Comparing Methods for Segmenting Supra-Glacial Lakes and Surface Features in the Mount Everest Region of the Himalayas Using Chinese GaoFen-3 SAR Images
<p>Photographs of a glacial lake and adjacent surface features. (<b>a</b>) Supra-glacial lake with floating ice, found on a debris-covered glacier; (<b>b</b>) glacier terminus; (<b>c</b>) ice crevasse caused by tension in the ice; and (<b>d</b>) supra-glacial stream formed by the confluence of glacier meltwater and downward flow.</p> "> Figure 2
<p>(<b>a</b>) Map of study area (indicated by the blue polygon), which is located in the Northeast Nepalese Himalayas (<b>b</b>).</p> "> Figure 3
<p>Steps used to segment and characterize glacial lakes and other surface features on glaciers.</p> "> Figure 4
<p>Examples showing the identification of glacial lakes in different images. The red and yellow rectangles indicate clean and dirty supra-glacial ponds, and typical pro-glacial lakes, respectively. (<b>a</b>) True-color composite of the widely used Landsat-8 OLI imagery (RGB: 432, Path/Row: 140/41, Cloud cover: 1.57%) acquired on 1 September 2020, and (<b>b</b>) GF-3 HH-polarized intensity imagery acquired on 5 September 2020.</p> "> Figure 5
<p>Pro-glacial lakes and supra-glacial lakes in Region D Imja glacier (<b>a</b>–<b>c</b>) and Region B Ngozumpa glacier (<b>d</b>–<b>f</b>) segmented on the 5 September 2020 UFS imagery by the Canny edge operator (first column), variational B-spline level-set method (second column), and U-Net-based deep-learning method (third column). The blue and red contours in (<b>b</b>,<b>e</b>) indicate manually digitized glacial lake outlines and extracted outlines, respectively. For locations, see <a href="#remotesensing-13-02429-f002" class="html-fig">Figure 2</a>.</p> "> Figure 6
<p>Ice crevasses as segmented on the (<b>a</b>) 29 May 2020 SL imagery of the Region C Khumbu Glacier by (<b>b</b>) the Canny edge operator, (<b>c</b>) variational B-spline level-set method, and (<b>d</b>) U-Net-based deep-learning method. The blue and red lines in (<b>a</b>,<b>c</b>) indicate manually digitized lines and extracted lines, respectively. For location, see <a href="#remotesensing-13-02429-f002" class="html-fig">Figure 2</a>.</p> "> Figure 7
<p>Normalized histogram of the minimum distance (in pixels) between the true lines and those extracted by (<b>a</b>) the Canny edge operator, (<b>b</b>) the variational B-spline level-set method, and (<b>c</b>) the U-Net-based deep-learning method.</p> "> Figure 8
<p>(<b>a</b>) Development of pro- and supra-glacial lakes detected in this study from May to September 2020. Background image is from GF-3 UFS imagery on 10 September 2020. (<b>b</b>) Other glacial lake inventory data used for comparison, from Chen et al. in 2017 and Wang et al. in 2018. The white lines denote the boundary of the glacier terminus.</p> "> Figure 9
<p>Profile of the Region C Khumbu Glacier surface. The line was extracted from the 1 arc-second global SRTM DEM for a length of about 1400 m.</p> "> Figure 10
<p>Examples of surface backscattering variations and lake types during 2020. (<b>a</b>) Backscattering intensity along transects of the glacier tongue and a supra-glacial lake. The orange and green lines refer to the horizontal and vertical lines shown in (<b>f</b>), respectively. The glacial lakes with delineated shorelines in (<b>b</b>) represent a subset of the Region A Bhotekoshi Glacier on 5 September. (<b>c</b>–<b>f</b>) Four types of glacial lakes: (<b>c</b>) elongated lake; (<b>d</b>) small lake; (<b>e</b>) small and irregular lake; (<b>f</b>) lake with ice cover.</p> ">
Abstract
:1. Introduction
2. Study Area and Data Set
2.1. Study Area
2.2. Satellite Images and Pre-Processing
3. Methods
3.1. Canny Edge Operator
3.2. Variational B-Spline Level-Set Method
3.3. U-Net-Based Deep-Learning Model
3.4. Accuracy Assessment
4. Results
4.1. Extraction of Glacial Lake Outlines
4.2. Extraction of Ice Crevasses and Supra-Glacial Streams
4.3. Analysis of Seasonal Changes of Supra-Glacial Lakes
4.4. Characteristics of Surface Features on the Glaciers
5. Discussion
5.1. Small and Elongated Supra-Glacial Lakes
5.2. Lakes with Ice Cover on the Surface
5.3. Glaciers and Water-Eroded Stripes
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Huang, L.; Liu, J.; Shao, Q.; Liu, R. Changing inland lakes responding to climate warming in Northeastern Tibetan Plateau. Clim. Chang. 2011, 109, 479–502. [Google Scholar] [CrossRef]
- Hewitt, K.; Liu, J. Ice-Dammed Lakes and Outburst Floods, Karakoram Himalaya: Historical Perspectives on Emerging Threats. Phys. Geogr. 2010, 31, 528–551. [Google Scholar] [CrossRef]
- Wang, X.; Siegert, F.; Zhou, A.-G.; Franke, J. Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Glob. Planet. Chang. 2013, 111, 246–257. [Google Scholar] [CrossRef]
- Prakash, C.; Nagarajan, R. Glacial Lake Inventory and Evolution in Northwestern Indian Himalaya. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5284–5294. [Google Scholar] [CrossRef]
- Quincey, D.; Richardson, S.; Luckman, A.; Lucas, R.; Reynolds, J.; Hambrey, M.; Glasser, N. Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. Glob. Planet. Chang. 2007, 56, 137–152. [Google Scholar] [CrossRef]
- Ukita, J.; Narama, C.; Tadono, T.; Yamanokuchi, T.; Tomiyama, N.; Kawamoto, S.; Abe, C.; Uda, T.; Yabuki, H.; Fujita, K.; et al. Glacial lake inventory of Bhutan using ALOS data: Methods and preliminary results. Ann. Glaciol. 2011, 52, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Strozzi, T.; Wiesmann, A.; Kaab, A.; Joshi, S.; Mool, P.K. Glacial lake mapping with very high resolution satellite SAR data. Nat. Hazards Earth Syst. Sci. 2012, 12, 2487–2498. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Winsvold, S.H.; Kääb, A.; Nagler, T.; Schwaizer, G. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens. 2016, 8, 575. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ding, Y.; Liu, S.; Jiang, L.; Wu, K.; Jiang, Z.; Guo, W. Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ. Res. Lett. 2013, 8, 044052. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Li, J.; Sheng, Y. An automated scheme for glacial lake dynamics mapping using Landsat imagery and digital elevation models: A case study in the Himalayas. Int. J. Remote Sens. 2012, 33, 5194–5213. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Nuimura, T.; Yamaguchi, S.; Sharma, R.R. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ. Res. Lett. 2009, 4, 045205. [Google Scholar] [CrossRef]
- Ovakoglou, G.; Alexandridis, T.K.; Crisman, T.L.; Skoulikaris, C.; Vergos, G.S. Use of MODIS satellite images for detailed lake morphometry: Application to basins with large water level fluctuations. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 37–46. [Google Scholar] [CrossRef]
- Atwood, D.K.; Meyer, F.; Arendt, A. Using L-band SAR coherence to delineate glacier extent. Can. J. Remote Sens. 2010, 36, S186–S195. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Huang, L.; Tian, B.; Chen, Q. Extraction of glacier outlines and water-eroded stripes using high-resolution SAR imagery. Int. J. Remote Sens. 2016, 37, 1016–1034. [Google Scholar] [CrossRef]
- Bao, P.; Zhang, L.; Wu, X. Canny edge detection enhancement by scale multiplication. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 1485–1490. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Chen, F.; Tian, B.; Liang, D. Using a Phase-Congruency-Based Detector for Glacial Lake Segmentation in High-Temporal Resolution Sentinel-1A/1B Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2771–2780. [Google Scholar] [CrossRef]
- Li, J.; Warner, T.A.; Wang, Y.; Bai, J.; Bao, A. Mapping glacial lakes partially obscured by mountain shadows for time series and regional mapping applications. Int. J. Remote Sens. 2018, 40, 615–641. [Google Scholar] [CrossRef]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Feng, M.; Zhu, Y.; Lu, N.; Huang, J.; Xiao, T. An Automated Method for Extracting Rivers and Lakes from Landsat Imagery. Remote Sens. 2014, 6, 5067–5089. [Google Scholar] [CrossRef] [Green Version]
- Hochreuther, P.; Neckel, N.; Reimann, N.; Humbert, A.; Braun, M. Fully Automated Detection of Supraglacial Lake Area for Northeast Greenland Using Sentinel-2 Time-Series. Remote Sens. 2021, 13, 205. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, F.; Zhang, M. A Systematic Extraction Approach for Mapping Glacial Lakes in High Mountain Regions of Asia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2788–2799. [Google Scholar] [CrossRef]
- Braga, A.M.; Marques, R.C.P.; Rodrigues, F.A.A.; Medeiros, F.N.S. A Median Regularized Level Set for Hierarchical Segmentation of SAR Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1171–1175. [Google Scholar] [CrossRef]
- Jin, R.; Yin, J.; Zhou, W.; Yang, J. Level Set Segmentation Algorithm for High-Resolution Polarimetric SAR Images Based on a Heterogeneous Clutter Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4565–4579. [Google Scholar] [CrossRef]
- Lang, F.; Yang, J.; Yan, S.; Qin, F. Superpixel Segmentation of Polarimetric Synthetic Aperture Radar (SAR) Images Based on Generalized Mean Shift. Remote Sens. 2018, 10, 1592. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Xiang, D.; Su, Y. Fast Multiscale Superpixel Segmentation for SAR Imagery. IEEE Geosci. Remote Sens. Lett. 2020, 1–5. [Google Scholar] [CrossRef]
- Ciecholewski, M. River channel segmentation in polarimetric SAR images: Watershed transform combined with average contrast maximisation. Expert Syst. Appl. 2017, 82, 196–215. [Google Scholar] [CrossRef]
- Ijitona, T.B.; Ren, J.; Hwang, B. SAR Sea Ice Image Segmentation Using Watershed with Intensity-Based Region Merging. In Proceedings of the 2014 IEEE International Conference on Computer and Information Technology, Institute of Electrical and Electronics Engineers (IEEE), Xi’an, China, 11–13 September 2014; pp. 168–172. [Google Scholar]
- Johansson, A.M.; Brown, I.A. Adaptive Classification of Supra-Glacial Lakes on the West Greenland Ice Sheet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1998–2007. [Google Scholar] [CrossRef]
- Mitkari, K.V.; Arora, M.K.; Tiwari, R.K. Extraction of Glacial Lakes in Gangotri Glacier Using Object-Based Image Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.; Shea, J.; Pellicciotti, F.; de Jong, S.; Immerzeel, W. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier. Remote Sens. Environ. 2016, 186, 581–595. [Google Scholar] [CrossRef]
- Wu, R.; Liu, G.; Zhang, R.; Wang, X.; Li, Y.; Zhang, B.; Cai, J.; Xiang, W. A Deep Learning Method for Mapping Glacial Lakes from the Combined Use of Synthetic-Aperture Radar and Optical Satellite Images. Remote Sens. 2020, 12, 4020. [Google Scholar] [CrossRef]
- Qayyum, N.; Ghuffar, S.; Ahmad, H.M.; Yousaf, A.; Shahid, I. Glacial Lakes Mapping Using Multi Satellite PlanetScope Imagery and Deep Learning. ISPRS Int. J. Geo-Inf. 2020, 9, 560. [Google Scholar] [CrossRef]
- Westoby, M.; Glasser, N.; Brasington, J.; Hambrey, M.; Quincey, D.; Reynolds, J. Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci. Rev. 2014, 134, 137–159. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.S.; Benn, D.I.; Dennis, K.; Luckman, A. A rapidly growing moraine-dammed glacial lake on Ngozumpa Glacier, Nepal. Geomorphology 2012, 145–146, 1–11. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef] [Green Version]
- Wessels, R.L.; Kargel, J.S.; Kieffer, H.H. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya. Ann. Glaciol. 2002, 34, 399–408. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-J.; Cheng, Z.-L.; Li, Y. The 1988 glacial lake outburst flood in Guangxieco Lake, Tibet, China. Nat. Hazards Earth Syst. Sci. 2014, 14, 3065–3075. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Z.-W.; Wu, L.-X.; Xu, B.; Hu, J.; Zhou, Y.-S.; Miao, Z.-L. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar] [CrossRef]
- Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. Glacier crevasses: Observations, models, and mass balance implications. Rev. Geophys. 2016, 54, 119–161. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.K.; Snehmani; Sam, L.; Singh, M.K.; Singh, S.; Kumar, R. Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 51–64. [Google Scholar] [CrossRef]
- Vornberger, P.L.; Whillans, I.M. Crevasse Deformation and Examples from Ice Stream B, Antarctica. J. Glaciol. 1990, 36, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Das, S.B.; Joughin, I.; Behn, M.; Howat, I.; King, M.; Lizarralde, D.; Bhatia, M.P. Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage. Science 2008, 320, 778–781. [Google Scholar] [CrossRef] [Green Version]
- Salerno, F.; Thakuri, S.; D’Agata, C.; Smiraglia, C.; Manfredi, E.C.; Viviano, G.; Tartari, G. Glacial lake distribution in the Mount Everest region: Uncertainty of measurement and conditions of formation. Glob. Planet. Chang. 2012, 92–93, 30–39. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Mool, P. Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann. Glaciol. 2009, 50, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Thakuri, S.; Salerno, F.; Bolch, T.; Guyennon, N.; Tartari, G. Factors controlling the accelerated expansion of Imja Lake, Mount Everest region, Nepal. Ann. Glaciol. 2016, 57, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Wood, L.R.; Neumann, K.; Nicholson, K.N.; Bird, B.W.; Dowling, C.B.; Sharma, S. Melting Himalayan Glaciers Threaten Domestic Water Resources in the Mount Everest Region, Nepal. Front. Earth Sci. 2020, 8, 8. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Wang, J.; Ke, L.; Madson, A.; Nie, Y. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. Geomorphology 2017, 280, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Round, V.; Leinss, S.; Huss, M.; Haemmig, C.; Hajnsek, I. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. Cryosphere 2017, 11, 723–739. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Yang, J.; Mouche, A.; Shao, W.; Zhu, J.; Ren, L.; Xie, C. GF-3 SAR Ocean Wind Retrieval: The First View and Preliminary Assessment. Remote Sens. 2017, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Yu, W.; Deng, Y. The SAR Payload Design and Performance for the GF-3 Mission. Sensors 2017, 17, 2419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Chen, F.; Tian, B. Glacial Lake Detection from GaoFen-2 Multispectral Imagery Using an Integrated Nonlocal Active Contour Approach: A Case Study of the Altai Mountains, Northern Xinjiang Province. Water 2018, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Tian, B.; Li, Z.; Zhang, M.; Huang, L.; Qiu, Y.; Li, Z.; Tang, P. Mapping Thermokarst Lakes on the Qinghai–Tibet Plateau Using Nonlocal Active Contours in Chinese GaoFen-2 Multispectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1–14. [Google Scholar] [CrossRef]
- Shuai, Y.; Hong, S.; Ge, X. SAR Image Segmentation Based on Level Set With Stationary Global Minimum. IEEE Geosci. Remote Sens. Lett. 2008, 5, 644–648. [Google Scholar] [CrossRef]
- Bernard, O.; Friboulet, D.; Thevenaz, P.; Unser, M. Variational B-Spline Level-Set: A Linear Filtering Approach for Fast Deformable Model Evolution. IEEE Trans. Image Process. 2009, 18, 1179–1191. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.-T.; Pham, V.-T.; Shyu, K.-K. Moment-based alignment for shape prior with variational B-spline level set. Mach. Vis. Appl. 2013, 24, 1075–1091. [Google Scholar] [CrossRef]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, L.; Young, I.T.; Beckers, G.L. A nonlinear laplace operator as edge detector in noisy images. Comput. Vis. Graph. Image Process. 1989, 45, 167–195. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Wang, D.; Liao, X.; Shao, Q.; Sun, Z.; Yue, H.; Ye, H. Wild animal survey using UAS imagery and deep learning: Modified Faster R-CNN for kiang detection in Tibetan Plateau. ISPRS J. Photogramm. Remote Sens. 2020, 169, 364–376. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Cui, B.; Chen, X.; Lu, Y. Semantic Segmentation of Remote Sensing Images Using Transfer Learning and Deep Convolutional Neural Network With Dense Connection. IEEE Access 2020, 8, 116744–116755. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Alamri, A.M. An ensemble architecture of deep convolutional Segnet and Unet networks for building semantic segmentation from high-resolution aerial images. Geocarto Int. 2020, 1–16. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Ye, Y.; Lau, R.Y.K.; Zhang, X.; Huang, X. Road Detection and Centerline Extraction Via Deep Recurrent Convolutional Neural Network U-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7209–7220. [Google Scholar] [CrossRef]
- Shamsolmoali, P.; Zareapoor, M.; Wang, R.; Zhou, H.; Yang, J. A Novel Deep Structure U-Net for Sea-Land Segmentation in Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3219–3232. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Pedrero, A.; Lillo-Saavedra, M.; Rodriguez-Esparragon, D.; Gonzalo-Martin, C. Deep Learning for Automatic Outlining Agricultural Parcels: Exploiting the Land Parcel Identification System. IEEE Access 2019, 7, 158223–158236. [Google Scholar] [CrossRef]
- Wang, X.; Guo, X.; Yang, C.; Liu, Q.; Wei, J.; Zhang, Y.; Liu, S.; Zhang, Y.; Jiang, Z.; Tang, Z. Glacial lake inventory of high-mountain Asia in 1990 and 2018 derived from Landsat images. Earth Syst. Sci. Data 2020, 12, 2169–2182. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Guo, H.; Allen, S.; Kargel, J.S.; Haritashya, U.K.; Watson, C.S. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 2021, 13, 741–766. [Google Scholar] [CrossRef]
- Yekeen, S.T.; Balogun, A.; Yusof, K.B.W. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [Google Scholar] [CrossRef]
- Aggarwal, S.; Rai, S.; Thakur, P.; Emmer, A. Inventory and recently increasing GLOF susceptibility of glacial lakes in Sikkim, Eastern Himalaya. Geomorphology 2017, 295, 39–54. [Google Scholar] [CrossRef]
- Sundal, A.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens. Environ. 2009, 113, 2164–2171. [Google Scholar] [CrossRef]
- Johansson, A.; Jansson, P.; Brown, I. Spatial and temporal variations in lakes on the Greenland Ice Sheet. J. Hydrol. 2013, 476, 314–320. [Google Scholar] [CrossRef]
- Ashraf, A.; Naz, R.; Roohi, R. Glacial lake outburst flood hazards in Hindukush, Karakoram and Himalayan Ranges of Pakistan: Implications and risk analysis. Geomat. Nat. Hazards Risk 2012, 3, 113–132. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Dirscherl, M.; Dietz, A.; Kneisel, C.; Kuenzer, C. A Novel Method for Automated Supraglacial Lake Mapping in Antarctica Using Sentinel-1 SAR Imagery and Deep Learning. Remote Sens. 2021, 13, 197. [Google Scholar] [CrossRef]
- Xie, Z.; ShangGuan, D.; Zhang, S.; Ding, Y.; Liu, S. Index for hazard of Glacier Lake Outburst flood of Lake Merzbacher by satellite-based monitoring of lake area and ice cover. Glob. Planet. Chang. 2013, 107, 229–237. [Google Scholar] [CrossRef]
Method Category | Method | Advantages | Disadvantages | References |
---|---|---|---|---|
Manual delineation | Manual delineation | High accuracy for small region | Time-consuming and labour-intensive; largely depends on the subjective experience and operational procedures | [1,7,8] |
Edge detection | Canny edge operator | Extracts useful structural information, single edge response, and greatly reduces the amount of data | Manually defined thresholds; affected by a high degree of noise, resulting in the discontinuity of a line segment | [17] |
Phase-congruency-based detector | Constant thresholds, not dependent on changes in image contrast and range, and can extract weak edge features completely | Seed points are manually selected; extracted edges are not completely closed | [19] | |
Image segmentation | Thresholding segmentation | Simple and effective for small scale and homogeneous areas | Low accuracy for complex environments and large regions | [13,20,21,22,23] |
Active-contour models | Topological variability and can be applied to all kinds of features, take full consideration of the regional heterogeneity | Complex calculation; many attempts should be made to choose optimized parameters | [12,24,25,26] | |
Superpixel segmentation | Preserves the statistical characteristics of the image and segment image into many small homogeneous regions | Loss of important topological information of the original image | [27,28] | |
Watershed segmentation | Fast and parallel computing, produces full boundaries | Over-segmentation problems; sensitive to the noise | [29,30] | |
Object-oriented | Object-oriented segmentation | Fully express the semantic information between objects, and extracts feature information at different scales | Manually establishes optimal segmentation scale and appropriate classification rules | [31,32] |
Deep learning | U-Net-based deep learning | Independent of auxiliary data and has a high degree of automation | The quality and quantity of training data are highly important | [34,35] |
GF-3 SAR Image | GF-2 PMS Image | DEM | |||||||
---|---|---|---|---|---|---|---|---|---|
Orbit ID/ Scene ID | Image Mode | Acquisition Date (dd/mm/yyyy) | Spatial Resolution (m) | Swath Width (km) | Polarization | Path/Row | Acquisition Date (dd/mm/yyyy) | Cloud Cover (%) | |
020700/20 | FSII | 16/07/2020 | 10 | 100 | HH, HV | 77/170 | 17/07/2020 | 0.31 | SRTM 1-arcsecond global DEM |
020007/1 | SL | 29/05/2020 | 1 | 10 | HH | 78/171 | 02/06/2020 | 1.26 | |
021435/69 | UFS | 05/09/2020 | 3 | 30 | HH | 78/170 | 05/09/2020 | 0.83 | |
021507/70 | UFS | 10/09/2020 | 3 | 30 | HH | 76/171 | 10/09/2020 | 0.75 | |
021507/69 | UFS | 10/09/2020 | 3 | 30 | HH | 77/170 | 10/09/2020 | 2.10 | |
021141/26 | UFS | 15/08/2020 | 3 | 30 | HH | 76/171 | 16/08/2020 | 3.25 | |
021141/25 | UFS | 15/08/2020 | 3 | 30 | HH | 77/171 | 16/08/2020 | 0.58 |
Method | Lake Type | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|
Canny edge operator | All glacial lakes | 85.30 | 81.23 | 86.50 |
Supra-glacial lakes | 72.48 | 66.24 | 76.79 | |
Variational B-spline level-set | All glacial lakes | 91.62 | 89.53 | 90.34 |
Supra-glacial lakes | 88.39 | 80.12 | 85.73 | |
U-Net-based deep learning | All glacial lakes | 98.45 | 95.82 | 96.93 |
Supra-glacial lakes | 93.28 | 93.57 | 94.05 |
Glacier | 29 May | 16 July | 15 August | 10 September | ||||
---|---|---|---|---|---|---|---|---|
No. | Area (km2) | No. | Area (km2) | No. | Area (km2) | No. | Area (km2) | |
Ngozumpa | 18 | 0.22 | 31 | 0.41 | 28 | 0.32 | 36 | 0.42 |
Khumbu | 19 | 0.19 | 28 | 0.37 | 30 | 0.35 | 38 | 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F. Comparing Methods for Segmenting Supra-Glacial Lakes and Surface Features in the Mount Everest Region of the Himalayas Using Chinese GaoFen-3 SAR Images. Remote Sens. 2021, 13, 2429. https://doi.org/10.3390/rs13132429
Chen F. Comparing Methods for Segmenting Supra-Glacial Lakes and Surface Features in the Mount Everest Region of the Himalayas Using Chinese GaoFen-3 SAR Images. Remote Sensing. 2021; 13(13):2429. https://doi.org/10.3390/rs13132429
Chicago/Turabian StyleChen, Fang. 2021. "Comparing Methods for Segmenting Supra-Glacial Lakes and Surface Features in the Mount Everest Region of the Himalayas Using Chinese GaoFen-3 SAR Images" Remote Sensing 13, no. 13: 2429. https://doi.org/10.3390/rs13132429
APA StyleChen, F. (2021). Comparing Methods for Segmenting Supra-Glacial Lakes and Surface Features in the Mount Everest Region of the Himalayas Using Chinese GaoFen-3 SAR Images. Remote Sensing, 13(13), 2429. https://doi.org/10.3390/rs13132429