Identifying Optimal Variables to Predict Soil Organic Carbon in Sandy, Saline, and Black Soil Regions: Remote Sensing, Terrain, or Climate Factors?
<p>Locations of the study area: (<b>a</b>) location of the study area; (<b>b</b>) map of sandy region and sampling sites in AH; (<b>c</b>) image of sandy soil in AH; (<b>d</b>) map of saline soil and sampling sites in DM&LD; (<b>e</b>) image of soil salinization in DM&LD; (<b>f</b>) map of black soil region and sampling sites in HL; (<b>g</b>) image of black soil in HL.</p> "> Figure 2
<p>Original reflectance (OR, at the top of each figure) and continuum removal (CR, at the bottom of each figure) with different SOC contents. (<b>a</b>) AH, sandy region; (<b>b</b>) DM&LD, saline region; (<b>c</b>) HL, black soil region.</p> "> Figure 3
<p>The weighting values of bands, spectral indexes, and terrain factors ((<b>a</b>): AH; (<b>b</b>): DM&LD; (<b>c</b>): HL; (<b>d</b>): all regions). The yellow points mean two selected variables with the highest values in each part of the study areas (Bn (The nth bands of Sentinel-2), Green Normalized Difference Vegetation Index (GNDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Total Vegetation Index (SATVI), Transformed Vegetation Index (TVI), Ratio Vegetation Index (RVI), Green Ratio Vegetation Index (GRVI), Land Surface Water Index (LSWI), Moisture Stress Index (MSI), Soil Adjusted Vegetation Index (SAVI), Normalized Differences Vegetation Index (NDVI), slope (S), aspect (A), plan curvatures (PlC), profile curvatures (PrC), topographic wetness index (TWI), roughness (Rn), relief (RL), slope length (SL), and hillshade (HS)).</p> "> Figure 4
<p>Spatial map of precipitation and temperature in the three different regions.</p> "> Figure 5
<p>Training results for each region and all regions based on RF model. ((<b>a</b>). Sandy soil area in AH. (<b>b</b>). Saline soil area in DM&LD. (<b>c</b>). Black soil region in HL. (<b>d</b>). All regions.)</p> "> Figure 6
<p>Validation results of each region and all regions based on RF model. ((<b>a</b>). Sandy soil area in AH. (<b>b</b>). Saline soil area in DM&LD. (<b>c</b>). Black soil region in HL. (<b>d</b>). All regions.).</p> "> Figure 7
<p>Training and validation results using the local regression method based on RF.</p> "> Figure 8
<p>Spatial distribution of predicted SOC content in cultivated land in RF model ((<b>a</b>): SOC of AH; (<b>b</b>): SOC of DM&LD; (<b>c</b>): SOC of HL).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection and Measurement of Soil Samples
2.3. Explanatory Covariates for SOC Prediction
2.3.1. Remote Sensing Data
2.3.2. Terrain Factors
2.3.3. Climate Factors
2.4. Selection of Predictors for SOC Prediction
2.5. Random Forest Model
2.6. Model Calibration and Validation
3. Results and Discussion
3.1. Description of SOC Content
3.2. Characteristics of Soil Spectra
3.3. Selection of Predictors for SOC Prediction
3.4. RF Model Performance
3.5. Spatiotemporal Changes in SOC in the Study Area
3.6. Limitations and Future Research
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Li, S.; Wang, L.; Zheng, M.; Wang, Z.; Song, K. Effects of cropland reclamation on soil organic carbon in China’s black soil region over the past 35 years. Glob. Change Biol. 2023, 29, 5460–5477. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Ma, X.; Ma, W.; Wang, C.; Xu, Y. Nitrogen and phosphorus supply controls stability of soil organic carbon in alpine meadow of the Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2025, 379, 109336. [Google Scholar] [CrossRef]
- Niu, X.; Zhang, S.; Zhang, C.; Yan, P.; Wang, H.; Xu, W.; Song, M.; Aurangzeib, M. Key factors influencing the spatial distribution of soil organic carbon and its fractions in Mollisols. Catena 2024, 247, 108522. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Liu, H.; Song, K.; Wang, L.; Meng, X. Prediction of soil organic matter using VNIR spectral parameters extracted from shape characteristics. Soil Tillage Res. 2022, 216, 105241. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Atkinson, P.M.; Yao, H. Predicting soil organic carbon content in Spain by combining Landsat TM and ALOS PALSAR images. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102182. [Google Scholar] [CrossRef]
- Castaldi, F.; Hueni, A.; Chabrillat, S.; Ward, K.; Buttafuoco, G.; Bomans, B.; Vreys, K.; Brell, M.; van Wesemael, B. Evaluating the capability of the Sentinel 2 data for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 2019, 147, 267–282. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Lagacherie, P.; Zouari, H.; Laamrani, A.; Chehbouni, A. Mean spectral reflectance from bare soil pixels along a Landsat-TM time series to increase both the prediction accuracy of soil clay content and mapping coverage. Geoderma 2021, 388, 114864. [Google Scholar] [CrossRef]
- Fissore, C.; Dalzell, B.J.; Berhe, A.A.; Voegtle, M.A.; Evans, M.A.; Wu, A. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena 2017, 149, 140–149. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil Carbon Pools and World Life Zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Wang, C.; Gao, B.; Yang, K.; Wang, Y.; Sukhbaatar, C.; Yin, Y.; Feng, Q.; Yao, X.; Zhang, Z.; Yang, J. Inversion of soil organic carbon content based on the two-point machine learning method. Sci. Total Environ. 2024, 943, 173608. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee, A.; Scholten, T.; Taghizadeh-Mehrjardi, R.; Liess, M.; Don, A. Spatial Prediction of Organic Matter Quality in German Agricultural Topsoils. Agriculture 2024, 14, 1298. [Google Scholar] [CrossRef]
- Chen, D.; Chang, N.; Xiao, J.; Zhou, Q.; Wu, W. Mapping dynamics of soil organic matter in croplands with MODIS data and machine learning algorithms. Sci. Total Environ. 2019, 669, 844–855. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wang, D.; Qi, B.; Zheng, S.; Liu, H.; Luo, C.; Li, H.; Meng, L.; Meng, X.; et al. Spatiotemporal Changes and Driving Factors of Cultivated Soil Organic Carbon in Northern China’s Typical Agro-Pastoral Ecotone in the Last 30 Years. Remote Sens. 2021, 13, 3607. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Li, H.; Zhang, X.; Liu, H.; Dou, X.; Yu, Z. The minimum level for soil allocation using topsoil reflectance spectra: Genus or species? Catena 2019, 174, 36–47. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Taghizadeh-Mehrjardi, R.; Shahabi, A.; Heung, B.; Amirian-Chakan, A.; Davari, M.; Scholten, T. Assessing agricultural salt-affected land using digital soil mapping and hybridized random forests. Geoderma 2021, 385, 114858. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Li, S.; Wang, Z.; Zheng, M.; Song, K. Remote estimates of soil organic carbon using multi-temporal synthetic images and the probability hybrid model. Geoderma 2022, 425, 116066. [Google Scholar] [CrossRef]
- Shi, Z.; Ji, W.; Rossel, R.A.V.; Chen, S.; Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis-NIR spectral library. Eur. J. Soil Sci. 2015, 66, 679–687. [Google Scholar] [CrossRef]
- Ward, K.J.; Chabrillat, S.; Neumann, C.; Foerster, S. A remote sensing adapted approach for soil organic carbon prediction based on the spectrally clustered LUCAS soil database. Geoderma 2019, 353, 297–307. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650 Pt 2, 2374–2388. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, S.; Li, Y.; Liu, J.; Zhuo, Y.; Chen, H.; Wang, J.; Xu, L.; Sun, Z. Extensive reclamation of saline-sodic soils with flue gas desulfurization gypsum on the Songnen Plain, Northeast China. Geoderma 2018, 321, 52–60. [Google Scholar] [CrossRef]
- Jia-nan, W.; Hao-ming, F.; Yan-feng, J. Spatial variation characteristics and influencing factors of sediment connectivity in the black soil region of northeast China. Geoderma 2024, 446, 116895. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic matter, and carbon. In Methods of Soil Analysis; Soil Science Society of America: Madison, WI, USA, 1982; pp. 539–577. [Google Scholar]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Zhou, J.; Khot, L.R.; Bahlol, H.Y.; Boydston, R.; Miklas, P.N. Evaluation of ground, proximal and aerial remote sensing technologies for crop stress monitoring. IFAC PapersOnLine 2016, 49, 22–26. [Google Scholar] [CrossRef]
- Liu, Q.; Gui, Z.; Xiong, S.; Zhan, M. A principal component analysis dominance mechanism based many-objective scheduling optimization. Appl. Soft Comput. 2021, 113, 107931. [Google Scholar] [CrossRef]
- Accadia, C.; Mariani, S.; Casaioli, M.; Lavagnini, A.; Speranza, A. Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Weather Forecast. 2003, 18, 918–932. [Google Scholar] [CrossRef]
- Abdelhafidi, N.; Bachari, N.E.I.; Abdelhafidi, Z. Estimation of solar radiation using stepwise multiple linear regression with principal component analysis in Algeria. Meteorol. Atmos. Phys. 2020, 133, 205–216. [Google Scholar] [CrossRef]
- Spohn, M.; Bagchi, S.; Biederman, L.A.; Borer, E.T.; Bråthen, K.A.; Bugalho, M.N.; Caldeira, M.C.; Catford, J.A.; Collins, S.L.; Eisenhauer, N.; et al. The positive effect of plant diversity on soil carbon depends on climate. Nat. Commun. 2023, 14, 6624. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhang, X.; Meng, Q.; Gao, F.; Zhang, Y. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. Chemosphere 2017, 180, 531–539. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Dunagan, S.C.; Gilmore, M.S.; Varekamp, J.C. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environ. Pollut. 2007, 148, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, J.; Banerjee, S.; Zhou, N.; Zhao, Z.; Zhang, K.; Hu, M.; Tian, C. Biogeographical distribution of bacterial communities in saline agricultural soil. Geoderma 2020, 361, 114095. [Google Scholar] [CrossRef]
- Zhao, L.; Hong, H.; Liu, J.; Fang, Q.; Yao, Y.; Tan, W.; Yin, K.; Wang, C.; Chen, M.; Algeo, T.J. Assessing the utility of visible-to-shortwave infrared reflectance spectroscopy for analysis of soil weathering intensity and paleoclimate reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 512, 80–94. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, N.; Xie, J.; Ke, X. Coupled Vis-NIR spectroscopy with chemometrics strategy for soil organic carbon prediction in the Agro-pastoral Transitional zone of northwest China. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124496. [Google Scholar] [CrossRef]
- Padilha, M.C.d.C.; Vicente, L.E.; Demattê, J.A.M.; dos Santos Wendriner Loebmann, D.G.; Vicente, A.K.; Salazar, D.F.U.; Guimarães, C.C.B. Using Landsat and soil clay content to map soil organic carbon of oxisols and Ultisols near São Paulo, Brazil. Geoderma Reg. 2020, 21, e00253. [Google Scholar] [CrossRef]
- Chen, Y.; Day, S.D.; Wick, A.F.; McGuire, K.J. Influence of urban land development and subsequent soil rehabilitation on soil aggregates, carbon, and hydraulic conductivity. Sci. Total Environ. 2014, 494–495, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.Y.; Ding, J.L.; Jin, X.L.; Wang, J.Z.; Chen, X.Y.; Li, X.H.; Liu, J.; Xie, B.Q. Estimating Agricultural Soil Moisture Content through UAV-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Ge, X.Y.; Ding, J.L.; Teng, D.X.; Xie, B.Q.; Zhang, X.L.; Wang, J.J.; Han, L.J.; Bao, Q.L.; Wang, J.Z. Exploring the capability of Gaofen-5 hyperspectral data for assessing soil salinity risks. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102969. [Google Scholar] [CrossRef]
- Almeida, Â.; Calisto, V.; Esteves, V.I.; Schneider, R.J.; Soares, A.M.V.M.; Freitas, R. Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. Sci. Total Environ. 2022, 806, 150369. [Google Scholar] [CrossRef]
- Zare, S.; Shamsi, S.R.F.; Abtahi, S.A. Weakly-coupled geo-statistical mapping of soil salinity to Stepwise Multiple Linear Regression of MODIS spectral image products. J. Afr. Earth Sci. 2019, 152, 101–114. [Google Scholar] [CrossRef]
Classes | Predictors | Origin or Formula | Resolution (m) | Reference |
---|---|---|---|---|
Bands_mean | B2_mean | Blue (0.490 mm) | 10 | [24] |
B3_mean | Green (0.560 mm) | 10 | ||
B4_mean | Red (0.665 mm) | 10 | ||
B5_mean | Vegetation Red Edge (0.705 mm) | 10 | ||
B6_mean | Vegetation Red Edge (0.740 mm) | 10 | ||
B7_mean | Vegetation Red Edge (0.783 mm) | 10 | ||
B8_mean | NIR (0.842 mm) | 10 | ||
B8A_mean | Narrow NIR (0.865 mm) | 10 | ||
B11_mean | SWIR (1.610 mm) | 10 | ||
B12_mean | SWIR (2.190 mm) | 10 | ||
Spectral indices_mean | GNDVI_mean | 10 | [25] | |
EVI_mean | 10 | |||
SATVI_mean | 10 | |||
TVI_mean | 10 | |||
RVI_mean | 10 | |||
GRVI_mean | 10 | |||
LSWI_mean | 10 | |||
MSI_mean | 10 | |||
SAVI_mean | 10 | |||
NDVI_mean | 10 | |||
Terrain factors | DEM | https://search.asf.alaska.edu/#/ (accessed on 25 March 2020) | 30 | [13] |
S | Calculated by DEM | 30 | ||
A | Calculated by DEM | 30 | ||
PlC | Calculated by DEM | 30 | [2] | |
PrC | Calculated by DEM | 30 | ||
TWI | Calculated by DEM | 30 | [13] | |
Rn | Calculated by DEM | 30 | ||
RL | Calculated by DEM | 30 | ||
SL | Calculated by DEM | 30 | ||
Hs | Calculated by DEM | 30 | ||
Climate factors | MAT | Derived from http://data.cma.cn/ (accessed on 18 June 2022) | 1000 | |
MAP | Derived from http://data.cma.cn/ (accessed on 18 June 2022) | 1000 |
Set | N | Max (g·kg−1) | Min (g·kg−1) | Mean (g·kg−1) | SD (g·kg−1) | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|---|
AH | 102 | 12.16 | 2.00 | 5.90 | 2.11 | 0.33 | −0.13 | 35.82 |
DM&LD | 96 | 38.89 | 3.72 | 17.87 | 6.43 | 0.48 | 0.33 | 35.99 |
HL | 117 | 64.07 | 10.42 | 30.32 | 11.01 | 0.75 | 0.87 | 36.31 |
All | 315 | 64.07 | 2.00 | 18.63 | 12.84 | 0.91 | 0.59 | 68.89 |
AH | DM&LD | HL | ALL | |||||
---|---|---|---|---|---|---|---|---|
R2 | RMSE (g/kg) | R2 | RMSE (g/kg) | R2 | RMSE (g/kg) | R2 | RMSE (g/kg) | |
B+T+S+C | 0.62 | 3.83 | 0.57 | 4.77 | 0.69 | 6.32 | 0.76 | 5.11 |
B | 0.15 | 5.60 | 0.35 | 5.39 | 0.21 | 10.69 | 0.42 | 8.41 |
B+T | 0.28 | 5.13 | 0.41 | 5.21 | 0.31 | 9.56 | 0.50 | 7.43 |
B+S | 0.34 | 5.01 | 0.40 | 5.27 | 0.22 | 10.27 | 0.48 | 7.52 |
B+C | 0.65 | 3.82 | 0.57 | 4.77 | 0.66 | 6.43 | 0.73 | 5.32 |
T | 0.08 | 6.03 | 0.01 | 6.73 | 0.12 | 10.67 | 0.02 | 10.70 |
T+S | 0.27 | 5.27 | 0.01 | 6.66 | 0.14 | 10.23 | 0.16 | 9.42 |
T+C | 0.41 | 4.64 | 0.43 | 5.02 | 0.72 | 5.90 | 0.73 | 5.33 |
S | 0.12 | 5.69 | 0.01 | 7.16 | 0.03 | 11.39 | 0.13 | 9.77 |
S+C | 0.60 | 4.04 | 0.42 | 5.13 | 0.73 | 5.67 | 0.76 | 5.04 |
C | 0.63 | 3.81 | 0.43 | 5.04 | 0.71 | 5.90 | 0.77 | 4.93 |
B+T+C | 0.57 | 4.04 | 0.57 | 4.68 | 0.70 | 6.17 | 0.76 | 5.03 |
T+S+C | 0.56 | 4.05 | 0.43 | 5.04 | 0.73 | 5.79 | 0.75 | 5.16 |
B+S+C | 0.70 | 3.54 | 0.64 | 4.63 | 0.68 | 6.34 | 0.76 | 5.11 |
B+T+S | 0.41 | 4.75 | 0.45 | 5.12 | 0.29 | 9.64 | 0.50 | 7.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liu, H.; Wang, X.; Xu, X.; He, L.; Luo, C.; Li, Y.; Zhang, X.; Zang, D.; Zheng, S.; et al. Identifying Optimal Variables to Predict Soil Organic Carbon in Sandy, Saline, and Black Soil Regions: Remote Sensing, Terrain, or Climate Factors? Remote Sens. 2025, 17, 237. https://doi.org/10.3390/rs17020237
Wang L, Liu H, Wang X, Xu X, He L, Luo C, Li Y, Zhang X, Zang D, Zheng S, et al. Identifying Optimal Variables to Predict Soil Organic Carbon in Sandy, Saline, and Black Soil Regions: Remote Sensing, Terrain, or Climate Factors? Remote Sensing. 2025; 17(2):237. https://doi.org/10.3390/rs17020237
Chicago/Turabian StyleWang, Liping, Huanjun Liu, Xiang Wang, Xiaofeng Xu, Liyuan He, Chong Luo, Yong Li, Xinle Zhang, Deqiang Zang, Shufeng Zheng, and et al. 2025. "Identifying Optimal Variables to Predict Soil Organic Carbon in Sandy, Saline, and Black Soil Regions: Remote Sensing, Terrain, or Climate Factors?" Remote Sensing 17, no. 2: 237. https://doi.org/10.3390/rs17020237
APA StyleWang, L., Liu, H., Wang, X., Xu, X., He, L., Luo, C., Li, Y., Zhang, X., Zang, D., Zheng, S., & Mei, X. (2025). Identifying Optimal Variables to Predict Soil Organic Carbon in Sandy, Saline, and Black Soil Regions: Remote Sensing, Terrain, or Climate Factors? Remote Sensing, 17(2), 237. https://doi.org/10.3390/rs17020237