Multi-Label Learning based Semi-Global Matching Forest
"> Figure 1
<p>The experimental image: the target pixels are marked in green.</p> "> Figure 2
<p>Stereo pair, cost cube and the corresponding aggregated cost cube in Semi-Global Matching (SGM).</p> "> Figure 3
<p>Error plots for SGM-ForestS, SGM-ForestM, and the upper bound of SO (Matching Cost: Census).</p> "> Figure 4
<p>Error plots for SGM-ForestS, SGM-ForestM, and the upper bound of SO (Matching Cost: MC-CNN-acrt).</p> "> Figure 5
<p>The disparity maps and the corresponding error maps. From left to right, the results of SGM, SGM-ForestS, and SGM-ForestM are displayed, respectively (Matching cost: Census).</p> "> Figure 6
<p>The disparity maps and the corresponding error maps. From left to right, the results of SGM, SGM-ForestS, and SGM-ForestM are displayed, respectively (Matching cost: MC-CNN-acrt).</p> "> Figure 7
<p>Stereo matching results on EuroSDR benchmark datasets (Vaihingen/Enz).</p> "> Figure 8
<p>Results on stereo datasets from the 2019 IEEE GRSS data fusion contest (Track 2, pairwise semantic stereo challenge).</p> "> Figure 8 Cont.
<p>Results on stereo datasets from the 2019 IEEE GRSS data fusion contest (Track 2, pairwise semantic stereo challenge).</p> ">
Abstract
:1. Introduction
2. Related Work
3. Methodology
3.1. SGM
3.2. SGM-ForestS
3.3. SGM-ForestM
3.3.1. Multi-Label Classification
3.3.2. Theoretical Background and Implementation Details
3.4. Efficiency and Memory Usage
4. Experiments
4.1. Close-Range Datasets Experiments
4.1.1. Accuracy Evaluation
4.1.2. Random Forest Prediction
4.1.3. Qualitative Results
4.2. Airborne and Satellite Datasets
4.2.1. Airborne Dataset Experiment
4.2.2. Satellite Dataset Experiment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MC-CNN | Matching Cost based on Convolutional Neural Networks |
SGM | Semi-Global Matching |
SGM-ForestS | SGM-Forest based on single-label classification strategy |
SGM-ForestM | SGM-Forest based on multi-label classification strategy |
SO | Scanline Optimization |
WTA | winner-take-all |
References
- Bleyer, M.; Breiteneder, C. Stereo matching—State-of-the-art and research challenges. In Advanced Topics in Computer Vision; Farinella, G.M., Battiato, S., Cipolla, R., Eds.; Springer: London, UK, 2013; pp. 143–179. [Google Scholar] [CrossRef]
- Hirschmuller, H. Accurate and efficient stereo processing by semi-global matching and mutual information. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 807–814. [Google Scholar] [CrossRef]
- D’Angelo, P.; Reinartz, P. Semiglobal matching results on the ISPRS stereo matching benchmark. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, XXXVIII-4/W19, 79–84. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, P. Improving semi-global matching: Cost aggregation and confidence measure. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Hirschmüller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Scharstein, D.; Szeliski, R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 2002, 47, 7–42. [Google Scholar] [CrossRef]
- Hirschmüller, H. Semi-global matching-motivation, developments and applications. In Photogrammetric Week; Wichmann Verlag: Heidelberg, Germany, 2011; Volume 11, pp. 173–184. [Google Scholar]
- Kuschk, G.; d’Angelo, P.; Qin, R.; Poli, D.; Reinartz, P.; Cremers, D. DSM accuracy evaluation for the ISPRS commission I image matching benchmark. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-1, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Qin, R.; Huang, X.; Gruen, A.; Schmitt, G. Object-based 3-D building change detection on multitemporal stereo images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2125–2137. [Google Scholar] [CrossRef]
- Schönberger, J.L.; Sinha, S.N.; Pollefeys, M. Learning to fuse proposals from multiple scanline optimizations in semi-global matching. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 758–775. [Google Scholar]
- Menze, M.; Geiger, A. Object scene flow for autonomous vehicles. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- Schöps, T.; Schönberger, J.L.; Galliani, S.; Sattler, T.; Schindler, K.; Pollefeys, M.; Geiger, A. A multi-view stereo benchmark with high-resolution images and multi-camera videos. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2538–2547. [Google Scholar] [CrossRef]
- Scharstein, D.; Pal, C. Learning conditional random fields for stereo. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Hirschmüller, H.; Scharstein, D. Evaluation of cost functions for stereo matching. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Scharstein, D.; Hirschmüller, H.; Kitajima, Y.; Krathwohl, G.; Nešić, N.; Wang, X.; Westling, P. High-resolution stereo datasets with subpixel-accurate ground truth. In German Conference on Pattern Recognition (GCPR 2014); Springer: Münster, Germany, 2014; pp. 31–42. [Google Scholar]
- Haala, N. Dense image matching final report. EuroSDR Publ. Ser. Off. Publ. 2014, 64, 115–145. [Google Scholar]
- Bosch, M.; Foster, K.; Christie, G.A.; Wang, S.; Hager, G.D.; Brown, M.Z. Semantic Stereo for Incidental Satellite Images. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1524–1532. [Google Scholar]
- Le Saux, B.; Yokoya, N.; Hansch, R.; Brown, M.; Hager, G.; Kim, H. 2019 IEEE GRSS Data Fusion Contest: Semantic 3D Reconstruction [Technical Committees]. IEEE Geosci. Remote Sens. Mag. 2019, 7, 103–105. [Google Scholar] [CrossRef]
- Birchfield, S.; Tomasi, C. Depth discontinuities by pixel-to-pixel stereo. In Proceedings of the Sixth International Conference on Computer Vision (ICCV), Bombay, India, 4–7 January 1998; pp. 1073–1080. [Google Scholar] [CrossRef]
- Ni, J.; Li, Q.; Liu, Y.; Zhou, Y. Second-Order Semi-Global Stereo Matching Algorithm Based on Slanted Plane Iterative Optimization. IEEE Access 2018, 6, 61735–61747. [Google Scholar] [CrossRef]
- Zbontar, J.; LeCun, Y. Stereo matching by training a convolutional neural network to compare image patches. J. Mach. Learn. Res. 2016, 17, 1–32. [Google Scholar]
- Luo, W.; Schwing, A.G.; Urtasun, R. Efficient Deep Learning for Stereo Matching. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5695–5703. [Google Scholar] [CrossRef]
- Seki, A.; Pollefeys, M. Sgm-nets: Semi-global matching with neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6640–6649. [Google Scholar] [CrossRef]
- Scharstein, D.; Taniai, T.; Sinha, S.N. Semi-global stereo matching with surface orientation priors. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 215–224. [Google Scholar] [CrossRef] [Green Version]
- Michael, M.; Salmen, J.; Stallkamp, J.; Schlipsing, M. Real-time stereo vision: Optimizing semi-global matching. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast, QLD, Australia, 23–26 June 2013; pp. 1197–1202. [Google Scholar] [CrossRef]
- Poggi, M.; Mattoccia, S. Learning a general-purpose confidence measure based on O(1) features and a smarter aggregation strategy for semi global matching. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 509–518. [Google Scholar] [CrossRef]
- Zhang, F.; Prisacariu, V.; Yang, R.; Torr, P.H. GA-Net: Guided Aggregation Net for End-to-end Stereo Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–21 June 2019; pp. 185–194. [Google Scholar]
- Bromley, J.; Bentz, J.; Bottou, L.; Guyon, I.; LeCun, Y.; Moore, C.; Sackinger, E.; Shah, R. Signature Verification using a “Siamese” Time Delay Neural Network. Int. ]. Pattern Recognit. Artif. Intell. 1993, 7. [Google Scholar] [CrossRef] [Green Version]
- Zabih, R.; Woodfill, J. Non-parametric local transforms for computing visual correspondence. In Computer Vision—ECCV’94; Eklundh, J.O., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; pp. 151–158. [Google Scholar]
- Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2th ed.; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757–1771. [Google Scholar] [CrossRef] [Green Version]
- McCallum, A. Multi-label text classification with a mixture model trained by EM. AAAI Workshop Text Learn. 1999, 1–7. [Google Scholar]
- Schapire, R.E.; Singer, Y. BoosTexter: A boosting-based system for text categorization. Mach. Learn. 2000, 39, 135–168. [Google Scholar] [CrossRef] [Green Version]
- Clare, A.; King, R.D. Knowledge discovery in multi-label phenotype data. In Principles of Data Mining and Knowledge Discovery; De Raedt, L., Siebes, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 42–53. [Google Scholar]
- Tsoumakas, G.; Katakis, I. Multi-label classification: An overview. Int. J. Data Warehous. Min. (IJDWM) 2007, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, F.; Greiner, T. Matching cost computation algorithm and high speed FPGA architecture for high quality real-time semi global matching stereo vision for road scenes. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 3064–3069. [Google Scholar] [CrossRef]
- Gehrig, S.K.; Rabe, C. Real-time semi-global matching on the CPU. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Workshops, San Francisco, CA, USA, 13–18 June 2010; pp. 85–92. [Google Scholar] [CrossRef]
- Arndt, O.J.; Becker, D.; Banz, C.; Blume, H. Parallel implementation of real-time semi-global matching on embedded multi-core architectures. In Proceedings of the 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Agios Konstantinos, Greece, 15–18 July 2013; pp. 56–63. [Google Scholar] [CrossRef]
- Gehrig, S.K.; Eberli, F.; Meyer, T. A real-time low-power stereo vision engine using semi-global matching. In Computer Vision Systems; Fritz, M., Schiele, B., Piater, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 134–143. [Google Scholar]
- Banz, C.; Hesselbarth, S.; Flatt, H.; Blume, H.; Pirsch, P. Real-time stereo vision system using semi-global matching disparity estimation: Architecture and FPGA-implementation. In Proceedings of the 2010 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation, Samos, Greece, 19–22 July 2010; pp. 93–101. [Google Scholar] [CrossRef]
- 2019 IEEE GRSS Data Fusion Contest. Available online: http://www.grss-ieee.org/community/technical-committees/data-fusion. (accessed on 26 November 2019).
Middlebury | ETH3D | |
---|---|---|
Good scanline ≥ 2 | 75.52% | 81.69% |
Good scanline ≥ 1 | 83.83% | 90.65% |
Train | Validation | ||
---|---|---|---|
Middlebury 2005 | Books | Middlebury 2014 | Adirondack |
Dolls | ArtL | ||
Laundry | Jadeplant | ||
Moebius | Motorcycle | ||
Reindeer | MotorcycleE | ||
Middlebury 2006 | Aloe | Piano | |
Baby1 | PianoL | ||
Baby2 | Pipes | ||
Baby3 | Playroom | ||
Bowling1 | Playtable | ||
Bowling2 | PlaytableP | ||
Cloth1 | Recycle | ||
Cloth2 | Shelves | ||
Cloth3 | Teddy | ||
Cloth4 | Vintage | ||
Flowerpots | |||
Lampshade1 | |||
Lampshade2 | |||
Midd1 | |||
Midd2 | |||
Monopoly | |||
Plastic | |||
Rocks1 | |||
Rocks2 |
Train | Validation |
---|---|
delivery_area_1s | delivery_area_2s |
delivery_area_1l | delivery_area_2l |
delivery_area_3s | electro_1s |
delivery_area_3l | electro_1l |
electro_2s | facade_1s |
electro_2l | forest_2s |
electro_3s | playground_2s |
electro_3l | playground_2l |
forest_1s | playground_3s |
playground_1s | playground_3l |
playground_1l | terrace_1s |
terrains_2s | terrace_2s |
terrains_2l | terrains_1s |
terrains_1l |
Middlebury | ETH3D | |||||||
---|---|---|---|---|---|---|---|---|
0.5pix | 1pix | 2pix | 4pix | 0.5pix | 1pix | 2pix | 4pix | |
SGM-5dirs | 55.89% | 67.60% | 73.34% | 77.48% | 67.60% | 79.18% | 85.80% | 90.33% |
SGM-ForestS-5dirs | 55.97% | 68.71% | 74.44% | 78.37% | 70.87% | 82.97% | 89.93% | 95.03% |
SGM-ForestM-5dirs | 56.88% | 70.30% | 76.44% | 80.37% | 71.83% | 85.00% | 91.69% | 95.96% |
SGM-8dirs | 58.92% | 69.47% | 74.87% | 78.84% | 70.14% | 80.88% | 87.02% | 91.27% |
SGM-ForestS-8dirs | 59.38% | 70.71% | 76.33% | 80.41% | 72.87% | 83.91% | 90.55% | 95.44% |
SGM-ForestM-8dirs | 60.38% | 72.16% | 78.00% | 82.19% | 74.04% | 86.20% | 92.48% | 96.37% |
Middlebury | ETH3D | |||||||
---|---|---|---|---|---|---|---|---|
0.5pix | 1pix | 2pix | 4pix | 0.5pix | 1pix | 2pix | 4pix | |
SGM | 69.35% | 79.35% | 83.37% | 86.07% | 72.39% | 83.29% | 89.48% | 94.18% |
SGM-ForestS | 70.01% | 81.34% | 85.71% | 88.64% | 74.25% | 86.03% | 92.04% | 96.30% |
SGM-ForestM | 69.92% | 81.32% | 85.56% | 88.28% | 74.61% | 86.47% | 92.36% | 96.44% |
SGM-ForestM | ||||
---|---|---|---|---|
0.5pix | 1pix | 2pix | 4pix | |
non-occluded | 76.28% | 83.01% | 87.44% | 91.11% |
all | 74.79% | 81.39% | 85.75% | 89.42% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; d’Angelo, P.; Tian, J.; Fraundorfer, F.; Reinartz, P. Multi-Label Learning based Semi-Global Matching Forest. Remote Sens. 2020, 12, 1069. https://doi.org/10.3390/rs12071069
Xia Y, d’Angelo P, Tian J, Fraundorfer F, Reinartz P. Multi-Label Learning based Semi-Global Matching Forest. Remote Sensing. 2020; 12(7):1069. https://doi.org/10.3390/rs12071069
Chicago/Turabian StyleXia, Yuanxin, Pablo d’Angelo, Jiaojiao Tian, Friedrich Fraundorfer, and Peter Reinartz. 2020. "Multi-Label Learning based Semi-Global Matching Forest" Remote Sensing 12, no. 7: 1069. https://doi.org/10.3390/rs12071069
APA StyleXia, Y., d’Angelo, P., Tian, J., Fraundorfer, F., & Reinartz, P. (2020). Multi-Label Learning based Semi-Global Matching Forest. Remote Sensing, 12(7), 1069. https://doi.org/10.3390/rs12071069