A Geophysical Investigation in Which 3D Electrical Resistivity Tomography and Ground-Penetrating Radar Are Used to Determine Singularities in the Foundations of the Protected Historic Tower of Murcia Cathedral (Spain)
<p>Location map of the Tower of Murcia Cathedral: projection of the Tower in Murcia, showing the east façade and its main parts.</p> "> Figure 2
<p>Continuous ERT profile. (<b>a</b>) Measuring equipment; (<b>b</b>) ERT profile in the east façade of the Tower; (<b>c</b>) electrodes placed in the northwest corner of the Tower.</p> "> Figure 3
<p>The electrodes placed inside the Tower (sacristy) and a detailed view of the arrangement, consisting of an electrode with an aluminium plate, a steel spring, and a carbomer-based gel.</p> "> Figure 4
<p>Continuous ERT profile: (<b>a</b>) location of the electrodes inside and outside the Tower and measuring equipment between electrodes 28 and 29; (<b>b</b>) an example of a measurement sequence of the electrodes used in a 3D array.</p> "> Figure 5
<p>Position of the pole: (<b>a</b>) distance from the pole to the measuring equipment (80 m); (<b>b</b>) location of the pole outside the west façade of the Cathedral; (<b>c</b>) detail of the pole.</p> "> Figure 6
<p>(<b>a</b>) Location plan for the profiles made with the 250 and 500 MHz antennas; (<b>b</b>) measurements made with the 500 MHz antenna; (<b>c</b>) measurements made with the 250 MHz antenna.</p> "> Figure 7
<p>A 3D ERT model characterising the area underneath the Tower in terms of subsurface electrical resistivity values.</p> "> Figure 8
<p>Radargrams obtained inside the Tower with the 250 MHz antenna. The significant reflections found are highlighted by red rectangles.</p> "> Figure 9
<p>Radargrams obtained inside the Tower with the 500 MHz antenna. The significant reflections found are highlighted by red rectangles.</p> "> Figure 10
<p>A 3D model of the radargrams obtained in the east-west direction inside the Tower with the 500 MHz antenna.</p> "> Figure 11
<p>(<b>a</b>) A 3D ERT model positioned under the Tower; (<b>b</b>) a detailed view of the model with the location set according to the floor plan of the Tower of the highly resistive zones.</p> "> Figure 12
<p>(<b>a</b>) Chamber located in the northeast corner (Geocisa, 2009 [<a href="#B30-remotesensing-16-04117" class="html-bibr">30</a>]); (<b>b</b>) interior of one of the chambers to which access was gained [<a href="#B30-remotesensing-16-04117" class="html-bibr">30</a>]; (<b>c</b>) actions carried out in 1999 in the interior of the Antesacristía (photograph taken by Juan Antonio Molina Serrano [<a href="#B30-remotesensing-16-04117" class="html-bibr">30</a>]); (<b>d</b>) location according to the floor plan of the Tower’s cavities; (<b>e</b>) northeast corner in 2009, with the original plinth and archaeological remains of a rammed-earth wall [<a href="#B30-remotesensing-16-04117" class="html-bibr">30</a>]; (<b>f</b>,<b>g</b>) project carried out in 2009, involving the filling of the trenches with draining material and the creation of an aeration chamber. Photographs taken by José Antonio Sánchez Pravia. Images by Geocisa [<a href="#B30-remotesensing-16-04117" class="html-bibr">30</a>].</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Test Site
2.2. Three-Dimensional Electrical Resistivity Tomography
2.3. Ground-Penetrating Radar (GPR) Profiles
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Union. European Framework for Action on Cultural Heritage; Publications Office of the European Union: Luxembourg, 2019; Available online: https://op.europa.eu/en/publication-detail/-/publication/5a9c3144-80f1-11e9-9f05-01aa75ed71a1/language-en (accessed on 1 October 2024).
- ICOMOS. Place, memory, meaning: Preserving intangible values in monuments and sites. In Proceedings of the 14th General Assembly and Scientific Symposium, Victoria Falls, Zimbabwe, 27–31 October 2003. [Google Scholar]
- Dabrowski, P.S.; Zienkiewicz, M.H.; Truong-Hong, L.; Lindenbergh, R. Assessing historical church tower asymmetry using point cloud spatial expansion. J. Build. Eng. 2023, 75, 107040. [Google Scholar] [CrossRef]
- Porcu, M.C.; Montis, E.; Saba, M. Role of model identification and analysis method in the seismic assessment of historical masonry towers. J. Build. Eng. 2021, 43, 103114. [Google Scholar] [CrossRef]
- Grassi, S.; Imposa, S.; Patti, G.; Boso, D.; Lombardo, G.; Panzera, F. Geophysical surveys for the dynamic characterization of a cultural heritage building and its subsoil: The S. Michele Arcangelo Church (Acireale, eastern Sicily). J. Cult. Herit. 2019, 36, 72–84. [Google Scholar] [CrossRef]
- Grassi, S.; Patti, G.; Tiralongo, P.; Imposa, S.; Aprile, D. Applied geophysics to support the cultural heritage safeguard: A quick and non-invasive method to evaluate the dynamic response of a great historical interest building. J. Appl. Geophys. 2021, 189, 104321. [Google Scholar] [CrossRef]
- Martínez-Segura, M.A.; García-Nieto, M.C.; Navarro, M.; Vásconez-Maza, M.D.; Oda, Y.; García-Jerez, A.; Enomoto, T. Seismic characterisation of the subsoil under a historic building: Cathedral Church of Saint Mary in Murcia case study. Eng. Geol. 2024, 335, 107529. [Google Scholar] [CrossRef]
- Muradov, M.; Kot, P.; Markiewicz, J.; Łapiński, S.; Tobiasz, A.; Onisk, K.; Shaw, A.; Hashim, K.; Zawieska, D.; Mohi-Ud-Din, G. Non-destructive system for in-wall moisture assessment of cultural heritage buildings. Measurement 2022, 203, 111930. [Google Scholar] [CrossRef]
- Rymarczyk, T.; Kłosowski, G.; Hoła, A.; Sikora, J.; Tchórzewski, P.; Skowron, Ł. Optimising the use of Machine learning algorithms in electrical tomography of building Walls: Pixel oriented ensemble approach. Measurement 2022, 188, 110581. [Google Scholar] [CrossRef]
- Solla, M.; Ángel Maté-González, M.; Sáez Blázquez, C.; Lagüela-López, S.; Nieto, I.M. Analysis of structural integrity through the combination of non-destructive testing techniques in heritage inspections: The study case of San Segundo’s hermitage (Ávila, Spain). J. Build. Eng. 2024, 89, 109295. [Google Scholar] [CrossRef]
- Balkaya, Ç.; Levent Ekinci, Y.; Çakmak, O.; Blömer, M.; Arnkens, J.; Kaya, M.A. A challenging archaeo-geophysical exploration through GPR and ERT surveys on the Keber Tepe, City Hill of Doliche, Commagene (Gaziantep, SE Turkey). J. Appl. Geophys. 2021, 186, 104272. [Google Scholar] [CrossRef]
- Fernández-Álvarez, J.-P.; Rubio-Melendi, D.; Quirós Castillo, J.A.; González-Quirós, A.; Cimadevilla-Fuente, D. Combined GPR and ERT exploratory geophysical survey of the Medieval Village of Pancorbo Castle (Burgos, Spain). J. Appl. Geophys. 2017, 144, 86–93. [Google Scholar] [CrossRef]
- Imposa, S.; Grassi, S.; Morreale, G.; Pirrotta, C.; Cavalier, L.; Gilotti, A.; Giuliano, D.; Cayre, E.; Caliò, L.M. New discovery of an ancient building in Akragas (Valley of Temples, Agrigento, Italy) through the integration of geophysical surveys. J. Archaeol. Sci. Rep. 2024, 53, 104368. [Google Scholar] [CrossRef]
- Leucci, G.; Miccoli, I.; Barbolla, D.F.; De Giorgi, L.; Ferrari, I.; Giuri, F.; Scardozzi, G. Integrated GPR and ERT Surveys for the Investigation of the External Sectors of the Castle of Melfi (Potenza, Italy). Remote Sens. 2023, 15, 1019. [Google Scholar] [CrossRef]
- Russolillo, A.; Martin, F.F.; Merico, A.; Sapia, V.; Talamo, P.; Materni, V.; Pischiutta, M.; de Vita, S.; Furlani, S.; Targia, D.; et al. Unveiling a hidden fortification system at “Faraglioni” Middle Bronze Age Village of Ustica Island (Palermo, Italy) through ERT and GPR prospections. J. Appl. Geophys. 2024, 220, 105272. [Google Scholar] [CrossRef]
- Yilmaz, S.; Balkaya, Ç.; Çakmak, O.; Oksum, E. GPR and ERT explorations at the archaeological site of Kılıç village (Isparta, SW Turkey). J. Appl. Geophys. 2019, 170, 103859. [Google Scholar] [CrossRef]
- Ortega-Ramírez, J.; Bano, M.; Cordero-Arce, M.T.; Villa-Alvarado, L.A.; Chavez Fraga, C. Application of non-invasive geophysical methods (GPR and ERT) to locate the ancient foundations of the first cathedral of Puebla, Mexico. A case study. J. Appl. Geophys. 2020, 174, 103958. [Google Scholar] [CrossRef]
- Evangelista, L.; de Silva, F.; d’Onofrio, A.; Di Fiore, V.; Silvestri, F.; Scotto di Santolo, A.; Cavuoto, G.; Punzo, M.; Tarallo, D. Application of ERT and GPR geophysical testing to the subsoil characterization of cultural heritage sites in Napoli (Italy). Measurement 2017, 104, 326–335. [Google Scholar] [CrossRef]
- Bellanova, J.; Calamita, G.; Catapano, I.; Ciucci, A.; Cornacchia, C.; Gennarelli, G.; Giocoli, A.; Fisangher, F.; Ludeno, G.; Morelli, G.; et al. Remote sensing GPR and ERT Investigations in Urban Areas: The Case-Study of Matera (Southern Italy). Remote Sens. 2020, 12, 1879. [Google Scholar] [CrossRef]
- Chávez, R.E.; Cifuentes-Nava, G.; Tejero, A.; Esteban Hernández-Quintero, J.; Vargas, D. Special 3D electric resistivity tomography (ERT) array applied to detect buried fractures on urban areas: San antonio tecómitl, Milpa alta, México. Geofis. Int. 2014, 53, 425–434. [Google Scholar] [CrossRef]
- Rizzo, E.; Capozzoli, L.; De Martino, G.; Grimaldi, S. Urban geophysical approach to characterize the subsoil of the main square in San Benedetto del Tronto town (Italy). Eng. Geol. 2019, 257, 105133. [Google Scholar] [CrossRef]
- Mohamed, A.M.E.; El-Hussain, I.; Deif, A.; Araffa, S.A.S.; Mansour, K.; Al-Rawas, G. Integrated ground penetrating radar, electrical resistivity tomography and multichannel analysis of surface waves for detecting near-surface caverns at Duqm area, Sultanate of Oman. Near Surf. Geophys. 2019, 17, 379–401. [Google Scholar] [CrossRef]
- Jiang, L.; Tian, G.; Wang, B.; Guo, X.; He, X.; Zou, A.; Chen, H.; Yang, T.; EI-Raouf, A.A. Application of three-dimensional electrical resistivity tomography in urban zones by arbitrary electrode distribution survey design. J. Appl. Geophys. 2021, 194, 104460. [Google Scholar] [CrossRef]
- Argote, D.L.; Tejero-Andrade, A.; Cárdenas-Soto, M.; Cifuentes-Nava, G.; Chávez, R.E.; Hernández-Quintero, E.; García-Serrano, A.; Ortega, V. Designing the underworld in Teotihuacan: Cave detection beneath the moon pyramid by ERT and ANT surveys. J. Archaeol. Sci. 2020, 118, 105141. [Google Scholar] [CrossRef]
- Chavez, R.E.; Tejero, A.; Cifuentes, G.; Argote, D.L.; Hernandez, J.E. A special ERT-3D array carried out to investigate the subsoil of the Pyramid El Castillo, Chichen Itza, Mexico. In Proceedings of the Near Surface Geoscience 2015—21st European Meeting of Environmental and Engineering Geophysics, Turin, Italy, 6–10 September 2015; pp. 651–655. [Google Scholar] [CrossRef]
- Tejero-Andrade, A.; Argote-Espino, D.L.; Cifuentes-Nava, G.; Hernández-Quintero, E.; Chávez, R.E.; García-Serrano, A. ‘Illuminating’ the interior of Kukulkan’s Pyramid, Chichén Itzá, Mexico, by means of a non-conventional ERT geophysical survey. J. Archaeol. Sci. 2018, 90, 1–11. [Google Scholar] [CrossRef]
- Almeida, F.; Barraca, N.; Moura, R.; Matias, M.J.S. Odd-even Pole-pole array and 3D resistivity surveys in urban and historical areas. In Proceedings of the 22nd European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience 2016, Barcelona, Spain, 4–8 September 2016. [Google Scholar] [CrossRef]
- Vera Boti, A. La Torre de la Catedral de Murcia: De la Teoría a los Resultados; Real Academia Alfonso X El Sabio: Murcia, Spain, 1993. [Google Scholar]
- Vera Boti, A.; Sánchez-Rojas Fenoll, M.C.; de la Peña Velasco, C.; Pascual Martínez, L.; Esbert Alemany, R.M. La Catedral de Murcia y su Plan Director; Colegio Oficial de Arquitectos de Murcia: Murcia, Spain, 1994. [Google Scholar]
- Molina Gaitán, J.C. Historia de la Restauración de la Catedral de Murcia: Intervenciones desde 1928 a 2010; Universidad Politécnica de Cartagena: Murcia, Spain, 2014; Volume 1. [Google Scholar]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Loke, M.H. Tutorial: 2D and 3D Electrical Imaging Surveys. 2002. Available online: https://personales.upv.es/jpadin/coursenotes.pdf (accessed on 2 November 2024).
- Simyrdanis, K.; Papadopoulos, N.; Kim, J.; Tsourlos, P.; Moffat, I. Archaeological investigations in the shallow seawater environment with electrical resistivity tomography. Near Surf. Geophys. 2015, 13, 601–611. [Google Scholar] [CrossRef]
- Advanced Geosciences, Inc. Available online: https://www.agiusa.com (accessed on 27 April 2024).
- SuperSting Wi-Fi|AGI. Available online: https://www.agiusa.com/supersting-wifi (accessed on 8 May 2024).
- Vásconez-Maza, M.D.; Martínez-Pagán, P.; Aktarakçi, H.; García-Nieto, M.C.; Martínez-Segura, M.A. Enhancing electrical contact with a commercial polymer for electrical resistivity tomography on archaeological sites: A case study. Materials 2021, 13, 5012. [Google Scholar] [CrossRef]
- Loke, M.H.; Barker, R.D. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Gilbert, R.; Douma, M.; Dyke, L.; Good, R.L.; Hunter, J.A.; Hyde, C.; Michaud, Y.; Pullan, S.E.; Robinson, S.D. A Handbook of Geophysical Techniques for Geomorphic and Environmental Research; Open File 3731; Geological Survey of Canada: Ottawa, ON, Canada, 1999; 125p. [Google Scholar]
- Rodríguez-Santalla, I.; Gomez-Ortiz, D.; Martín-Crespo, T.; Sánchez-García, M.J.; Montoya-Montes, I.; Martín-Velázquez, S.; Barrio, F.; Serra, J.; Ramírez-Cuesta, J.M.; Gracia, F.J. Study and Evolution of the Dune Field of La Banya Spit in Ebro Delta (Spain) Using Lidar Data and GPR. Remote Sens. 2021, 13, 802. [Google Scholar] [CrossRef]
- Greenhouse, J.P.; Gudjurgis, P.; Slaine, D. An Introduction to Near-Surface and Environmental Geophysical Methods and Applications. Reference Notes; SAGEEP Short Course; Versteeg, R., Ed.; Environmental and Engineering Geophysical Society: Denver, CO, USA, 1997; 131p. [Google Scholar]
- Carollo, A.; Capizzi, P.; Martorana, R. Joint interpretation of seismic refraction tomography and electrical resistivity tomography by cluster analysis to detect buried cavities. J. Appl. Geophys. 2020, 178, 104069. [Google Scholar] [CrossRef]
- Fischanger, F.; Catanzariti, G.; Comina, C.; Sambuelli, L.; Morelli, G.; Barsuglia, F.; Ellaithy, A.; Porcelli, F. Geophysical anomalies detected by electrical resistivity tomography in the area surrounding Tutankhamun’s tomb. J. Cult. Herit. 2019, 36, 63–71. [Google Scholar] [CrossRef]
- Zhao, W.; Tian, G.; Lin, Q.; Wang, X.; Wang, Y.; Bie, K. Integrated characterization of ancient burial mounds using ERT and limited drillings at the Hepu Han Tombs, in coastal area of Southern China. J. Archaeol. Sci. Rep. 2019, 23, 617–625. [Google Scholar] [CrossRef]
- Del Baño Martínez, F. El oratorio del Obispo de la Catedral de Murcia, un espacio con diversas funciones a través del tiempo. In Las Catedrales Españolas del Barroco a los Historicismos; Universidad de Murcia: Murcia, Spain, 2003; pp. 357–372. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Nieto, M.C.; Martínez-Segura, M.A.; Navarro, M.; Valverde-Palacios, I.; Martínez-Pagán, P. A Geophysical Investigation in Which 3D Electrical Resistivity Tomography and Ground-Penetrating Radar Are Used to Determine Singularities in the Foundations of the Protected Historic Tower of Murcia Cathedral (Spain). Remote Sens. 2024, 16, 4117. https://doi.org/10.3390/rs16214117
García-Nieto MC, Martínez-Segura MA, Navarro M, Valverde-Palacios I, Martínez-Pagán P. A Geophysical Investigation in Which 3D Electrical Resistivity Tomography and Ground-Penetrating Radar Are Used to Determine Singularities in the Foundations of the Protected Historic Tower of Murcia Cathedral (Spain). Remote Sensing. 2024; 16(21):4117. https://doi.org/10.3390/rs16214117
Chicago/Turabian StyleGarcía-Nieto, María C., Marcos A. Martínez-Segura, Manuel Navarro, Ignacio Valverde-Palacios, and Pedro Martínez-Pagán. 2024. "A Geophysical Investigation in Which 3D Electrical Resistivity Tomography and Ground-Penetrating Radar Are Used to Determine Singularities in the Foundations of the Protected Historic Tower of Murcia Cathedral (Spain)" Remote Sensing 16, no. 21: 4117. https://doi.org/10.3390/rs16214117