Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Satellite imagery in the study and forecast of malaria

Abstract

More than 30 years ago, human beings looked back from the Moon to see the magnificent spectacle of Earth-rise. The technology that put us into space has since been used to assess the damage we are doing to our natural environment and is now being harnessed to monitor and predict diseases through space and time. Satellite sensor data promise the development of early-warning systems for diseases such as malaria, which kills between 1 and 2 million people each year.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical relationship between the challenge to a host population by a vector-borne pathogen and the risk of the host becoming infected.
Figure 2: Distributions of five mosquito species in the Anopheles gambiae complex in Africa, predicted from temporal Fourier-processed satellite data (Box 1) and elevation (global coverage provided by the digital elevation model GTOPO30; http://edcdaac.usgs.gov/gtopo30/README.html) at a spatial resolution of 0.05°.
Figure 3: Satellite-derived predictions of entomological inoculation rate (EIR) in Africa.
Figure 4: Amplitude of Fourier harmonics derived from windowed Fourier analysis of malaria cases per month and a range of climatic variables for the period January 1966 to December 1998.

Similar content being viewed by others

References

  1. Snow, R. W., Trape, J.-F. & Marsh, K. Childhood malaria mortality in Africa: past, present and future. Trends Parasitol. 17, 593–597 (2001).

    Article  CAS  Google Scholar 

  2. Rogers, D. J. Satellite imagery, tsetse and trypanosomiasis in Africa. Prev. Vet. Med. 11, 201–220 (1991).

    Article  Google Scholar 

  3. Macdonald, G. The Epidemiology and Control of Malaria (Oxford Univ. Press, London, 1957).

    Google Scholar 

  4. Onori, E. & Grab, B. Indicators for the forecasting of malaria epidemics. Bull. World Health Organ. 58, 91–98 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hay, S. I., Tucker, C. J., Rogers, D. J. & Packer, M. J. Remotely sensed surrogates of meteorological data for the study of the distribution and abundance of arthropod vectors of disease. Ann. Trop. Med. Parasitol. 90, 1–19 (1996).

    Article  CAS  Google Scholar 

  6. Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  7. Yacob, K. B. M. & Swaroop, S. Investigation of long-term periodicity in the incidence of epidemic malaria in the Punjab. J. Malaria Instit. India 6, 39–51 (1945).

    Google Scholar 

  8. Rogers, D. J. The dynamics of vector-transmitted diseases in human communities. Phil. Trans. R. Soc. Lond. B 321, 513–539 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Christophers, S. R. Epidemic malaria of the Punjab, with a note on a method of predicting epidemic years. Paludism 2, 17–26 (1911).

    Google Scholar 

  10. Gill, C. A. The prediction of malaria epidemics. Ind. J. Med. Res. 10, 1136–1143 (1923).

    Google Scholar 

  11. Swaroop, S. Forecasting of epidemic malaria in the Punjab, India. Am. J. Trop. Med. 29, 1–17 (1949).

    CAS  Google Scholar 

  12. Najera, J. A., Kouznetsov, R. L. & Delacollette, C. Malaria Epidemics: Detection and Control Forecasting and Prevention (World Health Organization, Geneva, 1998).

    Google Scholar 

  13. National Research Council. Under the Weather: Climate, Ecosystems, and Infectious Disease (Committee on Climate, Ecosystems, Infectious Diseases, and Human Health, Board on Atmospheric Sciences and Climate, National Research Council, Washington DC, 2001).

  14. Snow, R. W., Craig, M., Deichmann, U. & Marsh, K. Estimating mortality, morbidity and disability due to malaria among Africa's non-pregnant population. Bull. World Health Organ. 77, 624–640 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. World Health Organization. The World Health Report 1999: Making a Difference (World Health Organization, Geneva, 1999).

  16. Myers, M. F., Rogers, D. J., Cox, J., Flauhalt, A. & Hay, S. I. Forecasting disease risk for increased epidemic preparedness in public health. Adv. Parasitol. 47, 309–330 (2000).

    Article  CAS  Google Scholar 

  17. World Health Organization. Malaria Early Warning Systems, a Framework for Field Research in Africa: Concepts, Indicators and Partners (World Health Organization, Geneva, 2001).

  18. Hay, S. I. An overview of remote sensing and geodesy for epidemiology and public health application. Adv. Parasitol. 47, 1–35 (2000).

    Article  CAS  Google Scholar 

  19. Hay, S. I., Omumbo, J., Craig, M. & Snow, R. W. Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv. Parasitol. 47, 173–215 (2000).

    Article  CAS  Google Scholar 

  20. Snow, R. W. & Marsh, K. Will reducing Plasmodium falciparum transmission alter malaria mortality among African children? Parasitol. Today 11, 188–190 (1995).

    Article  Google Scholar 

  21. Smith, T. A., Leuenberger, R. & Lengeler, C. Child mortality and malaria transmission intensity in Africa. Trends Parasitol. 17, 145–149 (2001).

    Article  CAS  Google Scholar 

  22. Mapping Malaria Risk in Africa/Atlas du Risque de Malaria en Afrique (MARA/ARMA) collaboration. Towards an Atlas of Malaria Risk in Africa. First Technical Report of the MARA/ARMA (Mapping Malaria Risk in Africa) Collaboration (MARA/ARMA, Durban, 1998).

  23. Craig, M. H., Snow, R. W. & le Sueur, D. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol. Today 15, 105–111 (1999).

    Article  CAS  Google Scholar 

  24. Coetzee, M., Craig, M. H. & le Sueur, D. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol. Today 16, 74–77 (2000).

    Article  CAS  Google Scholar 

  25. Lindsay, S. W., Parson, L. & Thomas, C. J. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc. R. Soc. Lond. B 265, 847–854 (1998).

    Article  CAS  Google Scholar 

  26. Rogers, D. J. Satellites, space, time and the African trypanosomiases. Adv. Parasitol. 47, 129–171 (2000).

    Article  CAS  Google Scholar 

  27. Hay, S. I., Rogers, D. J., Toomer, J. F. & Snow, R. W. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, internet access and review. Trans. R. Soc. Trop. Med. Hyg. 94, 113–127 (2000).

    Article  CAS  Google Scholar 

  28. Congalton, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Rem. Sens. Environ. 37, 35–46 (1991).

    Article  ADS  Google Scholar 

  29. Hay, S. I., Snow, R. W. & Rogers, D. J. Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans. R. Soc. Trop. Med. Hyg. 92, 12–20 (1998).

    Article  CAS  Google Scholar 

  30. Hay, S. I., Snow, R. W. & Rogers, D. J. From predicting mosquito habitat to malaria seasons using remotely sensed data: practice, problems and perspectives. Parasitol. Today 14, 306–313 (1998).

    Article  CAS  Google Scholar 

  31. Butler, R. J. Atlas of Kenya: A Comprehensive Series of New and Authenticated Maps Prepared from the National Survey and other Governmental Sources with Gazetteer and Notes on Pronunciation and Spelling (The Survey of Kenya, Nairobi, 1959).

    Google Scholar 

  32. Hay, S. I. et al. Etiology of interepidemic periods of mosquito-borne disease. Proc. Natl Acad. Sci. USA 97, 9335–9339 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Kovats, R. S., Bouma, M. J. & Haines, A. El Niño and Health (World Health Organization, Geneva, 1999).

    Google Scholar 

  34. McGregor, G. R. & Nieuwolt, S. Tropical Climatology (Wiley, Chichester, 1998).

    Google Scholar 

  35. Martens, W. J. M. et al. Climate change and future populations at risk of malaria. Global Environ. Change 9, S89–S107 (1999).

    Article  Google Scholar 

  36. Rogers, D. J. & Randolph, S. E. The global spread of malaria in a future, warmer world. Science 289, 1763–1766 (2000).

    Article  ADS  CAS  Google Scholar 

  37. Hay, S. I. et al. Climate change and the resurgence of malaria in the East African highlands. Nature (in the press).

  38. Shanks, G. D., Biomndo, K., Hay, S. I. & Snow, R. W. Changing patterns of clinical malaria since 1965 among a tea estate population located in the Kenyan highlands. Trans. R. Soc. Trop. Med. Hyg. 94, 253–255 (2000).

    Article  CAS  Google Scholar 

  39. Rogers, D. J. & Randolph, S. E. Mortality rates and population density of tsetse flies correlated with satellite imagery. Nature 351, 739–741 (1991).

    Article  ADS  CAS  Google Scholar 

  40. Rogers, D. J. A general model for tsetse populations. Insect Sci. Applic. 11, 331–346 (1990).

    Google Scholar 

  41. Randolph, S. E. & Rogers, D. J. A generic population model for the Africa tick Rhipicephalus appendiculatus. Parasitology 115, 265–279 (1997).

    Article  Google Scholar 

  42. Green, P. E. Analyzing Multivariate Data (The Dryden Press, Hinsdale, IL, 1978).

    Google Scholar 

  43. Wolter, K. The Southern Oscillation in surface circulation and climate over the tropical Atlantic, Eastern Pacific, and Indian Ocean as captured by cluster analysis. Clim. Appl. Meteorol. 26, 540–558 (1987).

    Article  ADS  Google Scholar 

  44. Wolter, K. & Timlin, M. S. Measuring the strength of ENSO—how does 1997/98 rank? Weather 53, 315–324 (1998).

    Article  ADS  Google Scholar 

  45. Goetz, S., Prince, S. & Small, J. Advances in satellite remote sensing of environmental variables for epidemiological applications. Adv. Parasitol. 47, 289–307 (2000).

    Article  CAS  Google Scholar 

  46. Rogers, D. J. & Williams, B. G. in Large-Scale Ecology and Conservation Biology (35th Symp. Br. Ecol. Soc./Soc. Conserv. Biol., Univ. Southampton, 1993) (eds Edwards, P. J., May, R. M. & Webb, N. R.) 249–273 (Blackwell Scientific Publications, Oxford, 1994).

    Google Scholar 

  47. Rogers, D. J., Hay, S. I. & Packer, M. J. Predicting the distribution of tsetse flies in West Africa using temporal Fourier processed meteorological satellite data. Ann. Trop. Med. Parasitol. 90, 225–241 (1996).

    Article  CAS  Google Scholar 

  48. Augustin, N. H., Mugglestone, M. A. & Buckland, S. T. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33, 339–347 (1996).

    Article  Google Scholar 

  49. Manel, S., Dias, J. M., Buckton, S. T. & Ormerod, S. J. Alternative methods for predicting species distributions: an illustration with Himalayan river birds. J. Appl. Ecol. 36, 734–747 (1999).

    Article  Google Scholar 

  50. Rogers, D. J. & Randolph, S. E. Distribution of tsetse and ticks in Africa: past, present and future. Parasitol. Today 9, 266–271 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.E.R. is currently supported by a NERC Senior Research Fellowship. R.W.S. is supported as a Senior Research Fellow by the Wellcome Trust. S.I.H. is currently supported as an Advanced Training Fellow by the Wellcome Trust. We thank M. Coetzee for supplying geo-referenced observations on the African distribution of the A. gambiae complex and D. Shanks for providing malaria incidence and meteorological data from the Brooke Bond Kericho Tea Estate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Rogers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, D., Randolph, S., Snow, R. et al. Satellite imagery in the study and forecast of malaria. Nature 415, 710–715 (2002). https://doi.org/10.1038/415710a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/415710a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing