Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review
<p>Schematic view of synthetic aperture radar (SAR) onboard European Remote-Sensing Satellite (ERS): (<b>left</b>) SAR Wave Mode. (<b>right</b>) Switching between SAR Wave mode and SAR Image mode along with their ground swaths. Source: ESA.</p> "> Figure 2
<p>Classification of small satellites. The nanosatellite example shows a 3U CubeSat platform. Source: NASA, National Centre for Space Studies (CNES), Universitat Politècnica de Catalunya, KTH Royal Institute of Technology, École polytechnique fédérale de Lausanne, MIT [<a href="#B34-remotesensing-12-02546" class="html-bibr">34</a>].</p> "> Figure 3
<p>Basics of spaceborne SAR: (<b>left</b>) Nomenclature of design parameters. (<b>right</b>) Ground-range resolution as a function of look angle (ground swath) and bandwidth. Source: JPL, Capella Space.</p> "> Figure 4
<p>Launch and deployment of SAR-Lupe spacecraft: (<b>left</b>) Miniature models of SAR-Lupe and the launch vehicle upper stage. (<b>middle</b>) Artist’s concept of SAR-Lupe in space. (<b>right</b>) Illustration of SAR-Lupe constellation. Source: OHB-System AG.</p> "> Figure 5
<p>Nomenclature of electromagnetic spectra per the IEEE and International Telecommunication Union (ITU) standards. P-band, which will be used for the European BIOMASS satellite, is defined as the interval 420–450 MHz beyond the L band. As the frequency increases (wavelength decreases) from left to right, the antenna size decreases while the throughput and the susceptibility to rain increases. Source: KTH [<a href="#B51-remotesensing-12-02546" class="html-bibr">51</a>].</p> "> Figure 6
<p>Deployment steps of the COSMO-SkyMed (Constellation of Small Satellites for Mediterranean Basin Observation) configuration.</p> "> Figure 7
<p>Orbital configuration of the COSMO-SkyMed constellation: (<b>left</b>) Tandem configuration. (<b>right</b>) Tandem-like configuration. Source: ASI.</p> "> Figure 8
<p>Energy storage of a COSMO satellite: (<b>left</b>) Internal structure of a US18650 hard-carbon lithium-ion cell. (<b>middle</b>) Battery packs (8) consisting of 2016 identical batteries. (<b>right</b>) SAR-Lupe’s 66 Ah battery packs. Source: SONY, ABSL, COM DEV Ltd. [<a href="#B57-remotesensing-12-02546" class="html-bibr">57</a>].</p> "> Figure 9
<p>Twin-satellite measurement modes of the TanDEM-X/TerraSAR-X mission: (<b>left</b>) Multistatic SAR in a bistatic or monostatic mode for digital elevation measurement. (<b>right</b>) Along-track interferometry for object movement detection. Source: DLR.</p> "> Figure 10
<p>Examples of TanDEM-X Forest/Non-Forest map: (<b>left</b>) Germany. (<b>middle</b>) South America over Amazon Rainforest. (<b>right</b>) Amazon Rainforest, State of Rondonia, Brazil (zoomed-in). Source: DLR.</p> "> Figure 11
<p>Illustration of TDX-TSX flight formation: (<b>left</b>) Formation-building procedures (from left to right): identical orbits, horizontal plane rotation, eccentricity offset, and perigee rotation. (<b>right</b>) Helix trajectory in the relative coordinates (numbered axis: angular position in orbit, unnumbered axes: along-track and cross-track position). Source: DLR.</p> "> Figure 12
<p>Mackenzie River Delta, Canada: (<b>A</b>) Aerial snapshot of a thaw slump. (<b>B</b>) Sentinel-2 L1C. Image containing the slump in August 2017. (<b>C</b>) Digital elevation model (DEM) processing results after single-pass TanDEM-X observation in June 2015. Source: ETH Zurich.</p> "> Figure 13
<p>3D point cloud representing parameters estimated from SAR tomographic inversion on a. Stack of 50 TerraSAR-X images over Barcelona, Spain: (<b>left</b>) Ground height. (<b>right</b>) Average deformation rate. Source: ETH Zurich.</p> "> Figure 14
<p>Rendition of NovaSAR-1 and its SAR imagery: (<b>left</b>) Antenna array, internal components, solar panels. (<b>right</b>) Scene of Suez Canal and the Red Sea obtained in the ScanSAR mode. Source: SSTL, Airbus DS.</p> "> Figure 15
<p>TECSAR and its observation modes: (<b>left</b>) Assembly. (<b>right</b>) Wide-coverage mode, strip mode, mosaic mode, and spotlight mode. Source: IAI, ELTA Systems Ltd.</p> "> Figure 16
<p>Accommodation of secondary payloads in Evolved Expendable Launch Vehicle Secondary Payload Adapter (ESPA) rings: (<b>left</b>) Stowage examples for different launch vehicles. (<b>right</b>) Volume constraints for similar-sized payloads. Source: NASA/JPL.</p> "> Figure 17
<p>Mission concept of Micro-XSAR: (<b>left</b>) Attitude control in orbit. (<b>right</b>) Observation modes. Source: JAXA.</p> "> Figure 18
<p>ICEYE series: (<b>left</b>) ICEYE-X1. (<b>middle</b>) ICEYE-X2, X4, X5. (<b>right</b>) ICEYE-X3 (Harbinger). Source: ICEYE, York Space Systems.</p> "> Figure 19
<p>MicroSAR: (<b>left</b>) Artist’s rendition. (<b>right</b>) Simulated revisit times in the Norwegian Sea and the Greenland Sea. Source: Kongsberg Satellite Services.</p> "> Figure 20
<p>Capella series: (<b>left</b>) Capella 1 (Denali). (<b>right</b>) Capella 2 (Sequoia). Source: Capella Space.</p> "> Figure 21
<p>Ka-band SAR in various size scales: (<b>left</b>) RainCube nanosatellite. (<b>right</b>) Surface Water and Ocean Topography (SWOT) satellite. Source: JPL/NASA, CNES.</p> "> Figure 22
<p>NISAR spacecraft and mission concept: (<b>left</b>) Deployed configuration and internal subsystems including 24 L-band Tx/Rx modules and 48 S-band modules (12 per polarization). (<b>right</b>) Areas and topics of interest in India and neighboring regions. Source: JPL, ISRO.</p> "> Figure 23
<p>Formation flight for 3-D SAR techniques: (<b>left</b>) SAR tomography. (<b>middle</b>) Holographic SAR tomography. (<b>right</b>) Teardrop pattern in the Cobra array of satellites.</p> ">
Abstract
:1. Introduction
2. Design Principles of Synthetic Aperture Radar
3. Synthetic Aperture Radar Satellite Missions
3.1. Medium/Large Satellite Constellations
3.1.1. SAR-Lupe
3.1.2. Cosmo-SkyMed
3.1.3. TanDEM-X
3.1.4. HJ-1C
3.2. Minisatellites
3.2.1. NovaSAR-1 (400 kg)
3.2.2. TECSAR (260 kg)
3.2.3. SmallSat InSAR (180 kg)
3.2.4. Micro XSAR (135 kg)
3.3. Microsatellites
3.3.1. ICEYE-X1/X2 (85 kg)
3.3.2. MicroSAR (65 kg)
3.3.3. Capella X-SAR (48 kg)
3.4. Nanosatellites
4. Applications of Small Satellite SAR Data
4.1. Coverage Enhancement with Small SAR Constellations
4.2. Sub-Constellation Formation Flight
4.3. Novel Topics in Biosphere-Anthroposphere InterActions
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Crutzen, P.J. The “anthropocene”. J. Phys. IV (Proc.) 2002, 12, 1–5. [Google Scholar] [CrossRef]
- Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wöllauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 2019, 10, 4757. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Wakabayashi, H.; Hayakawa, Y.; Bradford, M.; Watanabe, M.; Yamaguchi, Y. Tropical forest disaster monitoring with multi-scale sensors from terrestrial laser, UAV, to satellite radar. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2883–2886. [Google Scholar]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Peral, E.; Im, E.; Wye, L.; Lee, S.; Tanelli, S.; Rahmat-Samii, Y.; Horst, S.; Hoffman, J.; Yun, S.-H.; Imken, T.; et al. Radar technologies for earth remote sensing from cubesat platforms. Proc. IEEE 2018, 106, 404–418. [Google Scholar] [CrossRef]
- Marinan, A.D.; Hein, A.G.A.G.I.; Lee, Z.T.; Carlton, A.K.; Cahoy, K.; Milstein, A.B.; Shields, M.W.; DiLiberto, M.T.; Blackwell, W.J. Analysis of the Microsized Microwave Atmospheric Satellite (MicroMAS) Communications Anomaly. J. Small Satell. 2018, 7, 683–699. [Google Scholar]
- Space Advisory Company. Potential Synthetic Aperture Radar Applications of Small Satellites. 2017. Available online: http://www.unoosa.org/documents/pdf/psa/activities/2017/SouthAfrica/slides/Presentation23.pdf (accessed on 18 April 2020).
- Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–43. [Google Scholar] [CrossRef] [Green Version]
- Lubin, D.; Massom, R. Polar Remote Sensing: Volume I: Atmosphere and Oceans; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; p. 389. [Google Scholar]
- PCI Geomatics. KOMPSAT-5. 2015. Available online: https://www.pcigeomatics.com/geomatica-help/references/gdb_r/KOMPSAT5.html (accessed on 26 July 2020).
- ESA eoPortal, SIR-A (Shuttle Imaging Radar)/OSTA-1 Payload on STS-2 Mission. 2020. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions/s/sir-a (accessed on 26 May 2020).
- ESA. ERS Overview. 2020. Available online: https://www.esa.int/Applications/Observing_the_Earth/ERS_overview (accessed on 26 May 2020).
- Alaska Satellite Facility. ALOS Phased Array type L-band Synthetic Aperture Radar. 2020. Available online: https://asf.alaska.edu/data-sets/sar-data-sets/alos-palsar/alos-palsar-about/ (accessed on 23 June 2020).
- Moore, J.W. OSTA-1: The Space Shuttle’s first scientific payload. In Proceedings of the 33rd IAF/IAC Congress, Paris, France, 27 September–2 October 1982. [Google Scholar]
- Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; et al. Shuttle Imaging Radar Experiment. Science 1982, 218, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Attema, E.P.W. The Active Microwave Instrument On-Board the ERS-1 Satellite. Proc. IEEE 1991, 79, 791–799. [Google Scholar] [CrossRef]
- Klees, R.; Massonnet, D. Deformation measurements using SAR interferometry: Potential and limitations. Geologie en Mijnbouw 1998, 77, 161–176. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M. Microwave Remote Sensing of Land Surfaces: Techniques and Methods; Elsevier: Amsterdam, The Netherlands, 2016; p. 68. [Google Scholar]
- Pepe, A.; Calò, F. A review of interferometric synthetic aperture RADAR (InSAR) multi-track approaches for the retrieval of Earth’s surface displacements. Appl. Sci. 2017, 7, 1264. [Google Scholar] [CrossRef] [Green Version]
- Knight, P.G. (Ed.) Glacier Science and Environmental Change; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräutigam, B.; Markus, B.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Romeiser, R.; Johannessen, J.; Chapron, B.; Collard, F.; Kudryavtsev, V.; Runge, H.; Suchandt, S. Direct Surface Current Field Imaging from Space by along-Track InSAR and Conventional SAR. In Oceanography from Space; Barale, V., Gower, J., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Roth, A.; Marschalk, U.; Winkler, K.; Schättler, B.; Huber, M.; Georg, I.; Künzer, C.; Dech, S. Ten years of experience with scientific TerraSAR-X data utilization. Remote Sens. 2018, 10, 1170. [Google Scholar] [CrossRef] [Green Version]
- Young, N. Applications of Interferometric Synthetic Aperture Radar (InSAR): A Small Research Investigation. 2018. Available online: https://www.researchgate.net/publication/328773243_Applications_of_Interferometric_Synthetic_Aperture_Radar_InSAR_a_small_research_investigation (accessed on 23 June 2020).
- DLR Microwaves and Radar Institute. Research Results and Projects (2011–2017). 2017. Available online: https://www.dlr.de/hr/Portaldata/32/Resources/dokumente/broschueren/HR-Institute-Status-Report-2011-2017.pdf (accessed on 3 June 2020).
- Chu, T.; Guo, X. Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: A review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef] [Green Version]
- White, L.; Brisco, B.; Dabboor, M.; Schmitt, A.; Pratt, A. A collection of SAR methodologies for monitoring wetlands. Remote Sens. 2015, 7, 7615–7645. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Muller, J.P.; Li, G. The application of ALOS/PALSAR InSAR to measure subsurface penetration depths in deserts. Remote Sens. 2017, 9, 638. [Google Scholar] [CrossRef] [Green Version]
- Carreiras, J.M.; Quegan, S.; Le Toan, T.; Minh, D.H.T.; Saatchi, S.S.; Carvalhais, N.; Reichstein, M.; Scipal, K. Coverage of high biomass forests by the ESA BIOMASS mission under defense restrictions. Remote Sens. Environ. 2017, 196, 154–162. [Google Scholar] [CrossRef]
- Adimi, F.; Soebiyanto, R.P.; Safi, N.; Kiang, R. Towards malaria risk prediction in Afghanistan using remote sensing. Malar. J. 2010, 9, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bøgh, C.; Lindsay, S.W.; Clarke, S.E.; Dean, A.; Jawara, M.; Pinder, M.; Thomas, C.J. High spatial resolution mapping of malaria transmission risk in the Gambia, west Africa, using LANDSAT TM satellite imagery. Am. J. Trop. Med. Hyg. 2007, 76, 875–881. [Google Scholar] [CrossRef]
- Rogers, D.J.; Randolph, S.E.; Snow, R.W.; Hay, S.I. Satellite imagery in the study and forecast of malaria. Nature 2002, 415, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Braun, A. Radar Satellite Imagery for Humanitarian Response. Ph.D. Thesis, Universit of Tübingen, Tübingen, Germany, 2019. [Google Scholar]
- Paek, S.W. Reconfigurable Satellite Constellations for Geo-spatially Adaptive Earth-Observation Missions. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2012. [Google Scholar]
- Tristancho, J. Implementation of a Femto-Satellite and a Mini-Launcher. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2012. [Google Scholar]
- Helvajian, H.; Janson, S.W. (Eds.) Small Satellites: Past, Present, and Future; Aerospace Press: El Segundo, CA, USA, 2008; ISBN 978-1-884989-22-3. [Google Scholar]
- Deepak, R.A.; Twiggs, R.J. Thinking out of the box: Space science beyond the CubeSat. J. Small Satell. 2012, 1, 3–7. [Google Scholar]
- Camps, A.; Golkar, A.; Gutierrez, A.; de Azua, J.R.; Munoz-Martin, J.F.; Fernandez, L.; Diez, C.; Aguilella, A.; Briatore, S.; Akhtyamov, R.; et al. FSSCAT, the 2017 Copernicus Masters’ “ESA Sentinel Small Satellite Challenge” Winner: A Federated Polar and Soil Moisture Tandem Mission Based on 6U Cubesats. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York City, NY, USA, 2018; pp. 8285–8287. [Google Scholar]
- Wright, R.; Nunes, M.; Lucey, P.; Flynn, L.; George, T.; Gunapala, S.; Ting, D.; Rafol, S.; Soibel, A.; Ferrari-Wong, C.; et al. HYTI: Thermal hyperspectral imaging from a CubeSat platform. Proc. SPIE 2019, 11131, 111310G. [Google Scholar]
- Saito, H.; Hirokawa, J.; Tomura, T.; Akbar, P.R.; Pyne, B.; Tanaka, K.; Mita, M.; Kaneko, T.; Watanabe, H.L.; Ijichi, K. Development of Compact SAR Systems for Small Satellite. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York City, NY, USA, 2019; pp. 8440–8443. [Google Scholar]
- Filippazzo, G.; Dinand, S. The Potential Impact of Small Satellite Radar Constellations On Traditional Space System. In Proceedings of the 5th Federated and Fractionated Satellite Systems Workshop, Ithaca, NY, USA, 2–3 November 2017. [Google Scholar]
- Kim, Y.; Kim, M.; Han, B.; Kim, Y.; Shin, H. Optimum design of an SAR satellite constellation considering the revisit time using a genetic algorithm. Int. J. Aeronaut. Space Sci. 2017, 18, 334–343. [Google Scholar] [CrossRef]
- NASA. NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook. 2019. Available online: https://nisar.jpl.nasa.gov/files/nisar/NISAR_Science_Users_Handbook.pdf (accessed on 3 June 2020).
- Ocampo-Torres, F.J.; Gutiérrez-Nava, A.; Ponce, O.; Vicente-Vivas, E.; Pacheco, E. On the progress of the nano-satellite SAR based mission TOPMEX-9 and specification of potential applications advancing the Earth Observation Programme of the Mexican Space Agency. In Proceedings of the Conference on Space Optical Systems and Applications, Santa Monica, CA, USA, 11–13 May 2011; pp. 102–109. [Google Scholar]
- Freeman, A. Design principles for smallsat SARs. In Proceedings of the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 4–9 August 2018. [Google Scholar]
- Farquharson, G.; Woods, W.; Stringham, C.; Sankarambadi, N.; Riggi, L. The Capella Synthetic Aperture Radar Constellation. In Proceedings of the EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018; VDE Verlag: Berlin, Germany, 2018; pp. 1–5. [Google Scholar]
- Safy, M. Synthetic Aperture Radar for Small Satellite. Int. J. Innov. Technol. Eng. 2019, 9, 3435–3440. [Google Scholar]
- Braun, H.M.; Knobloch, P.E. SAR on Small Satellites-Shown on the SAR-Lupe Example. In Proceedings of the International Radar Symposium, 2007 (IRS 2007), Cologne, Germany, 5–7 September 2007. [Google Scholar]
- Zemann, J.L.; Nitschko, T.; Supper, L.; Konigsreiter, G. The Deployable Boom Assembly for SAR-Lupe. In Proceedings of the 28th ESA Antenna Workshop, Estec Noordwijk, The Netherlands, 31 May–3 June 2005. [Google Scholar]
- Clark, R.M. The Technical Collection of Intelligence; CQ Press: Washington, DC, USA, 2010. [Google Scholar]
- Soja, M.J. Modelling and Retrieval of Forest Parameters from Synthetic Aperture Radar Data; Chalmers University of Technology: Gothenburg, Sweden, 2014. [Google Scholar]
- Paek, S.W.; de Weck, O.L.; Smith, M.W. Concurrent design optimization of Earth observation satellites and reconfigurable constellations. J. Brit. Interplanet. Soc. 2017, 70, 19–35. [Google Scholar]
- Paek, S.W.; Kim, S.; de Weck, O.L. Optimization of reconfigurable satellite constellations using simulated annealing and genetic algorithm. Sensors 2019, 19, 765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentni, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Paek, S.W.; Kim, S.; Kronig, L.G.; de Weck, O.L. Sun-synchronous repeat ground tracks and other useful orbits for future space missions. Aeronaut. J. 2020, 124, 917–939. [Google Scholar] [CrossRef]
- Candela, L.; Caltagirone, F. Cosmo-SkyMed: Mission Definition, Main Application and Products. In Proceedings of the ESA POLinSAR Workshop, Frascati, Italy, 14–16 January 2003; ESA Publications Division: Noordwijk, The Netherlands, 2003. [Google Scholar]
- Csizmar, A.; Richards, L.; Scorzafava, E.; Daprati, G.; Perrone, G. COSMO-SkyMed, First Lithium-Ion Battery for Space-based Radar. In Proceedings of the 7th European Space Power Conference, Stresa, Italy, 9–13 May 2005. [Google Scholar]
- Troutman, J. SONY 18650 Hard Carbon Cell and SONY 18650 Hard Carbon Mandrel Cell. In Proceedings of the NASA Battery Workshop, 2011 NASA Battery Workshop, Huntsville, AL, USA, 15 November 2011. [Google Scholar]
- Lombardo, P. A multichannel spaceborne radar for the COSMO-SkyMed satellite constellation. In Proceedings of the 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), Big Sky, MT, USA, 6–13 March 2004; IEEE: New York City, NY, USA, 2004; Volume 1. [Google Scholar]
- Ochs, S.; Pitz, W. The terrasar-x and tandem-x satellites. In Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; IEEE: New York City, NY, USA, 2007; pp. 294–298. [Google Scholar]
- Krieger, G.; Zink, M.; Bachmann, M.; Bräutigam, B.; Schulze, D.; Martone, M.; Rizzoli, P.; Steinbrecher, U.; Antony, J.W.; De Zan, F.; et al. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronaut. 2013, 89, 83–98. [Google Scholar] [CrossRef] [Green Version]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Hounam, D.; Werner, M.; Riegger, S.; Settelmeyer, E. TanDEM-X: A TerraSAR-X Add-On Satellite for Single-Pass SAR Interferometry. In Proceedings of the IGARSS 2004, Anchorage, AK, USA, 20–24 September 2004. [Google Scholar]
- Martone, M.; Rizzoli, P.; Wecklich, C.; Gonzalez, C.; Bueso-Bello, J.-L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, K.; Moreira, A. The Global Forest/Non-Forest Map from TanDEM-X Interferometric SAR Data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Krieger, G.; Fiedler, H.; Moreira, A. Bi-and multistatic SAR: Potentials and challenges. Proc. EUSAR 2004, 34, 365–370. [Google Scholar]
- Krieger, G.; Fiedler, H.; Houman, D.; Moreira, A. Analysis of system concepts for bi-and multi-static SAR missions. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; IEEE: New York City, NY, USA, 2003; Volume 2, pp. 770–772. [Google Scholar]
- Gill, E.; Runge, H. Tight formation flying for an along-track SAR interferometer. Acta Astronaut. 2004, 55, 473–485. [Google Scholar] [CrossRef]
- Krieger, G.; Hajnsek, I.; Papathanassiou, K.P.; Younis, M.; Moreira, A. Interferometric synthetic aperture radar (SAR) missions employing formation flying. Proc. IEEE 2010, 98, 816–843. [Google Scholar] [CrossRef] [Green Version]
- Satellite Configuration for Interferometric and/or Tomographic Remote Sensing by Means of Synthetic Aperture Radar (SAR). U.S. Patent No 6,677,884, 13 January 2004.
- DLR. Earth Observation Center. 2020. Available online: https://geoservice.dlr.de/web/maps/tdmforest (accessed on 3 June 2020).
- ETH Zurich. Chair of Earth Observation and Remote Sensing. 2020. Available online: https://eo.ifu.ethz.ch/forschung/Techniques.html#par_textimage_2091550249 (accessed on 3 June 2020).
- Ullmann, T.; Büdel, C.; Baumhauer, R. Characterization of arctic surface morphology by means of intermediated TanDEM-X digital elevation model data. Z. Geomorphol. 2017, 61, 3–25. [Google Scholar] [CrossRef]
- Betbeder, J.; Rapinel, S.; Corpetti, T.; Pottier, E.; Corgne, S.; Hubert-Moy, L. Multitemporal classification of TerraSAR-X data for wetland vegetation mapping. J. Appl. Remote Sens. 2014, 8, 083648. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 412–422. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Hütt, C.; Yao, Y.; Miao, Y.; Chen, X.; Bareth, G. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. 2013, 21, 568–576. [Google Scholar] [CrossRef]
- Tebaldini, S.; Nagler, T.; Rott, H.; Heilig, A. Imaging the internal structure of an alpine glacier via L-band airborne SAR tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7197–7209. [Google Scholar] [CrossRef]
- Buckreuss, S.; Zink, M. TerraSAR-X and TanDEM-X mission status. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; VDE Verlag: Berlin, Germany, 2016; pp. 1–6. [Google Scholar]
- Howell, E. Two Private Satellites Just Docked in Space in Historic First for Orbital Servicing. 2020. Available online: https://www.space.com/private-satellites-docking-success-northrop-grumman-mev-1.html (accessed on 24 July 2020).
- De Weck, O. A Review of Satellite Constellation Reconfiguration and Its Applications. In Proceedings of the 10th International Workshop on Satellite Constellations & Formation Flying, Glasgow, UK, 16–19 July 2019. [Google Scholar]
- Tian, W.; Bian, X.; Shao, Y.; Zhang, Z. On the detection of oil spill with China’s HJ-1C SAR image. Aquat. Procedia 2015, 3, 144–150. [Google Scholar] [CrossRef]
- Guo, H.; Fu, W.; Liu, G. Scientific Satellite and Moon-Based Earth Observation for Global Change; Springer: Singapore, 2019; p. 423. [Google Scholar]
- Observing Systems Capability Analysis and Review Tool. Satellite: HJ-1C. 2020. Available online: https://www.wmo-sat.info/oscar-staging/satellites/view/171 (accessed on 15 June 2020).
- Bird, R.; Whittaker, P.; Stern, B.; Angli, N.; Cohen, M.; Guida, R. NovaSAR-S: A low cost approach to SAR applications. In Proceedings of the Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; IEEE: New York City, NY, USA, 2013; pp. 84–87. [Google Scholar]
- Iervolino, P.; Guida, R.; Whittaker, P. NovaSAR-S and maritime surveillance. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; IEEE: New York City, NY, USA, 2013; pp. 1282–1285. [Google Scholar]
- Davies, P.; Whittaker, P.; Bird, R.; Gomes, L.; Stern, B.; Sweeting, M.; Cohen, M.; Hall, D. NovaSAR–Bringing Radar Capability to the Disaster Monitoring Constellation. In Proceedings of the 26th Annual USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2012. [Google Scholar]
- Natale, A.; Guida, R.; Bird, R.; Whittaker, P.; Cohen, M.; Hall, D. Demonstration and analysis of the applications of S-band SAR. In Proceedings of the 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, Korea, 26–30 September 2011; IEEE: New York City, NY, USA, 2011; pp. 1–4. [Google Scholar]
- Pauwels, V.; Walker, J.; Grimaldi, S.; Wright, A.; Li, Y. Improving Flood Forecast Skill Using Remote Sensing Data. 2019. Available online: https://www.bnhcrc.com.au/sites/default/files/managed/downloads/improving_flood_forecast_skill_using_remote_sensing_data_annual_report_2018-2019_final.pdf (accessed on 20 July 2020).
- Surrey Satellite Technology Ltd. SSTL Announces NovaSAR-1 Data Deal with the Philippines. 2019. Available online: https://www.sstl.co.uk/media-hub/latest-news/2019/sstl-announces-novasar-1-data-deal-with-the-philip (accessed on 20 July 2020).
- Gunter’s Space Page. Ofeq 8, 10 (TECSAR 1, 2/TechSAR 1, 2). 2020. Available online: https://space.skyrocket.de/doc_sdat/techsar-1.htm (accessed on 15 June 2020).
- Baddeley, A. Israel Exploits Space Technologies, Capabilities. Available online: https://www.afcea.org/content/israel-exploits-space-technologies-capabilities (accessed on 20 July 2020).
- Curiel, A.D.S.; Whittaker, P.; Bird, R.; Haslehurst, A.; Nejadi, P.; Victoria, I.; Cawthorne, A.; Underwood, C.; Sweeting, M. Synthetic Aperture Radar on a Nanosatellite-is it Possible? In Proceedings of the 12th IAA Symposium on Small Satellites for Earth Observation. International Academy of Astronautics (IAA), Berlin, Germany, 6–10 May 2019. [Google Scholar]
- Imbriale, W.A.; Gao, S.S.; Boccia, L. Space Antenna Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Sharay, Y.; Naftaly, U. TECSAR: Design considerations and programme status. IEE Proc.-Radar Sonar Navig. 2006, 153, 117–121. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Lee, S.Y.; Bae, M.J.; Cho, K.D. Configuration design of a deployable SAR antenna for space application and tool-kit development. Int. J. Aeronaut. Space 2014, 42, 683–691. [Google Scholar]
- Wegner, P.M.; Ganley, J.; Maly, J.R. EELV secondary payload adapter (ESPA): Providing increased access to space. In Proceedings of the 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542), Big Sky, MT, USA, 10–17 March 2001; 2011; Volume 5, pp. 2563–2568. [Google Scholar]
- Caffrey, R. Using Rideshare to Launch CubeSats & ESPA S/C. In Proceedings of the 2nd Planetary CubeSat Science Symposium, Greenbelt, MD, USA, 26 September 2017. [Google Scholar]
- Rosen, P.A.; Kumar, R. The NISAR Mission–An NASA/ISRO Space Partnership Supporting Global Research and Applications. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India, 9–15 March 2019; 2019; p. 1. [Google Scholar]
- Freeman, A.; Johnson, W.T.K.; Huneycutt, B.; Jordan, R.; Hensley, S.; Siqueira, P.; Curlander, J. The” Myth” of the minimum SAR antenna area constraint. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; IEEE: New York City, NY, USA, 1999; Volume 3, pp. 1770–1772. [Google Scholar]
- Girard, R.; Plourde, P.; Séguin, G. The RADARSAT constellation payload design. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; IEEE: New York City, NY, USA, 2007; pp. 1387–1392. [Google Scholar]
- De Almeida, F.Q.; Younis, M.; Krieger, G.; Moreira, A. An Analytical Error Model for Spaceborne SAR Multichannel Azimuth Reconstruction. IEEE Geosci. Remote S. 2017, 15, 853–857. [Google Scholar] [CrossRef]
- Akbar, P.R.; Sumantyo, J.T.S.; Saito, H. Design of synthetic aperture radar onboard small satellite. SANE 2012, 112, 135–140. [Google Scholar]
- Saito, H.; Pyne, B.; Tanaka, K.; Mita, M.; Kaneko, T.; Hirokawa, J.; Tomura, T.; Watanabe, H.; Akbar, P.R.; Ijichi, K. Proto-Flight Model of SAR for 100kg class Small Satellite. In Proceedings of the 33rd Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 3–8 August 2019. [Google Scholar]
- Pyne, B.; Ravindra, V.; Saito, H. An improved pulse repetition frequency selection scheme for synthetic aperture radar. In Proceedings of the 2015 European Radar Conference (EuRAD), Paris, France, 9–11 September 2015; IEEE: New York City, NY, USA, 2015; pp. 257–260. [Google Scholar]
- Pyne, B.; Akbar, P.; Saito, H.; Zhang, M.; Hirokawa, J.; Ando, M. Design of a center-feed waveguide feeder for wideband rectangular parallel-plate slot-array antenna on-board space-borne X-band SAR system. In Proceedings of the 2016 46th European Microwave Conference (EuMC), London, UK, 4–6 October 2016; IEEE: New York City, NY, USA, 2016; pp. 1533–1536. [Google Scholar]
- Pyne, B.; Akbar, P.R.; Ravindra, V.; Saito, H.; Hirokawa, J.; Fukami, T. Slot-Array Antenna Feeder Network for Space-Borne X-Band Synthetic Aperture Radar. IEEE Trans. Antennas Propag. 2018, 66, 3463–3474. [Google Scholar] [CrossRef]
- Hirako, K.; Shirasaka, S.; Obata, T.; Nakasuka, S.; Saito, H.; Nakamura, S.; Tohara, T. Development of small satellite for X-Band compact synthetic aperture radar. J. Phys. Conf. Ser. 2018, 1130, 012013. [Google Scholar] [CrossRef] [Green Version]
- Peral, E.; Tanelli, S.; Statham, S.; Joshi, S.; Imken, T.; Price, D.; Sauer, J.; Chahat, N.; Williams, A. RainCube: The first ever radar measurements from a CubeSat in space. J. Appl. Remote Sens. 2019, 13, 032504. [Google Scholar] [CrossRef]
- Peral, E.; Imken, T.; Sauder, J.; Statham, S.; Tanelli, S.; Price, D.; Chahat, N.; Williams, A. RainCube, a Ka-Band Precipitation Radar in a 6U CubeSat. In Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 5–10 August 2017. [Google Scholar]
- JPL/Caltech. Radar in a CubeSat (RainCube). 2020. Available online: https://www.jpl.nasa.gov/cubesat/missions/raincube.php (accessed on 21 June 2020).
- Sim, E. Technology trends in Newspace smallsatellite constellation in low-Earth orbits. Proc. Korean Soc. Aeronaut. Space Sci. 2018, 11, 322–323. (In Korean) [Google Scholar]
- ICEYE. Historical Launch of ICEYE-X1 on India’s PSLV-C40 Rocket Sends First Ever under 100 kg SAR Satellite Into Orbit. 2018. Available online: https://www.iceye.com/press/press-releases/iceye-successfully-launches-worlds-first-sar-microsatellite-and-establishes-finlands-first-commercial-satellite (accessed on 15 June 2020).
- Campbell, B.; Cheng, T.; Garas, V.; Mitchell, D. Summary of Current Ice Characterization Research: Norway/Russia/Europe. National Petroleum Council Study on Research to Facilitate Prudent Arctic Development. 2014. Available online: https://www.npcarcticreport.org/pdf/tp/55_Summary_of_Current_Ice_Characterization_Research-Norway-Russia-Europe.pdf (accessed on 19 June 2020).
- ICEYE. ICEYE SAR Product Guide. 2019. Available online: https://www.iceye.com/hubfs/Downloadables/ICEYE-SAR-Product-Guide-2019.pdf (accessed on 19 June 2020).
- Gunter’s Space Page. Harbinger. 2020. Available online: https://space.skyrocket.de/doc_sdat/harbinger.htm (accessed on 21 June 2020).
- Kaljord, A. Earth Observation for Maritime Operations-Current Capabilities and Future Potential. 2017. Available online: http://www.norwep.com/content/download/31293/225975/version/1/file/KSAT_ (accessed on 27 May 2020).
- Capella Space. How space is bringing you closer to earth. Available online: https://www.capellaspace.com/ (accessed on 15 July 2020).
- Stringham, C.; Farquharson, G.; Castelletti, D.; Quist, E.; Riggi, L.; Eddy, D.; Soenen, S. The Capella X-band SAR Constellation for Rapid Imaging. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York City, NY, USA, 2019; pp. 9248–9251. [Google Scholar]
- Harris, M. Is Amazon’s Satellite Ground Station Service Ready for Primetime? 2019. Available online: https://spectrum.ieee.org/tech-talk/aerospace/satellites/meet-haras-and-maris-amazons-first-satellite-ground-stations (accessed on 20 July 2020).
- Cahoy, K.; Blackwell, W.J.; Allen, G.; Bury, M.; Efromson, R.; Galbraith, C.; Hancock, T.; Leslie, V.; Osaretin, I.; Retherford, L.; et al. The MicroMAS CubeSat Mission. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 3–7 December 2012; p. SA13B-2162. [Google Scholar]
- Fjørtoft, R.; Gaudin, J.M.; Pourthié, N.; Lalaurie, J.C.; Mallet, A.; Nouvel, J.F.; Martinot-Lagarde, J.; Oriot, H.; Borderies, P.; Luiz, C.; et al. KaRIn on SWOT: Characteristics of near-nadir Ka-band interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2172–2185. [Google Scholar] [CrossRef]
- Neeck, S.P.; Lindstrom, E.J.; Vaze, P.V.; Fu, L.-L. Surface Water and Ocean Topography (SWOT) Mission. In Proceedings of the SPIE Remote Sensing 2012, ‘Sensors, Systems, and Next-Generation Satellites,’ Edinburgh, Scotland, UK, 24–27 September 2012; Volume 8533, p. 85330G. [Google Scholar]
- Alsdorf, D.E.; Mognard, N.M.; Lettenmaier, D.P. Hydrologic Science and Satellite Measurements of Surface Water. In Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA, 13–17 December 2010. [Google Scholar]
- Ku, C.S.; Chang, P.C.; Chang, Y.L. Experimental Study of Polarized Radar Scattering from the Tree Canopy at the Ka-Band. Int. J. Antennas Propag. 2019, 2019, 4610713. [Google Scholar] [CrossRef] [Green Version]
- Cappelletti, C.; Martinotti, G.; Graziani, F. UniCubeSat: A test for the Gravity-Gradient Solar Array Boom. In Proceedings of the 62nd International Astronautical Congress, Cape Town, South Africa, 3–7 October 2011. paper: IAC-11-B4–6B.12. [Google Scholar]
- Space Applications Centre, ISRO. Overview of NISAR Mission and Airborne L&S SAR. 2020. Available online: https://vedas.sac.gov.in/vedas/downloads/ertd/SAR/L_1.pdf (accessed on 11 June 2020).
- L’Abbate, M.; Germani, C.; Torre, A. Compact SAR and Micro Satellite solutions for Earth observation. In Proceedings of the 31st Space Symposium, Technical Track, Colorado Springs, CO, USA, 13 April 2015; pp. 1–17. [Google Scholar]
- D’Amico, S.; Ardaens, J.S.; Larsson, R. Spaceborne autonomous formation-flying experiment on the PRISMA mission. J. Guid. Control Dyn. 2012, 35, 834–850. [Google Scholar] [CrossRef]
- Tarabini Castellani, L.; Llorente, J.S.; Fernández Ibarz, J.M.; Ruiz, M.; Mestreau-Garreau, A.; Cropp, A.; Santovincenzo, A. PROBA-3 mission. Int. J. Space Sci. Eng. 2013, 1, 349–366. [Google Scholar] [CrossRef]
- Ardaens, J.S.; D’Amico, S.; Cropp, A. GPS-based relative navigation for the Proba-3 formation flying mission. Acta Astronaut. 2013, 91, 341–355. [Google Scholar] [CrossRef]
- Solberg, S.; Riegler, G.; Nonin, P. Estimating forest biomass from TerraSAR-X StripMap radargrammetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 154–161. [Google Scholar] [CrossRef]
- Perko, R.; Raggam, H.; Deutscher, J.; Gutjahr, K.; Schardt, M. Forest assessment using high resolution SAR data in X-band. Remote Sens. 2011, 3, 792–815. [Google Scholar] [CrossRef] [Green Version]
- Konecny, G. Small satellites–A tool for Earth observation? In Proceedings of the XXth ISPRS Congress, Commission, Istanbul, Turkey, 12–23 July 2004; Volume 4, pp. 12–23. [Google Scholar]
- Janoth, J.; Jochum, M.; Petrat, L.; Knigge, T. High Resolution wide Swath–the Next Generation X-Band Mission. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York City, NY, USA, 2019; pp. 3535–3537. [Google Scholar]
- Draim, J.E.; Inciardi, R.; Cefola, P.; Proulx, R.; Carter, D. Demonstration of the cobra teardrop concept using two smallsats in 8-hour elliptical orbits. In Proceedings of the 15th Annual USU Conference on Small Satellites, Logan, UT, USA, 13–16 August 2001. [Google Scholar]
- Draim, J.E.; Cefola, P.J.; Ernandes, K.J. Seamless handovers in cobra teardrop satellite arrays. Acta Astronaut. 2007, 61, 139–150. [Google Scholar] [CrossRef]
- Paek, S.W.; Kronig, L.G.; Ivanov, A.B.; de Weck, O.L. Satellite constellation design algorithm for remote sensing of diurnal cycles phenomena. Adv. Space Res. 2018, 62, 2529–2550. [Google Scholar] [CrossRef]
- Næsset, E.; Ørka, H.O.; Solberg, S.; Bollandsås, O.M.; Hansen, E.H.; Mauya, E.; Zahabu, E.; Malimbwi, R.; Chamuya, N.; Olsson, H.; et al. Mapping and estimating forest area and aboveground biomass in miombo woodlands in Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A comparison of estimated precision. Remote Sens. Environ. 2016, 175, 282–300. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Baghdadi, N.N.; El Hajj, M.; Zribi, M.; Fayad, I. Coupling SAR C-band and optical data for soil moisture and leaf area index retrieval over irrigated grasslands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 9, 1229–1243. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Bazzi, H.; Zribi, M. Penetration analysis of SAR signals in the C and L bands for wheat, maize, and grasslands. Remote Sens. 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Shuman, E.K. Global climate change and infectious diseases. N. Engl. J. Med. 2010, 362, 1061–1063. [Google Scholar] [CrossRef]
- Caminade, C.; Kovats, S.; Rocklov, J.; Tompkins, A.M.; Morse, A.P.; Colón-González, F.J.; Stenlund, H.; Martens, P.; Lloyd, S.J. Impact of climate change on global malaria distribution. Proc. Natl. Acad. Sci. USA 2014, 111, 3286–3291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazansky, Y.; Wood, D.; Sutherlun, J. The current and potential role of satellite remote sensing in the campaign against malaria. Acta Astronaut. 2016, 121, 292–305. [Google Scholar] [CrossRef] [Green Version]
- Beck, L.R.; Lobitz, B.M.; Wood, B.L. Remote sensing and human health: New sensors and new opportunities. Emerg. Infect. Dis. 2000, 6, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diuk-Wasser, M.A.; Dolo, G.; Bagayoko, M.; Sogoba, N.; Toure, M.B.; Moghaddam, M.; Manoukis, M.; Rian, S.; Traore, S.F.; Taylor, C.E. Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar. Int. J. Remote Sens. 2006, 27, 535–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Gurgel, H.; Mangeas, M.; Seyler, F.; Dessay, N. Wetlands and malaria in the Amazon: Guidelines for the use of synthetic aperture radar remote-sensing. Int. J. Environ. Res. 2018, 15, 468. [Google Scholar] [CrossRef] [Green Version]
- Imhoff, M.L.; McCandless, S.W. Flood boundary delineation through clouds and vegetation using L-band space-borne radar: A potential new tool for disease vector control programs. Acta Astronaut. 1988, 17, 1003–1007. [Google Scholar] [CrossRef]
- Ambrosia, V.G.; Linthicum, K.G.; Bailey, C.L.; Sebesta, P. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; IEEE: New York City, NY, USA, 1989; Volume 5, pp. 2758–2760. [Google Scholar]
- Lleo, M.M.; Lafaye, M.; Guell, A. Application of space technologies to the surveillance and modelling of waterborne diseases. Curr. Opin. Biotechnol. 2008, 19, 307–312. [Google Scholar] [CrossRef]
- Mann, A. Rocket Lab’s Electron Rocket. 2019. Available online: https://www.space.com/electron-rocket.html (accessed on 19 July 2020).
- Erwin, S. SpaceX Rideshare Program Putting Downward Pressure on Prices. 2020. Available online: https://spacenews.com/spacex-rideshare-program-putting-downward-pressure-on-prices/ (accessed on 19 July 2020).
- Amazon Web Services. AWS Ground Station Pricing. 2020. Available online: https://aws.amazon.com/ko/ground-station/pricing/ (accessed on 21 July 2020).
- Zhu, X.X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Balmer, R. Deep Learning Meets SAR. IEEE Geosci. Remote Sens. Mag. 2020. in submitted. [Google Scholar]
- Rotter, P.; Muron, W. Automatic Detection of Subsidence Troughs in SAR Interferograms Based on olutional Neural Networks. IEEE Geosci. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Soldin, R.J. SAR Target Recognition with Deep Learning. In Proceedings of the 2018 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), Washington, DC, USA, 9–11 October 2018; IEEE: New York City, NY, USA, 2018; pp. 1–8. [Google Scholar]
- Ban, Y.; Zhang, P.; Nascetti, A.; Bevington, A.R.; Wulder, M.A. Near Real-Time Wildfire Progression Monitoring with Sentinel-1 SAR Time Series and Deep Learning. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tom, M.; Aguilar, R.; Imhof, P.; Leinss, S.; Baltsavias, E.; Schindler, K. Lake Ice Detection from Sentinel-1 SAR with Deep Learning. arXiv 2020, arXiv:2002.07040. [Google Scholar] [CrossRef]
- ICEYE. Breaking the 15 Minutes Barrier from Acquisition to Delivery for SAR Imaging. 2019. Available online: https://www.iceye.com/press/press-releases/iceye-ksat-announce-ground-segment-15-minute-tasking-to-processing-sar-image-capabilities (accessed on 21 July 2020).
- Lu, Z.; Dzurisin, D. InSAR imaging of Aleutian volcanoes. In InSAR Imaging of Aleutian Volcanoes; Springer: Berlin/Heidelberg, Germany, 2014; p. 377. [Google Scholar]
- Pyne, B.; Saito, H.; Ravindra, B. Extended Chirp Pulsed Radar (ECMPR) Scheme for MicroXSAR onboard 100 kg Micro-satellite. In Proceedings of the 15th Space Science Symposium, Sagamihara, Japan, 6–7 January 2015. [Google Scholar]
- US Federal Communications Commission. FCC Authorizes SpaceX to Provide Broadband Satellite Services. 2018. Available online: https://www.fcc.gov/document/fcc-authorizes-spacex-provide-broadband-satellite-services (accessed on 23 June 2020).
Mission | Country | Duration | Band | Mass (kg) | Swath (km) | Resolution (m, Az-R) |
---|---|---|---|---|---|---|
SeaSat | USA | 1978 | L | 2290 | 100 | 6–25 |
SIR-A1/B1 | USA | 1981, 1984 | L | 2460 | 50 | 7–25/6–13 |
ERS-1/2 | Europe | 1991–2010 | C | 2384 | 100 | 6–26 |
1995–2011 | 2516 | 100 | 6–26 | |||
ALMAZ-1 | USSR | 1991–1992 | S | 3420 | 280 | 8–15 |
JERS-1 | Japan | 1992–1998 | L | 1400 | 75 | 18–18 |
SIR-C/X | Multi 1 | 1994 | C,L/X | 11,000 | 90 | 7.5–13/6–10 |
RADARSAT-1 | Canada | 1995–2013 | C | 3400 | 500 | 8–8 |
SRTM1 | Multi 2 | 2000 | C,X | 13,600 | 100 | 15–8/8–19 |
ENVISAT | Europe | 2002–2012 | C | 8210 | 100 | 6–9 (SM) 3 |
405 | 80–8 (SC) 3 | |||||
ALOS | Japan | 2006–2011 | L | 3850 | 70 | 10–10 (high) |
30 | 10–30 (polar) | |||||
350 | 100–100 (SC) | |||||
SAR-Lupe | Germany | 2006– | X | 770 4 | - | - |
RADARSAT-2 | Canada | 2007–2020 | C | 2200 | 18 | 0.8–1.6 (SL) 5 |
100 | 8–9 (std) | |||||
500 | 70–70 (SC) | |||||
Cosmo- | Italy | 2007– | X | 1700 | 10 | 1–1 (SL) |
SkyMed | 40 | 3–3 (SM) | ||||
200 | 30–30 (SC) | |||||
TerraSAR-X | Germany | 2007–2020 6 | X | 1230 | 10 | 1–1 (SL) |
30 | 3–1 (SM) | |||||
270 | 40–2 (SC) | |||||
TecSAR | Israel | 2008– | X | 260 4 | - | - |
TanDEM-X | Germany | 2009–2020 6 | X | 1230 | - | Same as TSX |
RISAT-1 | India | 2012–2017 | C | 1860 | 10 | 1–1 |
25 | 3–4 | |||||
220 | 48–8 | |||||
HJ-1C | China | 2012–2016 | S | 890 | 100 | 5–20 |
KOMPSat-5 | S. Korea | 2013–2020 6 | X | 1400 | 18 | 1–1 (high) |
30 | 3–3 (std) | |||||
100 | 5–5 (wide) | |||||
Sentinel 1A/B | Europe | 2014– | C | 2300 | 80 | 4–2 (SM) |
2016– | 400 | 43–8 (TS) 7 | ||||
ALOS 2 | Japan | 2014–2020 6 | L | 2120 | 25 | 1–3 (SL) |
70 | 5–9 (SM) | |||||
490 | 60–45 (SC) | |||||
PAZ | Spain | 2015– | X | 1230 | 10 | 1–1 (SL) |
30 | 3–1 (SM) | |||||
100 | 20–20 (SC) | |||||
RCM | Canada | 2017– | C | 1430 | 20 | 1–1 (SL) |
30 | 3–10 (SM) | |||||
500 | 40–40 (SC) | |||||
SAOCOM | Argentina | 2018– | L | 3000 | 30 | 10 (Az, SM) |
350 | 100 (Az, TS) |
Category | Application | Temporal Scale | |||
---|---|---|---|---|---|
Days | Weeks | Months | Years | ||
Biosphere | Deforestation or fire | O | O | O | |
Biodiversity | O | O | O | ||
Cryosphere | Sea ice | O | O | ||
Ice cap and glaciers | O | O | |||
Geosphere | Volcanic activities | O | O | ||
Seismic activities | O | O | O | O | |
Landslides | O | O | |||
Hydrosphere | Floods and soil moisture | O | O | ||
Ocean currents and tides | O | O |
Configuration | Average Revisit Time, h | Worst Revisit Time, h | ||
---|---|---|---|---|
# Satellites | Left and Right | Right | Left and Right | Right |
1 | 18 to 35 1 (12 to 23) 2 | 37 to 64 (25 to 44) | 156 (60) | 252 (120) |
2 | 9 to 18 (6 to 12) | 19 to 35 (13 to 24) | 60 (36) | 108 (60) |
3 | 6 to 12 (4 to 8) | 13 to 24 (9 to 16) | 36 (36) | 60 (36) |
4 | 5 to 9 (3 to 6) | 10 to 18 (6 to 12) | 24 (12) | 60 (24) |
Configuration | Coverage After 12 h, % | Coverage After 24 h, % | ||
---|---|---|---|---|
# Satellites | Left and Right | Right | Left and Right | Right |
1 | - | - | 67 (85) | 38 (55) |
2 | 62 1 (84) 2 | 41 (62) | 81 (92) | 64 (84) |
3 | 88 (98) | 62 (84) | 96 (99.97) | 84 (98) |
4 | 97 (100) | 80 (99) | 100 (100) | 95 (100) |
Observation Mode | Resolution (m) | Swath (km) | Look Angle (°) | Av. Revisit Time (Day) | Max. Revisit Time (Day) |
---|---|---|---|---|---|
1. ScanSAR | 20 m | 50–100 | 16–30 | 3.7 (1.5), 2.5× | 14 (3.5), 4× |
2. Maritime surveillance | 30 m | 750 | 48–73 | 0.9 (0.3), 3.0× | 8 (0.5), 16× |
3. Stripmap | 6 m | 13–20 | 16–31 | 3.2 (1.1), 2.9× | 12.5 (3.5), 3.4× |
4. ScanSAR wide | 30 m | 55–140 | 15–32 | 3.7 (1.2), 3.1× | 13 (3.5), 3.7× |
Mission | Battery Capacity | Solar Array Power | Payload Peak Power | Payload Mass | Total Launch Mass |
---|---|---|---|---|---|
RaInCube | ~10 Ah | 45 W | 22 W | 5.5 kg | 12 kg |
TECSAR | 45 Ah | 1600 W | 850 W | 100 kg | 260 kg |
HJ-1C | 80 Ah | 1100 W | - | 200 kg | 890 kg |
SAR-Lupe | 108 Ah | - | 1800 W | 394 kg | 1230 kg |
TSX | 132 Ah | - | - | - | 770 kg |
Cosmo-SkyMed | 336 Ah | 40,000 W | 7000 W | - | 1700 kg |
Total # Satellites → | 6 | 12 | 24 | 36 |
---|---|---|---|---|
# orbit planes | 2 | 4 | 8 | 12 |
Average revisit (h) | <4 | <2 | 1 | <1 |
Maximum revisit (h) | 12 | 6 | 4 | <2 |
InSAR revisit (h) | 24 | 12 | 6 | 4 |
Mission | NISAR | Tandem-L | NovaSAR | |||
---|---|---|---|---|---|---|
# Sats (→) Orbit (inc) | 1 SSO (98.4°) | 2 SSO (98.4°) | 1 SSO (97.5°) | EqO (15°) | 3 SSO (97.5°) | EqO (15°) |
Altitude | 747 km | 745 km | 580 km | (←) | (←) | (←) |
LTAN | 18:00 h | - | 10:30 h | (←) | (←) | (←) |
Repeat cycle | 12 day | 16 days | - | - | - | - |
Revisit time | 5–7 day | 3–4 day | 1–3 day | 0.5–1.5 day | 0.5–1.5 day | 0.3 day |
Band | S, L | L | S | (←) | (←) | (←) |
Resolution | 7 m (Az), | 7 m, | 6–30 m | (←) | (←) | (←) |
3–24 m (SR) | 1 m (Spot) | (←) | (←) | (←) | ||
Swath | 240 + km | 350 km | 20–150 km | (←) | (←) | (←) |
Application | Resolution (Global/Local) | Accuracy |
---|---|---|
Upper canopy height and change | 50 m/30 m | 10% error for height <2 m |
3D forest structure and change | 50 m/30 m | - |
Forest biomass and change | 100 m/50 m | 20% error for biomass <100 ton/ha |
Agricultural SAR products | 40 m | - |
Mission | Cost/kg (kUSD) | Sat Mass (kg) | Sat Cost (MUSD) | Launch Cost (%) | Launch Vehicle | Ground Station |
---|---|---|---|---|---|---|
ICEYE | 82 | 85 | 7 | 42 | Falcon 9, Electron | KSAT |
SAR-Lupe | 117 | 770 | 90 | 24 | Kosmos | DLR |
TSX/TDX | 143 | 1230 | 117 | 20 | Dnepr | DLR |
NovaSAR | 146 | 400 | 59 | 23 | PSLV | KSAT |
Capella | 163 | 48 | 8 | 21 | Falcon 9, PSLV, Electron | AWS |
X-SAR | ||||||
Cosmo-SkyMed | 214 | 1700 | 364 | 13 | Soyuz | KSAT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paek, S.W.; Balasubramanian, S.; Kim, S.; de Weck, O. Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review. Remote Sens. 2020, 12, 2546. https://doi.org/10.3390/rs12162546
Paek SW, Balasubramanian S, Kim S, de Weck O. Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review. Remote Sensing. 2020; 12(16):2546. https://doi.org/10.3390/rs12162546
Chicago/Turabian StylePaek, Sung Wook, Sivagaminathan Balasubramanian, Sangtae Kim, and Olivier de Weck. 2020. "Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review" Remote Sensing 12, no. 16: 2546. https://doi.org/10.3390/rs12162546
APA StylePaek, S. W., Balasubramanian, S., Kim, S., & de Weck, O. (2020). Small-Satellite Synthetic Aperture Radar for Continuous Global Biospheric Monitoring: A Review. Remote Sensing, 12(16), 2546. https://doi.org/10.3390/rs12162546