Seasonal and Interannual Variability of Sea Surface Salinity Near Major River Mouths of the World Ocean Inferred from Gridded Satellite and In-Situ Salinity Products
"> Figure 1
<p>Standard deviation maps of (<b>a</b>) SMOS, (<b>b</b>) SMAP, (<b>c</b>) SIO, and (<b>d</b>) JAMSTEC SSS over January 2010 to November 2020 for (<b>a</b>), (<b>c</b>), and (<b>d</b>) and May 2015 to November 2020 for (<b>b</b>). The magenta squares represent the boxes at the 10 river mouths considered in this study (from left to right): Columbia, Mississippi, Parana/Plata, Orinoco, Amazon, Congo, Brahmaputra/Ganges, Irrawaddy, Mekong, and Yangtze.</p> "> Figure 2
<p>August 2015 monthly maps of (<b>a</b>) SMOS, (<b>b</b>) SMAP, (<b>c</b>) SIO, (<b>d</b>) JAMSTEC SSS near the Amazon mouth in the northwestern tropical Atlantic Ocean, 2–3 months after the peak discharge. The magenta square represents the box chosen to compute the SSS time series at the Amazon River mouth.</p> "> Figure 3
<p>Monthly time series from January 2010 to November 2020 of SMOS (black), SMAP (blue), SIO (red), and JAMSTEC (magenta) SSS at the 10 river mouths represented by magenta squares in <a href="#remotesensing-13-00728-f001" class="html-fig">Figure 1</a>.</p> "> Figure 4
<p>Seasonal variability time series from January 2010 to November 2020 (April 2015 to November 2020 for SMAP) of SMOS (black), SMAP (blue), SIO (red), and JAMSTEC (magenta) SSS at the 10 river mouths represented by magenta squares in <a href="#remotesensing-13-00728-f001" class="html-fig">Figure 1</a>. For visualization purposes, the seasonal cycles are repeated twice.</p> "> Figure 5
<p>Interannual variability time series from January 2010 to September 2019 of SMOS (black), SMAP (blue), SIO (red), and JAMSTEC (magenta) SSS at the 10 river mouths represented by magenta squares in <a href="#remotesensing-13-00728-f001" class="html-fig">Figure 1</a>.</p> "> Figure 6
<p>Number of 0–5 m deep in-situ salinity measurements within 1 × 1 degree bins over a month in the Gulf of Mexico (<b>a</b>,<b>b</b>) and Bay of Bengal (<b>c</b>,<b>d</b>) during the high SSS season (January and April 2019, respectively) and the low SSS season (August and October 2019, respectively). The plume contours (35 psu in the Gulf of Mexico and 32 psu in the Bay of Bengal, computed using monthly SMAP SSS data) are represented in magenta.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trenberth, K.E.; Smith, L.; Qian, T.; Dai, A.; Fasullo, J. Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol. 2007, 8, 758–769. [Google Scholar] [CrossRef]
- Pailler, K.; Bourlès, B.; Gouriou, Y. The barrier layer in the western tropical Atlantic Ocean. Geophys. Res. Lett. 1999, 26, 2069–2072. [Google Scholar] [CrossRef]
- Masson, S.; Delecluse, P. Influence of the Amazon River runoff on the tropical atlantic. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 137–142. [Google Scholar] [CrossRef]
- Thadathil, P.; Suresh, I.; Gautham, S.; Kumar, S.P.; Lengaigne, M.; Rao, R.R.; Neetu, S.; Hegde, A. Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms. J. Geophys. Res. Oceans 2016, 121, 5682–5696. [Google Scholar] [CrossRef]
- McKee, B.; Aller, R.; Allison, M.; Bianchi, T.; Kineke, G. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: Benthic boundary layer and seabed processes. Cont. Shelf Res. 2004, 24, 899–926. [Google Scholar] [CrossRef]
- Hickey, B.M.; Kudela, R.M.; Nash, J.D.; Bruland, K.W.; Peterson, W.T.; MacCready, P.; Lessard, E.J.; Jay, D.A.; Banas, N.S.; Baptista, A.M.; et al. River Influences on Shelf Ecosystems: Introduction and synthesis. J. Geophys. Res. Space Phys. 2010, 115, 115. [Google Scholar] [CrossRef]
- Lentz, S.J. Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. J. Geophys. Res. Ocean. 1995, 100, 2391–2400. [Google Scholar] [CrossRef]
- Hopkins, J.; Lucas, M.; Dufau, C.; Sutton, M.; Stum, J.; Lauret, O.; Channelliere, C. Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level. Remote Sens. Environ. 2013, 139, 365–385. [Google Scholar] [CrossRef]
- Fournier, S.; Chapron, B.; Salisbury, J.E.; VanDeMark, D.; Reul, N. Comparison of spaceborne measurements of sea surface salinity and colored detrital matter in the Amazon plume. J. Geophys. Res. Ocean. 2015, 120, 3177–3192. [Google Scholar] [CrossRef] [Green Version]
- Fournier, S.; Lee, T.; Gierach, M.M. Seasonal and interannual variations of sea surface salinity associated with the Mississippi River plume observed by SMOS and Aquarius. Remote Sens. Environ. 2016, 180, 431–439. [Google Scholar] [CrossRef]
- Fournier, S.; Reager, J.T.; Lee, T.; Vazquez-Cuervo, J.; David, C.H.; Gierach, M.M. SMAP observes flooding from land to sea: The Texas event of 2015. Geophys. Res. Lett. 2016, 43, 10–338. [Google Scholar] [CrossRef]
- Fournier, S.; Vandemark, D.; Gaultier, L.; Lee, T.; Jonsson, B.; Gierach, M.M. Interannual variation in offshore advection of Amazon-Orinoco plume waters: Observations, forcing mechanisms, and impacts. J. Geophys. Res. Ocean. 2017, 122, 8966–8982. [Google Scholar] [CrossRef]
- Fournier, S.; Vialard, J.; Lengaigne, M.; Lee, T.; Gierach, M.M.; Chaitanya, A.V.S. Modulation of the Ganges-Brahmaputra River Plume by the Indian Ocean Dipole and Eddies Inferred From Satellite Observations. J. Geophys. Res. Ocean. 2017, 122, 9591–9604. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Su, X.; Qiu, Z.; Wang, S.; Mao, Z.; He, Y. Remote Sensing Estimation of Sea Surface Salinity from GOCI Measurements in the Southern Yellow Sea. Remote Sens. 2019, 11, 775. [Google Scholar] [CrossRef] [Green Version]
- Boutin, J.; Vergely, J.L.; Khvorostyanov, D. SMOS SSS L3 Maps Generated by CATDS CEC LOCEAN Debias V5.0. Available online: https://www.seanoe.org/data/00417/52804/ (accessed on 20 January 2021).
- Meissner, T.; Wentz, F.J.; Le Vine, D.M. The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases. Remote Sens. 2018, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Cuervo, J.; Fournier, S.; Dzwonkowski, B.; Reager, J. Intercomparison of In-Situ and Remote Sensing Salinity Products in the Gulf of Mexico, a River-Influenced System. Remote Sens. 2018, 10, 1590. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Cuervo, J.; Gomez-Valdes, J.; Bouali, M.; Miranda, L.E.; Van Der Stocken, T.; Tang, W.; Gentemann, C. Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast. Remote Sens. 2019, 11, 1964. [Google Scholar] [CrossRef] [Green Version]
- Roemmich, D.; Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Prog. Oceanogr. 2009, 82, 81–100. [Google Scholar] [CrossRef]
- Fournier, S.; Reager, J.T.; Dzwonkowski, B.; Vazquez-Cuervo, J. Statistical Mapping of Freshwater Origin and Fate Signatures as Land/Ocean “Regions of Influence” in the Gulf of Mexico. J. Geophys. Res. Ocean. 2019, 124, 4954–4973. [Google Scholar] [CrossRef]
- Hosoda, S.; Ohira, T.; Nakamura, T. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 2008, 8, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Trenberth, K.E. Estimates of freshwater discharge from continents: Latitudinal and seasonal variations. J. Hydrometeorol. 2002, 3, 660–687. [Google Scholar] [CrossRef] [Green Version]
- Lee, T. Consistency of Aquarius sea surface salinity with Argo products on various spatial and temporal scales. Geophys. Res. Lett. 2016, 43, 3857–3864. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Bingham, F.M.; Lee, T.; Dinnat, E.; Fournier, S.; Melnichenko, O.V.; Tang, W. Revisiting the Global Patterns of Seasonal Cycle in Sea Surface Salinity. J. Geophys. Res. Ocean. 2021. under review. [Google Scholar]
- Del Castillo, C.E.; Miller, R.L. On the use of ocean color remote sensing to measure the transport of dissolved organic carbon by the Mississippi River Plume. Remote Sens. Environ. 2008, 112, 836–844. [Google Scholar] [CrossRef] [Green Version]
- Del Vecchio, R.; Subramaniam, A. Influence of the Amazon river on the surface optical properties of the western tropical north Atlantic ocean. J. Geophys. Res. Ocean. 2004, 109. [Google Scholar] [CrossRef]
Latitude Boundaries | Longitude Boundaries | |
---|---|---|
Amazon | [5.5°N, 8.5°N] | [51.5°W, 48.5°W] |
Congo | [6°S, 9°S] | [10°E, 13°E] |
Orinoco | [11.5°N, 14.5°N] | [62.5°W, 59.5°W] |
Yangtze | [29.5°N, 32.5°N] | [124.5°E, 127.5°E] |
Ganges/Brahmaputra | [17.5°N, 20.5°N] | [88.5°E, 91.5°E] |
Mississippi | [26.5°N, 29.5°N] | [88.5°W, 85.5°W] |
Parana/Plata | [38°S, 35°S] | [56°W, 53°W] |
Mekong | [12.5°N, 15.5°N] | [109.5°W, 112.5°W] |
Irrawaddy | [12.5°N, 15.5°N] | [94.5°E, 97.5°E] |
Columbia | [44.5°N, 47.5°N] | [127.5°W, 124.5°W] |
STD (psu) | ||||||
---|---|---|---|---|---|---|
SMOS/SMAP | SIO/JAMSTEC | SMOS/SIO | SMOS/JAMSTEC | SMAP/SIO | SMAP/JAMSTEC | |
Amazon | 0.32 | 0.45 | 1.08 | 1.22 | 1.05 | 1.19 |
Congo | 0.27 | 0.37 | 1.13 | 1.17 | 1.06 | 1.09 |
Orinoco | 0.12 | 0.32 | 0.41 | 0.43 | 0.38 | 0.44 |
Yangtze | 0.54 | N/A | N/A | 0.77 | N/A | 0.80 |
Ganges/Brahmaputra | 0.38 | 0.59 | 1.00 | 1.03 | 1.16 | 1.16 |
Mississippi | 0.22 | 0.26 | 0.78 | 0.80 | 0.88 | 0.91 |
Parana/Plata | 0.40 | 0.27 | 1.21 | 1.28 | 1.19 | 1.25 |
Mekong | 0.17 | N/A | 0.26 | N/A | 0.18 | N/A |
Irrawaddy | 0.36 | N/A | N/A | 1.62 | N/A | 1.86 |
Columbia | 0.34 | 0.12 | 0.41 | 0.39 | 0.30 | 0.32 |
Correlation Coefficient | ||||||
---|---|---|---|---|---|---|
SMOS/SMAP | SIO/JAMSTEC | SMOS/SIO | SMOS/JAMSTEC | SMAP/SIO | SMAP/JAMSTEC | |
Amazon | 1 | 0.95 | 0.97 | 0.91 | 0.97 | 0.93 |
Congo | 1 | 0.95 | 0.86 | 0.90 | 0.86 | 0.90 |
Orinoco | 1 | 0.94 | 0.96 | 0.97 | 0.98 | 0.97 |
Yangtze | 0.97 | N/A | N/A | 0.91 | N/A | 0.96 |
Ganges/Brahmaputra | 0.99 | 0.86 | 0.87 | 0.83 | 0.84 | 0.82 |
Mississippi | 1 | 0.93 | 0.88 | 0.95 | 0.86 | 0.94 |
Parana/Plata | 0.97 | 0.62 | 0.58 | 0.45 | 0.65 | 0.58 |
Mekong | 0.97 | N/A | 0.71 | N/A | 0.76 | N/A |
Irrawaddy | 1 | N/A | N/A | 0.72 | N/A | 0.70 |
Columbia | 0.84 | 0.88 | 0.51 | 0.75 | 0.78 | 0.83 |
Correlation Coefficient | ||||||
---|---|---|---|---|---|---|
SMOS/SMAP | SIO/JAMSTEC | SMOS/SIO | SMOS/JAMSTEC | SMAP/SIO | SMAP/JAMSTEC | |
Amazon | 0.82 | 0.25 | 0.67 | 0.43 | 0.83 | 0.35 |
Congo | 0.95 | 0.82 | 0.70 | 0.82 | 0.70 | 0.86 |
Orinoco | 0.91 | 0.95 | 0.80 | 0.71 | 0.64 | 0.55 |
Yangtze | 0.82 | N/A | N/A | −0.75 | N/A | −0.85 |
Ganges/Brahmaputra | 0.81 | 0.83 | −0.02 | −0.03 | 0.41 | 0.44 |
Mississippi | 0.97 | 0.71 | 0.57 | 0.65 | 0.65 | 0.63 |
Parana/Plata | 0.73 | 0.62 | −0.64 | −0.18 | −0.70 | −0.35 |
Mekong | 0.77 | N/A | 0.09 | N/A | −0.01 | N/A |
Irrawaddy | 0.98 | N/A | N/A | 0.30 | N/A | 0.39 |
Columbia | 0.54 | 0.93 | 0.09 | −0.16 | 0.39 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fournier, S.; Lee, T. Seasonal and Interannual Variability of Sea Surface Salinity Near Major River Mouths of the World Ocean Inferred from Gridded Satellite and In-Situ Salinity Products. Remote Sens. 2021, 13, 728. https://doi.org/10.3390/rs13040728
Fournier S, Lee T. Seasonal and Interannual Variability of Sea Surface Salinity Near Major River Mouths of the World Ocean Inferred from Gridded Satellite and In-Situ Salinity Products. Remote Sensing. 2021; 13(4):728. https://doi.org/10.3390/rs13040728
Chicago/Turabian StyleFournier, Severine, and Tong Lee. 2021. "Seasonal and Interannual Variability of Sea Surface Salinity Near Major River Mouths of the World Ocean Inferred from Gridded Satellite and In-Situ Salinity Products" Remote Sensing 13, no. 4: 728. https://doi.org/10.3390/rs13040728
APA StyleFournier, S., & Lee, T. (2021). Seasonal and Interannual Variability of Sea Surface Salinity Near Major River Mouths of the World Ocean Inferred from Gridded Satellite and In-Situ Salinity Products. Remote Sensing, 13(4), 728. https://doi.org/10.3390/rs13040728