Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Stereo matching is one of the most active research areas in computer vision. While a large number of algorithms for stereo correspondence have been developed, relatively little work has been done on characterizing their performance. In this paper, we present a taxonomy of dense, two-frame stereo methods. Our taxonomy is designed to assess the different components and design decisions made in individual stereo algorithms. Using this taxonomy, we compare existing stereo methods and present experiments evaluating the performance of many different variants. In order to establish a common software platform and a collection of data sets for easy evaluation, we have designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms. We have also produced several new multi-frame stereo data sets with ground truth and are making both the code and data sets available on the Web. Finally, we include a comparative evaluation of a large set of today's best-performing stereo algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anandan, P. 1989. A computational framework and an algorithm for the measurement of visual motion. IJCV, 2(3):283–310.

    Google Scholar 

  • Arnold, R.D. 1983. Automated stereo perception. Technical Report AIM-351, Artificial Intelligence Laboratory, Stanford University.

  • Baker, H.H. 1980. Edge based stereo correlation. In Image Understanding Workshop, L.S. Baumann (Ed.). Science Applications International Corporation, pp. 168–175.

  • Baker, H. and Binford, T. 1981. Depth from edge and intensity based stereo. In IJCAI, pp. 631–636.

  • Baker, S., Szeliski, R., and Anandan, P. 1998. A layered approach to stereo reconstruction. In CVPR, pp. 434–441.

  • Barnard, S.T. 1989. Stochastic stereo matching over scale. IJCV, 3(1):17–32.

    Google Scholar 

  • Barnard, S.T. and Fischler, M.A. 1982. Computational stereo. ACM Comp. Surveys, 14(4):553–572.

    Google Scholar 

  • Barron, J.L., Fleet, D.J., and Beauchemin, S.S. 1994. Performance of optical flow techniques. IJCV, 12(1):43–77.

    Google Scholar 

  • Belhumeur, P.N. 1996. A Bayesian approach to binocular stereopsis. IJCV, 19(3):237–260.

    Google Scholar 

  • Belhumeur, P.N. and Mumford, D. 1992. A Bayesian treatment of the stereo correspondence problem using half-occuluded regions. In CVPR, pp. 506–512.

  • Bergen, J.R., Anandan, P., Hanna, K.J., and Hingorani, R. 1992. Hierarchical model-based motion estimation. In ECCV, pp. 237–252.

  • Birchfield, S. and Tomasi, C. 1998a. A pixel dissimilarity measure that is insensitive to image sampling. IEEE TPAMI, 20(4):401–406.

    Google Scholar 

  • Birchfield, S. and Tomasi, C. 1998b. Depth discontinuities by pixel-to-pixel stereo. In ICCV, pp. 1073–1080.

  • Birchfield, S. and Tomasi, C. 1999. Multiway cut for stereo and motion with slanted surfaces. In ICCV, pp. 489–495.

  • Black, M.J. and Anandan, P. 1993. A framework for the robust estimation of optical flow. In ICCV, pp. 231–236.

  • Black, M.J. and Rangarajan, A. 1996. On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. IJCV, 19(1):57–91.

    Google Scholar 

  • Blake, A. and Zisserman, A. 1987. Visual Reconstruction, MITPress: Cambridge, MA.

    Google Scholar 

  • Bobick, A.F. and Intille, S.S. 1999. Large occlusion stereo. IJCV, 33(3):181–200.

    Google Scholar 

  • Bolles, R.C., Baker, H.H., and Hannah, M.J. 1993. The JISCT stereo evaluation. In DARPA Image Understanding Workshop, pp. 263–274.

  • Bolles, R.C., Baker, H.H., and Marimont, D.H. 1987. Epipolar-plane image analysis: An approach to determining structure from motion. IJCV, 1:7–55.

    Google Scholar 

  • Boykov, Y. and Kolmogorov, V. 2001. An experimental comparison of min-cut/max-flow algorithms for energy minimization in computer vision. In Intl. Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 205–220.

  • Boykov, Y., Veksler, O., and Zabih, R. 1998. A variable window approach to early vision. IEEE TPAMI, 20(12):1283–1294.

    Google Scholar 

  • Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE TPAMI, 23(11):1222–1239.

    Google Scholar 

  • Broadhurst, A., Drummond, T., and Cipolla, R. 2001. A probabilistic framework for space carving. In ICCV, Vol. I, pp. 388–393.

    Google Scholar 

  • Brown, L.G. 1992. A survey of image registration techniques. Computing Surveys, 24(4):325–376.

    Google Scholar 

  • Burt, P.J. and Adelson, E.H. 1983. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, COM-31(4):532–540.

    Google Scholar 

  • Canny, J.F. 1986. A computational approach to edge detection. IEEE TPAMI, 8(6):34–43.

    Google Scholar 

  • Chou, P.B. and Brown, C.M. 1990. The theory and practice of Bayesian image labeling. IJCV, 4(3):185–210.

    Google Scholar 

  • Cochran, S.D. and Medioni, G. 1992. 3-D surface description from binocular stereo. IEEE TPAMI, 14(10):981–994.

    Google Scholar 

  • Collins, R.T. 1996. A space-sweep approach to true multi-image matching. In CVPR, pp. 358–363.

  • Cox, I.J., Hingorani, S.L., Rao, S.B., and Maggs, B.M. 1996. A maximum likelihood stereo algorithm. CVIU, 63(3):542–567.

    Google Scholar 

  • Cox, I.J., Roy, S., and Hingorani, S.L. 1995. Dynamic histogram warping of image pairs for constant image brightness. In IEEE International Conference on Image Processing, Vol. 2, pp. 366–369.

    Google Scholar 

  • Culbertson, B., Malzbender, T., and Slabaugh, G. 1999. Generalized voxel coloring. In International Workshop on Vision Algorithms, Kerkyra, Greece. Springer: Berlin, pp. 100–114.

    Google Scholar 

  • De Bonet, J.S. and Viola, P. 1999. Poxels: Probabilistic voxelized volume reconstruction. In ICCV, pp. 418–425.

  • Deriche, R. 1990. Fast algorithms for low-level vision. IEEE TPAMI, 12(1):78–87.

    Google Scholar 

  • Dev, P. 1974. Segmentation processes in visual perception: A cooperative neural model. University of Massachusetts at Amherst, COINS Technical Report 74C-5.

    Google Scholar 

  • Dhond, U.R. and Aggarwal, J.K. 1989. Structure from stereo—a review. IEEE Trans. on Systems, Man, and Cybern., 19(6):1489–1510.

    Google Scholar 

  • Faugeras, O. and Keriven, R. 1998. Variational principles, surface evolution, PDE's, level set methods, and the stereo problem. IEEE Trans. Image Proc., 7(3):336–344.

    Google Scholar 

  • Faugeras, O. and Luong, Q.-T. 2001. The Geometry of Multiple Images. MIT Press: Cambridge, MA.

    Google Scholar 

  • Fleet, D.J., Jepson, A.D., and Jenkin, M.R.M. 1991. Phase-based disparity measurement. CVGIP, 53(2):198–210.

    Google Scholar 

  • Frohlinghaus, T. and Buhmann, J.M. 1996. Regularizing phase-based stereo. In ICPR, Vol. A, pp. 451–455.

    Google Scholar 

  • Fua, P. 1993. A parallel stereo algorithm that produces dense depth maps and preserves image features. Machine Vision and Applications, 6:35–49.

    Google Scholar 

  • Fua, P. and Leclerc, Y.G. 1995. Object-centered surface reconstruction: Combining multi-image stereo and shading. IJCV, 16:35–56.

    Google Scholar 

  • Gamble, E. and Poggio, T. 1987. Visual integration and detection of discontinuities: The key role of intensity edges. AI Lab, MIT, A.I. Memo 970.

  • Geiger, D. and Girosi, F. 1991. Parallel and deterministic algorithms for MRF's: Surface reconstruction. IEEE TPAMI, 13(5):401–412.

    Google Scholar 

  • Geiger, D., Ladendorf, B., and Yuille, A. 1992. Occlusions and binocular stereo. In ECCV, pp. 425–433.

  • Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE TPAMI, 6(6):721–741.

    Google Scholar 

  • Gennert, M.A. 1988. Brightness-based stereo matching. In ICCV, pp. 139–143.

  • Gong, M. and Yang, Y.-H. 2002. Genetic-based stereo algorithm and disparity map evaluation. IJCV, 47(1/2/3):63–77.

    Google Scholar 

  • Grimson, W.E.L. 1985. Computational experiments with a feature based stereo algorithm. IEEE TPAMI, 7(1):17–34.

    Google Scholar 

  • Hannah, M.J. 1974. Computer Matching of Areas in Stereo Images. Ph.D. Thesis, Stanford University.

  • Hartley, R.I. and Zisserman, A. 2000. Multiple Views Geometry. Cambridge University Press: Cambridge, UK.

    Google Scholar 

  • Hirschmüller, H. 2002. Real-time correlation-based stereo vision with reduced border errors. IJCV, 47(1/2/3):229–246.

    Google Scholar 

  • Hsieh, Y.C., McKeown, D., and Perlant, F.P. 1992. Performance evaluation of scene registration and stereo matching for cartographic feature extraction. IEEE TPAMI, 14(2):214–238.

    Google Scholar 

  • Ishikawa, H. and Geiger, D. 1998. Occlusions, discontinuities, and epipolar lines in stereo. In ECCV, pp. 232–248.

  • Jenkin, M.R.M., Jepson, A.D., and Tsotsos, J.K. 1991. Techniques for disparity measurement. CVGIP: Image Understanding, 53(1):14–30.

    Google Scholar 

  • Jones, D.G. and Malik, J. 1992. A computational framework for determining stereo correspondence from a set of linear spatial filters. In ECCV, pp. 395–410.

  • Kanade, T. 1994. Development of a videorate stereo machine. In Image Understanding Workshop, Monterey, CA, 1994. Morgan Kaufmann Publishers: San Mateo, CA, pp. 549–557.

    Google Scholar 

  • Kanade, T. and Okutomi, M. 1994. A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE TPAMI, 16(9):920–932.

    Google Scholar 

  • Kanade, T., Yoshida, A., Oda, K., Kano, H., and Tanaka, M. 1996. A stereo machine for video-rate dense depth mapping and its new applications. In CVPR, pp. 196–202.

  • Kang, S.B., Szeliski, R., and Chai, J. 2001. Handling occlusions in dense multi-view stereo. In CVPR, pp. 103–110.

  • Kang, S.B., Webb, J., Zitnick, L., and Kanade, T. 1995. A multibase-line stereo system with active illumination and realtime image acquisition. In ICCV, pp. 88–93.

  • Kass, M. 1988. Linear image features in stereopsis. IJCV, 1(4):357–368.

    Google Scholar 

  • Kimura, R. et al. 1999. A convolver-based real-time stereo machine (SAZAN). In CVPR, Vol. 1, pp. 457–463.

    Google Scholar 

  • Kolmogorov, V. and Zabih, R. 2001. Computing visual correspondence with occlusions using graph cuts. In ICCV, Vol. II, pp. 508–515.

    Google Scholar 

  • Kutulakos, K.N. 2000. Approximate N-view stereo. In ECCV, Vol. I, pp. 67–83.

    Google Scholar 

  • Kutulakos, K.N. and Seitz, S.M. 2000. A theory of shape by space carving. IJCV, 38(3):199–218.

    Google Scholar 

  • Lee, S.H., Kanatsugu, Y., and Park, J.-I. 2002. MAP-based stochastic diffusion for stereo matching and line fields estimation. IJCV, 47(1/2/3):195–218.

    Google Scholar 

  • Lin, M. and Tomasi, C. Surfaces with occlusions from layered stereo. Technical report, Stanford University. In preparation.

  • Loop, C. and Zhang, Z. 1999. Computing rectifying homographies for stereo vision. In CVPR, Vol. I, pp. 125–131.

    Google Scholar 

  • Lucas, B.D. and Kanade, T. 1981. An iterative image registration technique with an application in stereo vision. In IJCAI, pp. 674–679.

  • Marr, D. 1982. Vision. Freeman: New York.

    Google Scholar 

  • Marr, D. and Poggio, T. 1976. Cooperative computation of stereo disparity. Science, 194:283–287.

    Google Scholar 

  • Marr, D.C. and Poggio, T. 1979. A computational theory of human stereo vision. Proceedings of the Royal Society of London, B 204:301–328.

    Google Scholar 

  • Marroquin, J.L. 1983. Design of cooperative networks. AI Lab, MIT, Working Paper 253.

  • Marroquin, J., Mitter, S., and Poggio, T. 1987. Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association, 82(397):76–89.

    Google Scholar 

  • Matthies, L., Szeliski, R., and Kanade, T. 1989. Kalman filter-based algorithms for estimating depth from image sequences. IJCV, 3:209–236.

    Google Scholar 

  • Mitiche, A. and Bouthemy, P. 1996. Computation and analysis of image motion: Asynopsis of current problems and methods. IJCV, 19(1):29–55.

    Google Scholar 

  • Mühlmann, K., Maier, D., Hesser, J., and Männer, R. 2002. Calculating dense disparity maps from color stereo images, an efficient implementation. IJCV, 47(1/2/3):79–88.

    Google Scholar 

  • Mulligan, J., Isler, V., and Danulidis, K. 2001. Performance evaluation of stereo for telepresence. In ICCV, Vol. II, pp. 558–565.

    Google Scholar 

  • Nakamura, Y., Matsuura, T., Satoh, K., and Ohta, Y. 1996. Occlusion detectable stereo—occlusion patterns in camera matrix. In CVPR, pp. 371–378.

  • Nishihara, H.K. 1984. Practical real-time imaging stereo matcher. Optical Engineering, 23(5):536–545.

    Google Scholar 

  • Ohta, Y. and Kanade, T. 1985. Stereo by intra-and interscanline search using dynamic programming. IEEE TPAMI, 7(2):139–154.

    Google Scholar 

  • Okutomi, M. and Kanade, T. 1992. A locally adaptive window for signal matching. IJCV, 7(2):143–162.

    Google Scholar 

  • Okutomi, M. and Kanade, T. 1993. A multiple-baseline stereo. IEEE TPAMI, 15(4):353–363.

    Google Scholar 

  • Otte, M. and Nagel, H.-H. 1994. Optical flow estimation: Advances and comparisons. In ECCV, Vol. 1, pp. 51–60.

    Google Scholar 

  • Poggio, T., Torre, V., and Koch, C. 1985. Computational vision and regularization theory. Nature, 317(6035):314–319.

    Google Scholar 

  • Pollard, S.B., Mayhew, J.E.W., and Frisby, J.P. 1985. PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception, 14:449–470.

    Google Scholar 

  • Prazdny, K. 1985. Detection of binocular disparities. Biological Cybernetics, 52(2):93–99.

    Google Scholar 

  • Quam, L.H. 1984. Hierarchical warp stereo. In Image Understanding Workshop, New Orleans, Louisiana, 1984. Science Applications International Corporation, pp. 149–155.

  • Roy, S. 1999. Stereo without epipolar lines: A maximum flow formulation. IJCV, 34(2/3):147–161.

    Google Scholar 

  • Roy, S. and Cox, I.J. 1998. A maximum-flow formulation of the N-camera stereo correspondence problem. In ICCV, pp. 492–499.

  • Ryan, T.W., Gray, R.T., and Hunt, B.R. 1980. Prediction of correlation errors in stereo-pair images. Optical Engineering, 19(3):312–322.

    Google Scholar 

  • Saito, H. and Kanade, T. 1999. Shape reconstruction in projective grid space from large number of images. In CVPR, Vol. 2, pp. 49–54.

    Google Scholar 

  • Scharstein, D. 1994. Matching images by comparing their gradient fields. In ICPR, Vol. 1, pp. 572–575.

    Google Scholar 

  • Scharstein, D. 1999. View synthesis Using Stereo Vision, Vol. 1583 of Lecture Notes in Computer Science (LNCS). Springer-Verlag: Berlin.

    Google Scholar 

  • Scharstein, D. and Szeliski, R. 1998. Stereo matching with nonlinear diffusion. IJCV, 28(2):155–174.

    Google Scholar 

  • Scharstein, D. and Szeliski, R. 2001. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Microsoft Research, Technical Report MSR-TR-2001–81.

  • Scharstein, D., Szeliski, R., and Zabih, R. 2001. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. In IEEE Workshop on Stereo and Multi-Baseline Vision.

  • Seitz, P. 1989. Using local orientation information as image primitive for robust object recognition. In SPIE Visual Communications and Image Processing IV, Vol. 1199, pp. 1630–1639.

    Google Scholar 

  • Seitz, S.M. and Dyer, C.M. 1999. Photorealistic scene reconstruction by voxel coloring. IJCV, 35(2):1–23.

    Google Scholar 

  • Shade, J., Gortler, S., He, L.-W., and Szeliski, R. 1998. Layered depth images. In SIGGRAPH, pp. 231–242.

  • Shah, J. 1993. A nonlinear diffusion model for discontinuous disparity and half-occlusion in stereo. In CVPR, pp. 34–40.

  • Shao, J. 2002. Generation of temporally consistent multiple virtual camera views from stereoscopic image sequences. IJCV, 47(1/2/3):171–180.

    Google Scholar 

  • Shimizu, M. and Okutomi, M. 2001. Precise sub-pixel estimation on area-based matching. In ICCV, Vol. I, pp. 90–97.

    Google Scholar 

  • Shum, H.-Y. and Szeliski, R. 1999. Stereo reconstruction from mul-tiperspective panoramas. In ICCV, pp. 14–21.

  • Simoncelli, E.P., Adelson, E.H., and Heeger, D.J. 1991. Probability distributions of optic flow. In CVPR, pp. 310–315.

  • Sun, C. 2002. Fast stereo matching using rectangular subregioning and 3D maximum-surface techniques. IJCV, 47(1/2/3):99–117.

    Google Scholar 

  • Sun, J., Shum, H.Y., and Zheng, N.N. 2002. Stereo matching using belief propagation. In ECCV.

  • Szeliski, R. 1989. Bayesian Modeling of Uncertainty in Low-Level Vision. Kluwer: Boston, MA.

    Google Scholar 

  • Szeliski, R. 1999. Prediction error as a quality metric for motion and stereo. In ICCV, pp. 781–788.

  • Szeliski, R. and Coughlan, J. 1997. Spline-based image registration. IJCV, 22(3):199–218.

    Google Scholar 

  • Szeliski, R. and Golland, P. 1999. Stereo matching with transparency and matting. IJCV, 32(1):45–61. Special Issue for Marr Prize papers.

    Google Scholar 

  • Szeliski, R. and Hinton, G. 1985. Solving random-dot stereograms using the heat equation. In CVPR, pp. 284–288.

  • Szeliski, R. and Scharstein, D. 2002. Symmetric sub-pixel stereo matching. In ECCV.

  • Szeliski, R. and Zabih, R. 1999. An experimental comparison of stereo algorithms. In International Workshop on Vision Algorithms, Kerkyra, Greece, 1999. Springer: Berlin, pp. 1–19.

    Google Scholar 

  • Tao, H., Sawhney, H., and Kumar, R. 2001. Aglobal matching frame-work for stereo computation. In ICCV, Vol. I, pp. 532–539.

    Google Scholar 

  • Tekalp, M. 1995. Digital Video Processing. Prentice Hall: Upper Saddle River, NJ.

    Google Scholar 

  • Terzopoulos, D. 1986. Regularization of inverse visual problems involving discontinuities. IEEE TPAMI, 8(4):413–424.

    Google Scholar 

  • Terzopoulos, D. and Fleischer, K. 1988. Deformable models. The Visual Computer, 4(6):306–331.

    Google Scholar 

  • Terzopoulos, D. and Metaxas, D. 1991. Dynamic 3D models with local and global deformations: Deformable superquadrics. IEEE TPAMI, 13(7):703–714.

    Google Scholar 

  • Tian, Q. and Huhns, M.N. 1986. Algorithms for subpixel registration. CVGIP, 35:220–233.

    Google Scholar 

  • Veksler, O. 1999. Efficient Graph-based Energy Minimization Methods in Computer Vision. Ph.D. Thesis, Cornell University.

  • Veksler, O. 2001. Stereo matching by compact windows via minimum ratio cycle. In ICCV, Vol. I, pp. 540–547.

    Google Scholar 

  • Wang, J.Y.A. and Adelson, E.H. 1993. Layered representation for motion analysis. In CVPR, pp. 361–366.

  • Witkin, A., Terzopoulos, D., and Kass, M. 1987. Signal matching through scale space. IJCV, 1:133–144.

    Google Scholar 

  • Yang, Y., Yuille, A., and Lu, J. 1993. Local, global, and multilevel stereo matching. In CVPR, pp. 274–279.

  • Yuille, A.L. and Poggio, T. 1984. A generalized ordering constraint for stereo correspondence. AI Lab, MIT, A.I. Memo 777.

  • Zabih, R. and Woodfill, J. 1994. Non-parametric local transforms for computing visual correspondence. In ECCV, Vol. II, pp. 151–158.

    Google Scholar 

  • Zhang, Z. 1998. Determining the epipolar geometry and its uncertainty: A review. IJCV, 27(2):161–195.

    Google Scholar 

  • Zhang, Z. 2000. A flexible new technique for camera calibration. IEEE TPAMI, 22(11):1330–1334.

    Google Scholar 

  • Zitnick, C.L. and Kanade, T. 2000. A cooperative algorithm for stereo matching and occlusion detection. IEEE TPAMI, 22(7):675–684.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharstein, D., Szeliski, R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47, 7–42 (2002). https://doi.org/10.1023/A:1014573219977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014573219977

Navigation