.S.; Jin, Y. A potential role of microvesicle-containing miR-223/142 in lung inflammation. Thorax 2019, 74, 865–874. [Google Scholar] [CrossRef]
- Johnnidis, J.B.; Harris, M.H.; Wheeler, R.T.; Stehling-Sun, S.; Lam, M.H.; Kirak, O.; Brummelkamp, T.R.; Fleming, M.D.; Camargo, F.D. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 2008, 451, 1125–1129. [Google Scholar] [CrossRef]
- Dorhoi, A.; Iannaccone, M.; Farinacci, M.; Fae, K.C.; Schreiber, J.; Moura-Alves, P.; Nouailles, G.; Mollenkopf, H.J.; Oberbeck-Muller, D.; Jorg, S.; et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Investig. 2013, 123, 4836–4848. [Google Scholar] [CrossRef] [Green Version]
- Saleh, M.; Abdullah, M.R.; Schulz, C.; Kohler, T.; Pribyl, T.; Jensch, I.; Hammerschmidt, S. Following in real time the impact of pneumococcal virulence factors in an acute mouse pneumonia model using bioluminescent bacteria. J. Vis. Exp. 2014, 84, e51174. [Google Scholar] [CrossRef] [Green Version]
- Dames, C.; Akyuz, L.; Reppe, K.; Tabeling, C.; Dietert, K.; Kershaw, O.; Gruber, A.D.; Meisel, C.; Meisel, A.; Witzenrath, M.; et al. Miniaturized bronchoscopy enables unilateral investigation, application, and sampling in mice. Am. J. Respir. Cell Mol. Biol. 2014, 51, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Reppe, K.; Radunzel, P.; Dietert, K.; Tschernig, T.; Wolff, T.; Hammerschmidt, S.; Gruber, A.D.; Suttorp, N.; Witzenrath, M. Pulmonary immunostimulation with MALP-2 in influenza virus-infected mice increases survival after pneumococcal superinfection. Infect. Immun. 2015, 83, 4617–4629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Amezquita, R.A.; Lun, A.T.L.; Becht, E.; Carey, V.J.; Carpp, L.N.; Geistlinger, L.; Marini, F.; Rue-Albrecht, K.; Risso, D.; Soneson, C.; et al. Publisher Correction: Orchestrating single-cell analysis with Bioconductor. Nat. Methods 2020, 17, 242. [Google Scholar] [CrossRef] [Green Version]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e21. [Google Scholar] [CrossRef]
- Hafemeister, C.; Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019, 20, 296. [Google Scholar] [CrossRef] [Green Version]
- Korsunsky, I.; Millard, N.; Fan, J.; Slowikowski, K.; Zhang, F.; Wei, K.; Baglaenko, Y.; Brenner, M.; Loh, P.R.; Raychaudhuri, S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 2019, 16, 1289–1296. [Google Scholar] [CrossRef]
- McGinnis, C.S.; Murrow, L.M.; Gartner, Z.J. DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors. Cell Syst. 2019, 8, 329–337.e324. [Google Scholar] [CrossRef]
- Franzen, O.; Gan, L.M.; Bjorkegren, J.L.M. PanglaoDB: A web server for exploration of mouse and human single-cell RNA sequencing data. Database 2019, 2019, baz046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Lan, Y.; Xu, J.; Quan, F.; Zhao, E.; Deng, C.; Luo, T.; Xu, L.; Liao, G.; Yan, M.; et al. CellMarker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2019, 47, D721–D728. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Wang, R.; Zhou, Y.; Fei, L.; Sun, H.; Lai, S.; Saadatpour, A.; Zhou, Z.; Chen, H.; Ye, F.; et al. Mapping the Mouse Cell Atlas by Microwell-Seq. Cell 2018, 173, 1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cochain, C.; Vafadarnejad, E.; Arampatzi, P.; Pelisek, J.; Winkels, H.; Ley, K.; Wolf, D.; Saliba, A.E.; Zernecke, A. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis. Circ. Res. 2018, 122, 1661–1674. [Google Scholar] [CrossRef] [PubMed]
- Dutertre, C.A.; Becht, E.; Irac, S.E.; Khalilnezhad, A.; Narang, V.; Khalilnezhad, S.; Ng, P.Y.; van den Hoogen, L.L.; Leong, J.Y.; Lee, B.; et al. Single-Cell Analysis of Human Mononuclear Phagocytes Reveals Subset-Defining Markers and Identifies Circulating Inflammatory Dendritic Cells. Immunity 2019, 51, 573–589.e578. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Giladi, A.; Gorki, A.D.; Solodkin, D.G.; Zada, M.; Hladik, A.; Miklosi, A.; Salame, T.M.; Halpern, K.B.; David, E.; et al. Lung Single-Cell Signaling Interaction Map Reveals Basophil Role in Macrophage Imprinting. Cell 2018, 175, 1031–1044.e18. [Google Scholar] [CrossRef] [Green Version]
- Travaglini, K.J.; Nabhan, A.N.; Penland, L.; Sinha, R.; Gillich, A.; Sit, R.V.; Chang, S.; Conley, S.D.; Mori, Y.; Seita, J.; et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 2020, 587, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Bolden, J.E.; Lucas, E.C.; Zhou, G.; O’Sullivan, J.A.; de Graaf, C.A.; McKenzie, M.D.; Di Rago, L.; Baldwin, T.M.; Shortt, J.; Alexander, W.S.; et al. Identification of a Siglec-F+ granulocyte-macrophage progenitor. J. Leukoc. Biol. 2018, 104, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, M.A. Giving New Identities to Alveolar Epithelial Type I Cells. Am. J. Respir. Cell Mol. Biol. 2017, 56, 277–278. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Chen, L.; Nguyen, P.K.; Wu, S.M.; Li, G. Single Cell Analysis of Endothelial Cells Identified Organ-Specific Molecular Signatures and Heart-Specific Cell Populations and Molecular Features. Front. Cardiovasc. Med. 2019, 6, 165. [Google Scholar] [CrossRef] [PubMed]
- Angelidis, I.; Simon, L.M.; Fernandez, I.E.; Strunz, M.; Mayr, C.H.; Greiffo, F.R.; Tsitsiridis, G.; Ansari, M.; Graf, E.; Strom, T.M.; et al. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat. Commun. 2019, 10, 963. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Rowan, S.C.; Liang, J.; Yao, C.; Huang, G.; Deng, N.; Xie, T.; Wu, D.; Wang, Y.; Burman, A.; et al. Categorization of lung mesenchymal cells in development and fibrosis. iScience 2021, 24, 102551. [Google Scholar] [CrossRef] [PubMed]
- Abel, A.M.; Yang, C.; Thakar, M.S.; Malarkannan, S. Natural Killer Cells: Development, Maturation, and Clinical Utilization. Front. Immunol. 2018, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, X.; Zhao, W.; Wang, J.; Yu, J.; Wan, Z.; Gao, K.; Yi, G.; Wang, X.; Fan, B.; et al. Single-cell transcriptomic landscape of nucleated cells in umbilical cord blood. Gigascience 2019, 8, giz047. [Google Scholar] [CrossRef] [Green Version]
- Chua, R.L.; Lukassen, S.; Trump, S.; Hennig, B.P.; Wendisch, D.; Pott, F.; Debnath, O.; Thurmann, L.; Kurth, F.; Volker, M.T.; et al. COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 2020, 38, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Kolberg, L.; Raudvere, U.; Kuzmin, I.; Vilo, J.; Peterson, H. gprofiler2—An R package for gene list functional enrichment analysis and namespace conversion toolset g:Profiler. F1000Res 2020, 9, 709. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.Y.; Lin, Y.C.; Li, J.; Huang, K.Y.; Shrestha, S.; Hong, H.C.; Tang, Y.; Chen, Y.G.; Jin, C.N.; Yu, Y.; et al. miRTarBase 2020: Updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020, 48, D148–D154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, V.; Bell, G.W.; Nam, J.W.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef]
- Kehl, T.; Kern, F.; Backes, C.; Fehlmann, T.; Stockel, D.; Meese, E.; Lenhof, H.P.; Keller, A. miRPathDB 2.0: A novel release of the miRNA Pathway Dictionary Database. Nucleic Acids Res. 2020, 48, D142–D147. [Google Scholar] [CrossRef] [PubMed]
- Fukao, T.; Fukuda, Y.; Kiga, K.; Sharif, J.; Hino, K.; Enomoto, Y.; Kawamura, A.; Nakamura, K.; Takeuchi, T.; Tanabe, M. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007, 129, 617–631. [Google Scholar] [CrossRef] [Green Version]
- de Kerckhove, M.; Tanaka, K.; Umehara, T.; Okamoto, M.; Kanematsu, S.; Hayashi, H.; Yano, H.; Nishiura, S.; Tooyama, S.; Matsubayashi, Y.; et al. Targeting miR-223 in neutrophils enhances the clearance of Staphylococcus aureus in infected wounds. EMBO Mol. Med. 2018, 10, e9024. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Pal, A.S.; Hsu, A.Y.; Gurol, T.; Zhu, X.; Wirbisky-Hershberger, S.E.; Freeman, J.L.; Kasinski, A.L.; Deng, Q. MicroRNA-223 Suppresses the Canonical NF-kappaB Pathway in Basal Keratinocytes to Dampen Neutrophilic Inflammation. Cell Rep. 2018, 22, 1810–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neudecker, V.; Haneklaus, M.; Jensen, O.; Khailova, L.; Masterson, J.C.; Tye, H.; Biette, K.; Jedlicka, P.; Brodsky, K.S.; Gerich, M.E.; et al. Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J. Exp. Med. 2017, 214, 1737–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermann, S.; Brandes, F.; Kirchner, B.; Buschmann, D.; Borrmann, M.; Klein, M.; Kotschote, S.; Bonin, M.; Reithmair, M.; Kaufmann, I.; et al. Diagnostic potential of circulating cell-free microRNAs for community-acquired pneumonia and pneumonia-related sepsis. J. Cell. Mol. Med. 2020, 24, 12054–12064. [Google Scholar] [CrossRef]
- Reithmair, M.; Buschmann, D.; Marte, M.; Kirchner, B.; Hagl, D.; Kaufmann, I.; Pfob, M.; Chouker, A.; Steinlein, O.K.; Pfaffl, M.W.; et al. Cellular and extracellular miRNAs are blood-compartment-specific diagnostic targets in sepsis. J. Cell. Mol. Med. 2017, 21, 2403–2411. [Google Scholar] [CrossRef]
- Zhang, W.; Jia, J.; Liu, Z.; Si, D.; Ma, L.; Zhang, G. Circulating microRNAs as biomarkers for Sepsis secondary to pneumonia diagnosed via Sepsis 3.0. BMC Pulm. Med. 2019, 19, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin. Chem. 2011, 57, 833–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neudecker, V.; Brodsky, K.S.; Clambey, E.T.; Schmidt, E.P.; Packard, T.A.; Davenport, B.; Standiford, T.J.; Weng, T.; Fletcher, A.A.; Barthel, L.; et al. Neutrophil transfer of miR-223 to lung epithelial cells dampens acute lung injury in mice. Sci. Transl. Med. 2017, 9, eaah5360. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Zhang, A.; Du, Y.; Fang, M.; Minze, L.J.; Liu, Y.J.; Li, X.C.; Zhang, Z. Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat. Commun. 2021, 12, 2681. [Google Scholar] [CrossRef]
- Juszczynski, P.; Kutok, J.L.; Li, C.; Mitra, J.; Aguiar, R.C.; Shipp, M.A. BAL1 and BBAP are regulated by a gamma interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol. Cell. Biol. 2006, 26, 5348–5359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, S.; Rosin, N.L.; Arora, R.; Labit, E.; Jaffer, A.; Cao, L.; Farias, R.; Nguyen, A.P.; de Almeida, L.G.N.; Dufour, A.; et al. Dexamethasone modulates immature neutrophils and interferon programming in severe COVID-19. Nat. Med. 2022, 28, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Ledford, J.G.; Kovarova, M.; Koller, B.H. Impaired host defense in mice lacking ONZIN. J. Immunol. 2007, 178, 5132–5143. [Google Scholar] [CrossRef] [Green Version]
- Lummertz da Rocha, E.; Rowe, R.G.; Lundin, V.; Malleshaiah, M.; Jha, D.K.; Rambo, C.R.; Li, H.; North, T.E.; Collins, J.J.; Daley, G.Q. Reconstruction of complex single-cell trajectories using CellRouter. Nat. Commun. 2018, 9, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashidi, M.; Bandala-Sanchez, E.; Lawlor, K.E.; Zhang, Y.; Neale, A.M.; Vijayaraj, S.L.; O’Donoghue, R.; Wentworth, J.M.; Adams, T.E.; Vince, J.E.; et al. CD52 inhibits Toll-like receptor activation of NF-kappaB and triggers apoptosis to suppress inflammation. Cell Death Differ. 2018, 25, 392–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, J.M.; Fodil, N.; Torre, S.; Bongfen, S.E.; Olivier, J.F.; Leung, V.; Langlais, D.; Meunier, C.; Berghout, J.; Langat, P.; et al. CCDC88B is a novel regulator of maturation and effector functions of T cells during pathological inflammation. J. Exp. Med. 2014, 211, 2519–2535. [Google Scholar] [CrossRef]
- Grieshaber-Bouyer, R.; Radtke, F.A.; Cunin, P.; Stifano, G.; Levescot, A.; Vijaykumar, B.; Nelson-Maney, N.; Blaustein, R.B.; Monach, P.A.; Nigrovic, P.A.; et al. The neutrotime transcriptional signature defines a single continuum of neutrophils across biological compartments. Nat. Commun. 2021, 12, 2856. [Google Scholar] [CrossRef] [PubMed]
- Rex, J.; Lutz, A.; Faletti, L.E.; Albrecht, U.; Thomas, M.; Bode, J.G.; Borner, C.; Sawodny, O.; Merfort, I. IL-1beta and TNFalpha Differentially Influence NF-kappaB Activity and FasL-Induced Apoptosis in Primary Murine Hepatocytes During LPS-Induced Inflammation. Front. Physiol. 2019, 10, 117. [Google Scholar] [CrossRef] [Green Version]
- Kohda, A.; Yamazaki, S.; Sumimoto, H. DNA element downstream of the kappaB site in the Lcn2 promoter is required for transcriptional activation by IkappaBzeta and NF-kappaB p50. Genes Cells 2014, 19, 620–628. [Google Scholar] [CrossRef]
- Ong, C.W.; Elkington, P.T.; Brilha, S.; Ugarte-Gil, C.; Tome-Esteban, M.T.; Tezera, L.B.; Pabisiak, P.J.; Moores, R.C.; Sathyamoorthy, T.; Patel, V.; et al. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis. PLoS Pathog. 2015, 11, e1004917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albaiceta, G.M.; Gutierrez-Fernandez, A.; Garcia-Prieto, E.; Puente, X.S.; Parra, D.; Astudillo, A.; Campestre, C.; Cabrera, S.; Gonzalez-Lopez, A.; Fueyo, A.; et al. Absence or inhibition of matrix metalloproteinase-8 decreases ventilator-induced lung injury. Am. J. Respir. Cell Mol. Biol. 2010, 43, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Quinton, L.J.; Jones, M.R.; Robson, B.E.; Simms, B.T.; Whitsett, J.A.; Mizgerd, J.P. Alveolar epithelial STAT3, IL-6 family cytokines, and host defense during Escherichia coli pneumonia. Am. J. Respir. Cell Mol. Biol. 2008, 38, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Rutting, S.C.; Chapman, D.G.; Farah, C.S.; Thamrin, C. Lung heterogeneity as a predictor for disease severity and response to therapy. Curr. Opin. Physiol. 2021, 22, 100446. [Google Scholar] [CrossRef]
- Mei, J.; Liu, Y.; Dai, N.; Hoffmann, C.; Hudock, K.M.; Zhang, P.; Guttentag, S.H.; Kolls, J.K.; Oliver, P.M.; Bushman, F.D.; et al. Cxcr2 and Cxcl5 regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice. J. Clin. Investig. 2012, 122, 974–986. [Google Scholar] [CrossRef]
- Colbert, J.F.; Ford, J.A.; Haeger, S.M.; Yang, Y.; Dailey, K.L.; Allison, K.C.; Neudecker, V.; Evans, C.M.; Richardson, V.L.; Brodsky, K.S.; et al. A model-specific role of microRNA-223 as a mediator of kidney injury during experimental sepsis. Am. J. Physiol. Ren. Physiol. 2017, 313, F553–F559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazi, F.; Rosa, A.; Fatica, A.; Gelmetti, V.; De Marchis, M.L.; Nervi, C.; Bozzoni, I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005, 123, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, S.; Goekeri, C.; Gupta, S.K.; Vera, J.; Dietert, K.; Behrendt, U.; Lienau, J.; Wienhold, S.M.; Gruber, A.D.; Suttorp, N.; et al. Delay in antibiotic therapy results in fatal disease outcome in murine pneumococcal pneumonia. Crit. Care 2018, 22, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, M.F. Drug target miRNAs: Chances and challenges. Trends Biotechnol. 2014, 32, 578–585. [Google Scholar] [CrossRef] [PubMed]
Parameter or Characteristic | miR-223 > Median Serum Abundance | miR-223 < Median Serum Abundance | p-Value |
---|---|---|---|
miR-233 relative abundance in serum | 1.103 (0.8450–1.501) | 0.4155 (0.3043–0.4808) | <0.0001 |
CRP, mg/L | 183.5 (39.45–304.8) | 297 (112.6–366.8) | 0.0118 |
Blood leukocytes, cells/nL | 13.60 (9.9–18.60) | 16.60 (11.18–21.83) | 0.3416 |
Blood segmented neutrophils, cells/nL | 12.95 (7.308–19.04) | 13.38 (9.243–18.63) | 0.9950 |
Age | 59.5 (42.5–70) | 65 (44.5–75.5) | 0.1563 |
Sex (male/female), n | 24/22, n = 46 | 31/15, n = 46 | 0.0810 |
Pathogen(s) | n | % |
---|---|---|
Streptococcus pneumoniae only | 69 | 75% |
Streptococcus pneumoniae and one additional pathogen | 15 | 16.30% |
Bacteria | 9 | 9.78% |
Enterobacter spp. | 1 | 1.09% |
Haemophilus influenzae | 2 | 2.17% |
Haemophilus parainfluenzae | 2 | 2.17% |
Legionella spp. | 1 | 1.09% |
Pseudomonas spp. | 1 | 1.09% |
Serratia liquefaciens | 1 | 1.09% |
Staphylococcus aureus | 1 | 1.09% |
Viruses | 4 | 4.35% |
Rhinovirus | 2 | 2.17% |
Influenzavirus A/H3N2 | 1 | 1.09% |
Parainfluenzavirus 4 | 1 | 1.09% |
Fungi | 2 | 2.17% |
Candida albicans | 1 | 1.09% |
Candida spp. | 1 | 1.09% |
Streptococcus pneumoniae and more than one additional pathogen | 8 | 8.70% |
Bacterium/fungus | 3 | 3.26% |
Staphylococcus aureus/Klebsiella oxytoca/Candida albicans | 1 | 1.09% |
Pseudomonas aeruginosa/Serratia marcescens/Escherichia coli/Candida albicans | 1 | 1.09% |
Citrobacter spp/Candida albicans | 1 | 1.09% |
Bacterium/bacterium | 1 | 1.09% |
Staphylococcus aureus/Staphylococcus epidermidis | 1 | 1.09% |
Bacterium/virus | 2 | 2.17% |
Staphylococcus aureus/coagulase-negative staphylococcus/RSV | 1 | 1.09% |
Haemophilus influenzae/Coronavirus NL 64 | 1 | 1.09% |
Virus/fungus | 1 | 1.09% |
Parainfluenzavirus 3/Candida spp. | 1 | 1.09% |
Virus/fungus | 1 | 1.09% |
Aspergillus fumigatus/Candida albicans | 1 | 1.09% |
ALL CASES | 92 | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goekeri, C.; Pennitz, P.; Groenewald, W.; Behrendt, U.; Kirsten, H.; Zobel, C.M.; Berger, S.; Heinz, G.A.; Mashreghi, M.-F.; Wienhold, S.-M.; et al. MicroRNA-223 Dampens Pulmonary Inflammation during Pneumococcal Pneumonia. Cells 2023, 12, 959. https://doi.org/10.3390/cells12060959
Goekeri C, Pennitz P, Groenewald W, Behrendt U, Kirsten H, Zobel CM, Berger S, Heinz GA, Mashreghi M-F, Wienhold S-M, et al. MicroRNA-223 Dampens Pulmonary Inflammation during Pneumococcal Pneumonia. Cells. 2023; 12(6):959. https://doi.org/10.3390/cells12060959
Chicago/Turabian StyleGoekeri, Cengiz, Peter Pennitz, Wibke Groenewald, Ulrike Behrendt, Holger Kirsten, Christian M. Zobel, Sarah Berger, Gitta A. Heinz, Mir-Farzin Mashreghi, Sandra-Maria Wienhold, and et al. 2023. "MicroRNA-223 Dampens Pulmonary Inflammation during Pneumococcal Pneumonia" Cells 12, no. 6: 959. https://doi.org/10.3390/cells12060959
APA StyleGoekeri, C., Pennitz, P., Groenewald, W., Behrendt, U., Kirsten, H., Zobel, C. M., Berger, S., Heinz, G. A., Mashreghi, M. -F., Wienhold, S. -M., Dietert, K., Dorhoi, A., Gruber, A. D., Scholz, M., Rohde, G., Suttorp, N., CAPNETZ Study Group, Witzenrath, M., & Nouailles, G. (2023). MicroRNA-223 Dampens Pulmonary Inflammation during Pneumococcal Pneumonia. Cells, 12(6), 959. https://doi.org/10.3390/cells12060959