Statistical and Independent Component Analysis of Sentinel-1 InSAR Time Series to Assess Land Subsidence Trends
<p>The study areas of (1) Ravenna, (2) Bologna, and (3) Carpi–Correggio–Soliera: (<b>a</b>) geographical location in Italy; (<b>b</b>) extent of the European Ground Motion Service (EGMS) Level-3 (L3) and Level-2b (L2b) dataset footprints used for the statistical analysis, overlapped onto the Copernicus Global Digital Elevation Model [<a href="#B44-remotesensing-16-04066" class="html-bibr">44</a>]; and (<b>c</b>) detail of the mean vertical deformation velocity from EGMS L3 datasets, overlapped onto a Google satellite imagery basemap.</p> "> Figure 2
<p>(<b>a</b>) Mean LOS deformation velocity; (<b>b</b>) acceleration; (<b>c</b>) annual seasonality amplitude; and (<b>d</b>) PS-Time classification maps for Ravenna, overlapped onto Google satellite imagery. The area selected for the following ICA analysis is highlighted on (<b>a</b>). DCV = discontinuous with constant velocity; DVV = discontinuous with variable velocity.</p> "> Figure 3
<p>(<b>a</b>) Mean LOS deformation velocity; (<b>b</b>) acceleration; (<b>c</b>) annual seasonality amplitude; and (<b>d</b>) PS-Time classification maps for Bologna, overlapped onto Google satellite imagery, with indication of the administrative boundary of the city of Bologna (black polygon). The rectangles (i.e., 1 in (<b>c</b>), and 2 in (<b>b</b>)) indicate the testing areas utilized in the following ICA analysis. DCV = discontinuous with constant velocity; DVV = discontinuous with variable velocity.</p> "> Figure 4
<p>(<b>a</b>) Mean LOS deformation velocity; (<b>b</b>) acceleration; (<b>c</b>) annual seasonality amplitude; and (<b>d</b>) PS-Time classification maps in the Carpi–Correggio–Soliera area, overlapped onto Google satellite imagery. The area selected for the following ICA analysis is highlighted on (<b>a</b>). DCV = discontinuous with constant velocity; DVV = discontinuous with variable velocity.</p> "> Figure 5
<p>Independent components identified in Ravenna (Ra) testing area, overlapped onto Google satellite imagery.</p> "> Figure 6
<p>Independent components identified in Bologna (Bo), covering (<b>a</b>) Area 1, and (<b>b</b>) Area 2, overlapped onto Google satellite imagery.</p> "> Figure 7
<p>Independent components identified in Soliera (So), overlapped onto Google satellite imagery.</p> "> Figure 8
<p>Correlation between mean deformation velocity, acceleration and amplitude of the APC, from EGMS products and PS-Time analysis, and the ICs retained for the area of Ravenna. Linear or bilinear fitting (red lines) and R<sup>2</sup> values are shown in the graphs that show the best correlation.</p> "> Figure 9
<p>Correlation between mean deformation velocity, acceleration, and amplitude of the APC, from EGMS products and PS-Time analysis, and the ICs retained for Area 1 in Bologna. Linear or quadratic fitting (red lines) and R2 values are shown in the graphs that show the best correlation.</p> "> Figure 10
<p>Correlation between mean deformation velocity, acceleration, and amplitude of the APC, from EGMS products and PS-Time analysis, and the ICs retained for Area 2 in Bologna. Linear or quadratic fitting (red lines) and R<sup>2</sup> values are shown in the graphs that show the best correlation.</p> "> Figure 11
<p>Correlation between mean deformation velocity, acceleration, and amplitude of the APC, from EGMS products and PS-Time analysis, and the ICs retained for the area of Soliera. Linear or quadratic fitting (red lines) and R<sup>2</sup> values are shown in the graphs that show the best correlation.</p> "> Figure 12
<p>(<b>a</b>) Geological map with the location of the principal gas fields operating near the coast of Ravenna and two ARPAE groundwater monitoring wells, overlapped onto Google satellite imagery; (<b>b</b>) Comparison between piezometric level variations in ARPAE’s monitoring wells RA49-00 and RA29-00 and the deformation time series of contiguous points; (<b>c</b>) Deformation velocities observed within each lithological unit, expressed in [mm/year]. Gas exploitation data in (<b>a</b>) is made available by the Italian Ministry of Environment and Energy Security [<a href="#B58-remotesensing-16-04066" class="html-bibr">58</a>], while the location of the monitoring wells and the geological layers were downloaded from the MinERva Portal, managed by the Emilia-Romagna Region service [<a href="#B46-remotesensing-16-04066" class="html-bibr">46</a>].</p> "> Figure 13
<p>(<b>a</b>) Position of ARPAE’S groundwater monitoring wells and the recorded change in piezometric levels (Δ<span class="html-italic">h<sub>i</sub></span>) for the area of Bologna during the studied time period (2018−2022), overlapped onto Google Satellite imagery; (<b>b</b>) Comparison between piezometric level variations in three of the wells and the deformation time series of contiguous PS–DS points; (<b>c</b>) Geological map of Bologna; (<b>d</b>) Deformation velocities observed within each lithological unit, ex-pressed in [mm/year]. Geological layers used in (<b>c</b>) were downloaded from the MinERva Portal, managed by the Emilia-Romagna Region service [<a href="#B46-remotesensing-16-04066" class="html-bibr">46</a>].</p> "> Figure 14
<p>(<b>a</b>) Geological map of Carpi–Correggio–Soliera subsidence hotspot, overlapped onto Google satellite imagery; (<b>b</b>) Comparison between piezometric level variations in MO10-01 ARPAE’s monitoring well and a deformation time series of a contiguous PS–DS point; (<b>c</b>) Deformation velocities observed within each lithology, expressed in [mm/year]. Geological layers used were downloaded from the MinERva Portal, managed by the Emilia-Romagna Region service [<a href="#B46-remotesensing-16-04066" class="html-bibr">46</a>].</p> "> Figure A1
<p>Example of a time series classified as “Bilinear” by PS-Time automatic classification algorithm, in the southern area of Soliera.</p> "> Figure A2
<p>Time series of one of the PS–DS points scored positively for Bo2–IC2 seasonal component.</p> "> Figure A3
<p>Acceleration variations vs. buffer distances from Angela Angelina reinjection well.</p> ">
Abstract
:1. Introduction
2. Study Areas
3. Materials and Methods
3.1. DInSAR Datasets
3.2. Groundwater and Geological Datasets
3.3. Time Series Semi-Automatic Classification (PS-Time)
3.4. Independent Component Analysis (ICA)
4. Results
4.1. Subsidence Time Series Trend Classification
4.2. Retrieval of Different Deformation Patterns Through ICA
4.3. Subsidence Drivers Analysis
4.3.1. Ravenna
4.3.2. Bologna
4.3.3. Carpi, Correggio, and Soliera
5. Discussion
5.1. PS-Time and ICA for Deformation Time Series Analysis
5.2. Subsidence in Ravenna, Bologna and Carpi–Correggio–Soliera
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Hasan, M.F.; Smith, R.; Vajedian, S.; Pommerenke, R.; Majumdar, S. Global Land Subsidence Mapping Reveals Widespread Loss of Aquifer Storage Capacity. Nat. Commun. 2023, 14, 6180. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.L.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; United States Geological Survey (USGS): Reston, VA, USA, 1999. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic Aperture Radar Interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping Small Elevation Changes over Large Areas: Differential Radar Interferometry. J. Geophys. Res. Solid. Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Blanco-Sànchez, P.; Mallorquí, J.J.; Duque, S.; Monells, D. The Coherent Pixels Technique (CPT): An Advanced DInSAR Technique for Nonlinear Deformation Monitoring. In Earth Sciences and Mathematics: Volume 1; Camacho, A.G., Díaz, J.I., Fernández, J., Eds.; Birkhäuser: Basel, Switzerland, 2008; pp. 1167–1193. ISBN 978-3-7643-8907-9. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A Small-Baseline Approach for Investigating Deformations on Full-Resolution Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6259–6281. [Google Scholar] [CrossRef]
- Raucoules, D.; Bourgine, B.; de Michele, M.; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; et al. Validation and Intercomparison of Persistent Scatterers Interferometry: PSIC4 Project Results. J. Appl. Geophy 2009, 68, 335–347. [Google Scholar] [CrossRef]
- Quin, G.; Loreaux, P. Submillimeter Accuracy of Multipass Corner Reflector Monitoring by PS Technique. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1775–1783. [Google Scholar] [CrossRef]
- Ferretti, A.; Savio, G.; Barzaghi, R.; Borghi, A.; Musazzi, S.; Novali, F.; Prati, C.; Rocca, F. Submillimeter Accuracy of InSAR Time Series: Experimental Validation. Geosci. Remote Sens. IEEE Trans. 2007, 45, 1142–1153. [Google Scholar] [CrossRef]
- Cigna, F.; Esquivel Ramírez, R.; Tapete, D. Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sens. 2021, 13, 4800. [Google Scholar] [CrossRef]
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Land Subsidence and Aquifer-System Storage Loss in Central Mexico: A Quasi-Continental Investigation with Sentinel-1 InSAR. Geophys. Res. Lett. 2022, 49, e2022GL098923. [Google Scholar] [CrossRef]
- Lanari, R.; Bonano, M.; Casu, F.; De Luca, C.; Manunta, M.; Manzo, M.; Onorato, G.; Zinno, I. Automatic Generation of Sentinel-1 Continental Scale DInSAR Deformation Time Series through an Extended P-SBAS Processing Pipeline in a Cloud Computing Environment. Remote Sens. 2020, 12, 2961. [Google Scholar] [CrossRef]
- Costantini, M.; Minati, F.; Trillo, F.; Ferretti, A.; Novali, F.; Passera, E.; Dehls, J.; Larsen, Y.; Marinkovic, P.; Eineder, M.; et al. European Ground Motion Service (EGMS). In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Brussels, Belgium, 11–16 July 2021; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021; pp. 3293–3296. [Google Scholar] [CrossRef]
- Mele, A.; Crosetto, M.; Miano, A.; Prota, A. ADAfinder Tool Applied to EGMS Data for the Structural Health Monitoring of Urban Settlements. Remote Sens. 2023, 15, 324. [Google Scholar] [CrossRef]
- Berti, M.; Corsini, A.; Franceschini, S.; Iannacone, J.P. Automated Classification of Persistent Scatterers Interferometry Time Series. Nat. Hazards Earth Syst. Sci. 2013, 13, 1945–1958. [Google Scholar] [CrossRef]
- Festa, D.; Novellino, A.; Hussain, E.; Bateson, L.; Casagli, N.; Confuorto, P.; Del Soldato, M.; Raspini, F. Unsupervised Detection of InSAR Time Series Patterns Based on PCA and K-Means Clustering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103276. [Google Scholar] [CrossRef]
- Bonì, R.; Pilla, G.; Meisina, C. Methodology for Detection and Interpretation of Ground Motion Areas with the A-DInSAR Time Series Analysis. Remote Sens. 2016, 8, 686. [Google Scholar] [CrossRef]
- Notti, D.; Calò, F.; Cigna, F.; Manunta, M.; Herrera, G.; Berti, M.; Meisina, C.; Tapete, D.; Zucca, F. A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies. Pure Appl. Geophys. 2015, 172, 3081–3105. [Google Scholar] [CrossRef]
- Righini, M.; Bonì, R.; Sapio, S.; Gatti, I.; Salvadore, M.; Taramelli, A. Development of a Proof-of-Concept A-DInSAR-Based Monitoring Service for Land Subsidence. Remote Sens. 2024, 16, 1981. [Google Scholar] [CrossRef]
- Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.J.; Baker, B. Predictability of Hydraulic Head Changes and Characterization of Aquifer-System and Fault Properties from InSAR-Derived Ground Deformation. J. Geophys. Res. Solid. Earth 2014, 119, 6572–6590. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR Survey of Structurally-Controlled Land Subsidence Due to Groundwater Exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Ebmeier, S.K. Application of Independent Component Analysis to Multitemporal InSAR Data with Volcanic Case Studies. J. Geophys. Res. Solid. Earth 2016, 121, 8970–8986. [Google Scholar] [CrossRef]
- Gaddes, M.E.; Hooper, A.; Bagnardi, M.; Inman, H.; Albino, F. Blind Signal Separation Methods for InSAR: The Potential to Automatically Detect and Monitor Signals of Volcanic Deformation. J. Geophys. Res. Solid. Earth 2018, 123, 10226–10251. [Google Scholar] [CrossRef]
- Maubant, L.; Pathier, E.; Daout, S.; Radiguet, M.; Doin, M.-P.; Kazachkina, E.; Kostoglodov, V.; Cotte, N.; Walpersdorf, A. Independent Component Analysis and Parametric Approach for Source Separation in InSAR Time Series at Regional Scale: Application to the 2017–2018 Slow Slip Event in Guerrero (Mexico). J. Geophys. Res. Solid Earth 2020, 125, e2019JB018187. [Google Scholar] [CrossRef]
- Peng, M.; Lu, Z.; Zhao, C.; Motagh, M.; Bai, L.; Conway, B.D.; Chen, H. Mapping Land Subsidence and Aquifer System Properties of the Willcox Basin, Arizona, from InSAR Observations and Independent Component Analysis. Remote Sens. Environ. 2022, 271, 112894. [Google Scholar] [CrossRef]
- Farías, C.A.; Lenardón Sánchez, M.; Bonì, R.; Cigna, F. Characterization of Land Subsidence in Ravenna Using Sentinel-1 InSAR and Geostatistics. In Proceedings of the VII IEEE Congreso Bienal ARGENCON, Buenos Aires, Argentina, 18–20 September 2024; IEEE: San Nicolás de los Arroyos, Buenos Aires, Argentina; p. 8, in press. [Google Scholar]
- Agenzia Prevenzione Ambiente Energia Emilia-Romagna (ARPAE). Monitoraggio Dei Movimenti Verticali Del. Suolo e Aggiornamento Della Cartografia Di Subsidenza Nella Pianura Dell’Emilia-Romagna—Periodo 2016–2021; ARPAE: Bologna, Italy, 2023; p. 97. [Google Scholar]
- Marchetti, M.; Soldati, M.; Vandelli, V. The Great Diversity of Italian Landscapes and Landforms: Their Origin and Human Imprint. In Landscapes and Landforms of Italy; Soldati, M., Marchetti, M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 7–20. ISBN 978-3-319-26194-2. [Google Scholar] [CrossRef]
- Castaldini, D.; Marchetti, M.; Norini, G.; Vandelli, V.; Zuluaga Vélez, M.C. Geomorphology of the Central Po Plain, Northern Italy. J. Maps 2019, 15, 780–787. [Google Scholar] [CrossRef]
- Doglioni, C. Some Remarks on the Origin of Foredeeps. Tectonophysics 1993, 228, 1–20. [Google Scholar] [CrossRef]
- Bruno, L.; Campo, B.; Costagli, B.; Stouthamer, E.; Teatini, P.; Zoccarato, C.; Amorosi, A. Factors Controlling Natural Subsidence in the Po Plain. Proc. Int. Assoc. Hydrol. Sci. 2020, 382, 285–290. [Google Scholar] [CrossRef]
- Severi, P. Soil Uplift in the Emilia-Romagna Plain (Italy) by Satellite Radar Interferometry. Bull. Geophys. Oceanogr. 2021, 62, 527–542. [Google Scholar] [CrossRef]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M. Groundwater Pumping and Land Subsidence in the Emilia-Romagna Coastland, Italy: Modeling the Past Occurrence and the Future Trend. Water Resour. Res. 2006, 42, W01406. [Google Scholar] [CrossRef]
- Gambolati, G.; Teatini, P.; Tomasi, L.; Gonella, M. Coastline Regression of the Romagna Region, Italy, Due to Natural and Anthropogenic Land Subsidence and Sea Level Rise. Water Resour. Res. 1999, 35, 163–184. [Google Scholar] [CrossRef]
- Bertoni, W.; Elmi, C.; Marabini, F. The Subsidence of Ravenna. G. Di Geol. Appl. 2005, 1, 23–32. [Google Scholar] [CrossRef]
- Carminati, E.; Martinelli, G.; Severi, P. Influence of Glacial Cycles and Tectonics on Natural Subsidence in the Po Plain (Northern Italy): Insights from 14C Ages. Geochem. Geophys. Geosyst. 2003, 4, 1082. [Google Scholar] [CrossRef]
- Carminati, E.; Martinelli, G. Subsidence Rates in the Po Plain, Northern Italy: The Relative Impact of Natural and Anthropogenic Causation. Eng. Geol. 2002, 66, 241–255. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Copernicus Global Digital Elevation Model; Distributed by OpenTopography; ESA: Paris, France, 2024. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). End-to-End Implementation and Operation of the European Ground Motion Service (EGMS)—Product Description and Format Specification; Report No. EGMS-D6-PDD-SC1-2.0-009; EEA: Copenhagen, Denmark, 2023; p. 33. [Google Scholar]
- Regione Emilia-Romagna—Direzione Generale Cura del Territorio e dell’Ambiente Portale MinERva. Available online: https://datacatalog.regione.emilia-romagna.it/catalogCTA/ (accessed on 22 May 2024).
- Iannacone, J.P.; Corsini, A.; Berti, M.; Morgan, J.; Falorni, G. Characterization of Longwall Mining Induced Subsidence by Means of Automated Analysis of InSAR Time-Series. In Engineering Geology for Society and Territory; Lollino, G., Manconi, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, pp. 973–977. [Google Scholar] [CrossRef]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M.; et al. From ERS-1/2 to Sentinel-1: Two Decades of Subsidence Monitored through A-DInSAR Techniques in the Ravenna Area (Italy). GIsci Remote Sens. 2017, 54, 305–328. [Google Scholar] [CrossRef]
- Main, I.G.; Leonard, T.; Papasouliotis, O.; Hatton, C.G.; Meredith, P.G. One Slope or Two? Detecting Statistically Significant Breaks of Slope in Geophysical Data, with Application to Fracture Scaling Relationships. Geophys. Res. Lett. 1999, 26, 2801–2804. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Farrell, S. AIC Model Selection Using Akaike Weights. Psychon. Bull. Rev. 2004, 11, 192–196. [Google Scholar] [CrossRef]
- Quinn, G.P.; Keough, M.J. Experimental Design and Data Analysis for Biologists; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. A Fast Fixed-Point Algorithm for Independent Component Analysis. Neural Comput. 1997, 9, 1483–1492. [Google Scholar] [CrossRef]
- Hyvärinen, A.; Oja, E. Independent Component Analysis: Algorithms and Applications. Neural Netw. 2000, 13, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Aalto University FastICA Package for Matlab. Available online: https://research.ics.aalto.fi/ica/fastica/ (accessed on 18 August 2024).
- European Union’s Copernicus Land Monitoring Service Urban Atlas Land Cover/Land Use 2012/2018. Available online: https://land.copernicus.eu/en/map-viewer?dataset=70903c20fc2a4a90ad200bc95a7557d4 (accessed on 15 May 2024).
- Teatini, P.; Ferronato, M.; Gambolati, G.; Bertoni, W.; Gonella, M. A Century of Land Subsidence in Ravenna, Italy. Environ. Geol. 2005, 47, 831–846. [Google Scholar] [CrossRef]
- Ministero Dell’Ambiente e della Sicurezza Energetica. Direzione Generale Infrastrutture e Sicurezza (IS) WebGIS UNMIG. Available online: https://www.arcgis.com/home/webmap/viewer.html?webmap=30c7bd2018ea4eac96a24df3e6097c56&extent=7.7579,42.0653,15.8713,45.5368 (accessed on 15 May 2024).
- Zuccarini, A.; Giacomelli, S.; Severi, P.; Berti, M. Long-Term Spatiotemporal Evolution of Land Subsidence in the Urban Area of Bologna, Italy. Bull. Eng. Geol. Environ. 2023, 83, 35. [Google Scholar] [CrossRef]
- Darini, G.; Modoni, G.; Saroli, M.; Croce, P. Land Subsidence Induced by Groundwater Extraction: The Case of Bologna. In Proceedings of the 4th International Congress on Environmental Modelling and Software, Barcelona, Spain, 7–10 July 2008; Sánchez-Marré, M., Béjar, J., Comas, J., Rizzoli, A., Guariso, G., Eds.; Brigham Young University: Barcelona, Spain, 2008; Volume 12, ISBN 978-84-7653-074-0. [Google Scholar]
- Bonì, R.; Taramelli, A.; Cigna, F.; Teatini, P.; Paranunzio, R.; Zoccarato, C.; Marcaccio, M.; Mazzei, M.; Severi, P. Assessment of the Potential of InSAR Time Series to Support Sustainable Groundwater Management in the Emilia-Romagna Region. In Proceedings of the 14° Workshop Tematico AIT-ENEA, Telerilevamento Applicato alla Gestione Delle Risorse Idriche, Bologna, Italy, 6 June 2024; Candigliota, E., Immordino, F., Eds.; ENEA: Stockholm, Sweden, 2024; pp. 43–45, ISBN 978-88-8286-471-2. [Google Scholar]
- Giacomelli, S.; Zuccarini, A.; Amorosi, A.; Bruno, L.; Di Paola, G.; Martini, A.; Severi, P.; Berti, M. 3D Geological Modelling of the Bologna Urban Area (Italy). Eng. Geol. 2023, 324, 107242. [Google Scholar] [CrossRef]
- Agenzia Prevenzione Ambiente Energia Emilia-Romagna (ARPAE). Rilievo Della Subsidenza Nella Pianura Emiliano-Romagnola—Seconda Fase; ARPAE: Bologna, Italy, 2018; p. 109. [Google Scholar]
- Garcia Navarro, A.M.; Rocca, V.; Capozzoli, A.; Chiosa, R.; Verga, F. Investigation of Ground Movements Induced by Underground Gas Storages via Unsupervised ML Methodology Applied to InSAR Data. Gas. Sci. Eng. 2024, 125, 205293. [Google Scholar] [CrossRef]
- Beccaro, L.; Cianflone, G.; Tolomei, C. InSAR-Based Detection of Subsidence Affecting Infrastructures and Urban Areas in Emilia-Romagna Region (Italy). Geosciences 2023, 13, 138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farías, C.A.; Lenardón Sánchez, M.; Bonì, R.; Cigna, F. Statistical and Independent Component Analysis of Sentinel-1 InSAR Time Series to Assess Land Subsidence Trends. Remote Sens. 2024, 16, 4066. https://doi.org/10.3390/rs16214066
Farías CA, Lenardón Sánchez M, Bonì R, Cigna F. Statistical and Independent Component Analysis of Sentinel-1 InSAR Time Series to Assess Land Subsidence Trends. Remote Sensing. 2024; 16(21):4066. https://doi.org/10.3390/rs16214066
Chicago/Turabian StyleFarías, Celina Anael, Michelle Lenardón Sánchez, Roberta Bonì, and Francesca Cigna. 2024. "Statistical and Independent Component Analysis of Sentinel-1 InSAR Time Series to Assess Land Subsidence Trends" Remote Sensing 16, no. 21: 4066. https://doi.org/10.3390/rs16214066