Validation of a Multilag Estimator on NJU-CPOL and a Hybrid Approach for Improving Polarimetric Radar Data Quality
"> Figure 1
<p>Flowchart of error statistic using I/Q data collected by NJU-CPOL.</p> "> Figure 2
<p>Comparison of conventional estimators (left and middle column) and two-lag estimators (right column). Four rows show S<sub>h</sub>, σ<sub>v</sub>, Z<sub>DR,</sub> and ρ<sub>hv</sub>, respectively. Letter R in brackets means that record noise power is used and letter E means that expert noise power is used. (<b>a</b>) S<sub>h</sub> (conventional, record noise power); (<b>b</b>) S<sub>h</sub> (conventional, expert noise power); (<b>c</b>) S<sub>h</sub> (two-lag); (<b>d</b>) σ<sub>v</sub> (conventional, record noise power); (<b>e</b>) σ<sub>v</sub> (conventional, expert noise power); (<b>f</b>) σ<sub>v</sub> (two-lag); (<b>g</b>) Z<sub>DR</sub> (conventional, record noise power); (<b>h</b>) Z<sub>DR</sub> (conventional, expert noise power); (<b>i</b>) Z<sub>DR</sub> (two-lag); (<b>j</b>) ρ<sub>hv</sub> (conventional, record noise power); (<b>k</b>) ρ<sub>hv</sub> (conventional, expert noise power); and (<b>l</b>) ρ<sub>hv</sub> (two-lag). Data are collected on 15 June 2014, 1203UTC, Az = 340° in stratiform precipitation.</p> "> Figure 3
<p>Noise power for RHI scan data showed in <a href="#remotesensing-12-00180-f002" class="html-fig">Figure 2</a> resulting from H and V channels. Radial A and B are marked respectively. Subscript “Expert” means that noise power is estimated by the expert method and subscript “Record” means that noise power is measured by the radar online calibration system. It can be seen that the power difference between expert noise power and record noise power is large for low elevations and small for high elevations in both horizontal and vertical channels. At radial A, the record noise power is underestimated by 1.55 dB for H channel and 1.57dB for V channel and; at radial B, the record noise power is underestimated by 0.24 dB for H channel and 0.25 dB for V channel.</p> "> Figure 4
<p>Comparison between conventional estimators and two-lag estimators for radial A. Four rows show S<sub>h</sub>, σ<sub>v</sub>, Z<sub>DR</sub>, ρ<sub>hv</sub> and their standard deviation, respectively. SNR and STD(v<sub>r</sub>) are given in the fifth row. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) STD(S<sub>h</sub>); (<b>c</b>) Z<sub>DR</sub>; (<b>d</b>) STD(Z<sub>DR</sub>); (<b>e</b>) ρ<sub>hv</sub>; (<b>f</b>) STD(ρ<sub>hv</sub>); (<b>g</b>) σ<sub>v</sub>; (<b>h</b>) STD(σ<sub>v</sub>); (<b>i</b>) SNR; and (<b>j</b>) STD(v<sub>r</sub>).</p> "> Figure 5
<p>Comparison between conventional estimators and two-lag estimators for radial B. Four rows show S<sub>h</sub>, σ<sub>v</sub>, Z<sub>DR</sub>, ρ<sub>hv</sub> and their standard deviation, respectively. The SNR and standard deviation of v<sub>r</sub> are given in the fifth row. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) STD(S<sub>h</sub>); (<b>c</b>) Z<sub>DR</sub>; (<b>d</b>) STD(Z<sub>DR</sub>); (<b>e</b>) ρ<sub>hv</sub>; (<b>f</b>) STD(ρ<sub>hv</sub>); (<b>g</b>) σ<sub>v</sub>; (<b>h</b>) STD(σ<sub>v</sub>); (<b>i</b>) SNR; and (<b>j</b>) STD(v<sub>r</sub>).</p> "> Figure 6
<p>Comparison of conventional estimators (left and middle column) and two-lag estimators (right column). Four rows show S<sub>h</sub>, σ<sub>v</sub>, Z<sub>DR,</sub> and ρ<sub>hv</sub>, respectively. Letter R in brackets means that record noise power is used and letter E means that expert noise power is used. (<b>a</b>) S<sub>h</sub> (conventional, record noise power); (<b>b</b>) S<sub>h</sub> (conventional, expert noise power); (<b>c</b>) S<sub>h</sub> (two-lag); (<b>d</b>) σ<sub>v</sub> (conventional, record noise power); (<b>e</b>) σ<sub>v</sub> (conventional, expert noise power); (<b>f</b>) σ<sub>v</sub> (two-lag); (<b>g</b>) Z<sub>DR</sub> (conventional, record noise power); (<b>h</b>) Z<sub>DR</sub> (conventional, expert noise power); (<b>i</b>) Z<sub>DR</sub> (two-lag); (<b>j</b>) ρ<sub>hv</sub> (conventional, record noise power); (<b>k</b>) ρ<sub>hv</sub> (conventional, expert noise power); and (<b>l</b>) ρ<sub>hv</sub> (two-lag). Data are collected on 30 July 2014, 1410UTC, El = 1.5° in squall line precipitation.</p> "> Figure 7
<p>Noise power for PPI scan data showed in <a href="#remotesensing-12-00180-f005" class="html-fig">Figure 5</a> resulting from H and V channels. Radial C is marked. Subscript “Expert” means that noise power is estimated by the expert method and subscript “Record” means that noise power is measured by the radar online calibration system.</p> "> Figure 8
<p>Comparison of conventional estimators and two-lag estimators for radial C. Four rows show S<sub>h</sub>, σ<sub>v</sub>, Z<sub>DR</sub>, ρ<sub>hv,</sub> and their standard deviation, respectively. The SNR and standard deviation of v<sub>r</sub> are given in the fifth row. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) STD(S<sub>h</sub>); (<b>c</b>) Z<sub>DR</sub>; (<b>d</b>) STD(Z<sub>DR</sub>); (<b>e</b>) ρ<sub>hv</sub>; (<b>f</b>) STD(ρ<sub>hv</sub>); (<b>g</b>) σ<sub>v</sub>; (<b>h</b>) STD(σ<sub>v</sub>); (<b>i</b>) SNR; and (<b>j</b>) STD(v<sub>r</sub>).</p> "> Figure 9
<p>Comparison of moment estimation quantification between conventional and two-lag estimators. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) Z<sub>DR</sub>; (<b>c</b>) σ<sub>v</sub>; and (<b>d</b>) ρ<sub>hv</sub>. All the standard deviations for each moment is calculated by radial from radial A, B, and C.</p> "> Figure 10
<p>The difference of conventional estimators and two-lag estimators from radial A, B and C. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) Z<sub>DR</sub>; (<b>c</b>) σ<sub>v</sub>; and (<b>d</b>) ρ<sub>hv</sub>. These values are calculated gate by gate through subtracting the reference value and only the data with the SNR less than 20 dB are taken into account.</p> "> Figure 11
<p>Comparison of bias and standard deviation of conventional and two-lag estimators from theoretical analysis and radar data statistics at SNR = 10 dB, ρ<sub>hv</sub> = 0.97, and Z<sub>DR</sub> = 1 dB. Four rows show performance of S<sub>h</sub>, σ<sub>v</sub>, Z<sub>DR</sub> and ρ<sub>hv</sub>, respectively. (<b>a</b>) Bias of S<sub>h</sub>; (<b>b</b>) STD(S<sub>h</sub>); (<b>c</b>) Bias of σ<sub>v</sub>; (<b>d</b>) STD(σ<sub>v</sub>); (<b>e</b>) Bias of Z<sub>DR</sub>; (<b>f</b>) STD(Z<sub>DR</sub>); (<b>g</b>) Bias of ρ<sub>hv</sub>; and (<b>h</b>) STD(ρ<sub>hv</sub>).</p> "> Figure 12
<p>Flowchart of the hybrid algorithm.</p> "> Figure 13
<p>Hybrid estimators for signal power S<sub>h</sub>, differential reflectivity Z<sub>DR</sub>, spectrum width σ<sub>v,</sub> and correlation coefficient ρ<sub>hv</sub> in the squall line precipitation occurred on 30 July 2014, 1410UTC. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) σ<sub>v</sub>; (<b>c</b>) Z<sub>DR</sub>; and (<b>d</b>) ρ<sub>hv</sub>.</p> "> Figure 14
<p>Biases of the hybrid method and conventional estimator for the PPI data of the squall line precipitation case. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) Z<sub>DR</sub>; (<b>c</b>) σ<sub>v</sub>; and (<b>d</b>) ρ<sub>hv</sub>.</p> "> Figure 15
<p>Comparison of bias from conventional estimator and hybrid estimator at SNR = 10 dB. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) Z<sub>DR</sub>; (<b>c</b>) σ<sub>v</sub>; and (<b>d</b>) ρ<sub>hv</sub>. The radar data used here are the same as <a href="#remotesensing-12-00180-f010" class="html-fig">Figure 10</a>.</p> "> Figure 16
<p>Comparison of standard deviation from conventional estimator and hybrid estimator at SNR = 10 dB. (<b>a</b>) S<sub>h</sub>; (<b>b</b>) Z<sub>DR</sub>; (<b>c</b>) σ<sub>v</sub>; and (<b>d</b>) ρ<sub>hv</sub>. The radar data used here are the same as <a href="#remotesensing-12-00180-f010" class="html-fig">Figure 10</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The NJU-CPOL Radar
2.2. Conventional and Multilag Estimators
- (i)
- Signal Power
- (ii)
- Spectrum Width
- (iii)
- Differential Reflectivity
- (iv)
- Correlation Coefficient
2.3. Error Analysis Method
3. Results
3.1. Case Studies and Results
3.1.1. Case 1: Stratiform Precipitation
3.1.2. Case 2: Squall Line Precipitation
3.2. Results Based on IOPs Data
4. Discussion
4.1. The Hybrid Algorithm
4.2. Case Study and Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vivekanandan, J.; Zrnic, D.S.; Ellis, S.M.; Oye, R.; Ryzhkov, A.V.; Straka, J. Cloud Microphysics Retrieval Using S-Band Dual-Polarization Radar Measurements. Bull. Am. Meteorol. Soc. 1999, 80, 381–388. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V. Polarimetric Doppler Weather Radar: Principles and Applications; Cambridge University Press: Cambridge, UK, 2001; p. 636. [Google Scholar]
- Zrnić, D.S.; Ryzhkov, A. Advantages of rain measurements using specific differential phase. J. Atmos. Ocean. Technol. 1996, 13, 454–464. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chandrasekar, V.; Bechini, R. An Improved Dual-Polarization Radar Rainfall Algorithm (DROPS2.0): Application in NASA IFloodS Field Campaign. J. Hydrometeorol. 2017, 18, 917–937. [Google Scholar] [CrossRef]
- Groginsky, H.L.; Glover, K.M. Weather radar canceller design. In Proceedings of the 19th Conference on Radar Meteorology, Miami Beach, FL, USA, 15–18 April 1980. [Google Scholar]
- Meischner, P. Weather Radar Principles and Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2002; p. 337. [Google Scholar]
- Lee, R.; Deruma, G.; Joss, J. Intensity of ground clutter and of echoes of anomalous propagation and its elimination. In Proceedings of the 27th Conference on Radar Meteorology, Vail, CO, USA, 9–13 October 1995; pp. 651–652. [Google Scholar]
- Kessinger, C.; Ellis, S.; Andel, J.V. The radar echo classifier: A fuzzy logic algorithm for the WSR-88D. In Proceedings of the Third Conference on Artificial Intelligence Applications to the Environmental Science, Long Beach, CA, USA, 9–13 February 2003; American Meteorological Society: Boston, MA, USA, 2003. [Google Scholar]
- Steiner, M.; Smith, A. Use of Three-Dimensional Reflectivity Structure for Automated Detection and Removal. J. Atmos. Ocean. Technol. 2002, 19, 673–686. [Google Scholar] [CrossRef]
- Hubbert, J.C.; Dixon, M.; Ellis, S.M.; Meymaris, G. Weather Radar Ground Clutter. Part I: Identification, Modeling, and Simulation. J. Atmos. Ocean. Technol. 2009, 26, 1165–1180. [Google Scholar] [CrossRef]
- Hubbert, J.C.; Dixon, M.; Ellis, S.M. Weather Radar Ground Clutter. Part II: Real-Time Identification and Filtering. J. Atmos. Ocean. Technol. 2009, 26, 1181–1197. [Google Scholar] [CrossRef]
- Siggia, A.D.; Passarelli, R.E. Gaussian model adaptive processing (GMAP) for improved ground clutter cancellation and moment calculation. Proc. ERAD 2004, 2, 421–424. [Google Scholar]
- Zhang, G.; Li, Y.; Doviak, R.J.; Priegnitz, D.; Carter, J.; Curtis, C.D. Multipatterns of the National Weather Radar Testbed Mitigate Clutter Received via Sidelobes. J. Atmos. Ocean. Technol. 2011, 28, 401–409. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, G.; Doviak, R.J. Ground Clutter Detection Using the Statistical Properties of Signals Received With a Polarimetric Radar. IEEE Trans. Signal Process. 2014, 62, 597–606. [Google Scholar] [CrossRef]
- Melnikov, V.M.; Zhang, P.; Zrnic, D.S.; Ryzhkov, A. Recombination of Super Resolution Data and Ground Clutter Recognition on the Polarimetric WSR-88D; NSSL: Norman, OK, USA, 2008. [Google Scholar]
- Golbon-Haghighi, M.-H.; Zhang, G. Detection of Ground Clutter for Dual-Polarization Weather Radar Using a Novel 3D Discriminant Function. J. Atmos. Ocean. Technol. 2019, 36, 1285–1296. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations, 2nd ed.; Dover Publication: Mineola, NY, USA, 2006; p. 562. [Google Scholar]
- Melnikov, V.M.; Zrnić, D.S. Autocorrelation and Cross-Correlation Estimators of Polarimetric Variables. J. Atmos. Ocean. Technol. 2007, 24, 1337–1350. [Google Scholar] [CrossRef]
- Fang, M.; Doviak, R.J.; Melnikov, V. Spectrum Width Measured by WSR-88D: Error Sources and Statistics of Various Weather Phenomena. J. Atmos. Ocean. Technol. 2004, 21, 888–904. [Google Scholar] [CrossRef]
- Ivić, I.R.; Curtis, C.; Torres, S.M. Radial-Based Noise Power Estimation for Weather Radars. J. Atmos. Ocean. Technol. 2013, 30, 2737–2753. [Google Scholar] [CrossRef]
- Zhang, G.; Doviak, R.J.; Vivekanandan, J.; Brown, W.O.J.; Cohn, S.A. Performance of correlation estimators for spaced-antenna wind measurement in the presence of noise. Radio Sci. 2004, 39, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Warde, D.A.; Torres, S.M. Spectrum Width Estimation Using Matched Autocorrelations. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1661–1664. [Google Scholar] [CrossRef]
- Ivić, I.R. A Technique to Improve Copolar Correlation Coefficient Estimation. IEEE Geosci. Remote Sens. Lett. 2016, 54, 5776–5800. [Google Scholar] [CrossRef]
- Lei, L.; Zhang, G.; Doviak, R.J.; Palmer, R.; Cheong, B.L.; Xue, M.; Cao, Q.; Li, Y. Multilag Correlation Estimators for Polarimetric Radar Measurements in the Presence of Noise. J. Atmos. Ocean. Technol. 2012, 29, 772–795. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Zhang, G.; Palmer, R.D.; Knight, M.; May, R.; Stafford, R.J. Spectrum-Time Estimation and Processing (STEP) for Improving Weather Radar Data Quality. IEEE Geosci. Remote Sens. Lett. 2012, 50, 4670–4683. [Google Scholar] [CrossRef]
- Xue, M. Preface to the Special Issue on the “Observation, Prediction and Analysis of severe Convection of China” (OPACC) National “973” Projec. Adv. Atmos. Sci. 2016, 33, 1099–1101. [Google Scholar] [CrossRef]
- Vaisala. User’s Manual of RVP900TM Digital Receiver and Signal Processor (M211322EN-B); Vaisala: Vantaa, Finland, 2013; p. 478. [Google Scholar]
- Doviak, R.J.; Bringi, V.; Ryzhkov, A.; Zahrai, A.; Zrnić, D. Considerations for Polarimetric Upgrades to Operational WSR-88D Radars. J. Atmos. Ocean. Technol. 2000, 17, 257–278. [Google Scholar] [CrossRef]
- Zhang, G. Weather Radar Polarimetry; CRC Press: Boca Raton, FL, USA, 2016; p. 322. [Google Scholar]
- Melnikov, V.M.; Doviak, R.J. Spectrum Widths from Echo Power Differences Reveal Meteorological Features. J. Atmos. Ocean. Technol. 2002, 19, 1793–1810. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, Y. Investigation of the predictability and physical mechanisms of an extreme-rainfall-producing mesoscale convective system along the Meiyu front in East China: An ensemble approach. J. Geophys. Res. Atmos. 2015, 120, 10593–10618. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnic, D.S. ZDR measurement considerations for a fast scan capability radar. Radio Sci. 1985, 20, 907–922. [Google Scholar] [CrossRef]
- Sachidananda, M.; Zrnic, D.S. Differential propagation phase shift and rainfall rate estimation. Radio Sci. 1986, 21, 235–247. [Google Scholar] [CrossRef]
- Melnikov, V.M.; Zrnic, D.S. Simultaneous Transmission Mode for the Polarimetric WSR-88D: Statistical Biases and Standard Deviations of Polarimetric Variables; NOAA/NSSL Report; NOAA: Silver Spring, MD, USA; NSSL: Norman, OK, USA, 2004; p. 84. [Google Scholar]
Parameters | Values |
---|---|
Frequency | Approximately 5625 MHz |
Signal process | VAISALA RVP900 |
Range dealiasing | SZ coding |
Polarization type | ATSR/STSR |
Number of pulses | 64 |
PRT | 0.001 s |
Resolution | 75 m |
Measurements | Reflectivity at horizontal polarization (ZH) Doppler radial velocity (vr) Spectrum width (σv) Differential reflectivity (ZDR) Differential propagation phase (ΦDP) Copolar correlation coefficient (ρhv) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, S.; Zhao, K.; Chen, H.; Chen, J.; Huang, H. Validation of a Multilag Estimator on NJU-CPOL and a Hybrid Approach for Improving Polarimetric Radar Data Quality. Remote Sens. 2020, 12, 180. https://doi.org/10.3390/rs12010180
Shao S, Zhao K, Chen H, Chen J, Huang H. Validation of a Multilag Estimator on NJU-CPOL and a Hybrid Approach for Improving Polarimetric Radar Data Quality. Remote Sensing. 2020; 12(1):180. https://doi.org/10.3390/rs12010180
Chicago/Turabian StyleShao, Shiqing, Kun Zhao, Haonan Chen, Jianjun Chen, and Hao Huang. 2020. "Validation of a Multilag Estimator on NJU-CPOL and a Hybrid Approach for Improving Polarimetric Radar Data Quality" Remote Sensing 12, no. 1: 180. https://doi.org/10.3390/rs12010180
APA StyleShao, S., Zhao, K., Chen, H., Chen, J., & Huang, H. (2020). Validation of a Multilag Estimator on NJU-CPOL and a Hybrid Approach for Improving Polarimetric Radar Data Quality. Remote Sensing, 12(1), 180. https://doi.org/10.3390/rs12010180