Seasonal and Interannual Variations in Sea Ice Thickness in the Weddell Sea, Antarctica (2019–2022) Using ICESat-2
<p>(<b>a</b>) Sea ice concentration from NSIDC for Antarctica in January 2022 with solid dark blue depicting ice concentrations smaller than 15% and white indicating 100% ice. The study area in the Weddell Sea is indicated by the yellow polygon. (<b>b</b>) Expanded study area map showing the location of ICESat-2 tracks for September 2022. Also shown are the 45°W meridian, which divides the study area into eastern and western sectors, and the 68°S parallel, which further divides the western sector into northwestern and southwestern regions, for the purpose of this study. The solid blue dots indicate the approximate locations of the field observations used in this study, which were obtained from 2019 to 2022.</p> "> Figure 2
<p>(<b>a</b>–<b>p</b>) Multi-panel maps of the study area showing ICESat-2 total freeboard tracks from 2019 to 2022 for different seasons. The bottom two panels show: (<b>q</b>) the modal values of freeboard in meters for the western Weddell (solid color circles) with second modal values shown by the color crosses, 2019 (red), 2020 (black), 2021 (green), and 2022 (blue); and (<b>r</b>) the same as (<b>q</b>) but for the eastern Weddell.</p> "> Figure 2 Cont.
<p>(<b>a</b>–<b>p</b>) Multi-panel maps of the study area showing ICESat-2 total freeboard tracks from 2019 to 2022 for different seasons. The bottom two panels show: (<b>q</b>) the modal values of freeboard in meters for the western Weddell (solid color circles) with second modal values shown by the color crosses, 2019 (red), 2020 (black), 2021 (green), and 2022 (blue); and (<b>r</b>) the same as (<b>q</b>) but for the eastern Weddell.</p> "> Figure 2 Cont.
<p>(<b>a</b>–<b>p</b>) Multi-panel maps of the study area showing ICESat-2 total freeboard tracks from 2019 to 2022 for different seasons. The bottom two panels show: (<b>q</b>) the modal values of freeboard in meters for the western Weddell (solid color circles) with second modal values shown by the color crosses, 2019 (red), 2020 (black), 2021 (green), and 2022 (blue); and (<b>r</b>) the same as (<b>q</b>) but for the eastern Weddell.</p> "> Figure 3
<p>Thickness estimates of the western Weddell (<b>left</b>—<b>a</b>,<b>c</b>,<b>e</b>,<b>g</b>) and eastern Weddell (<b>right</b>—<b>b</b>,<b>d</b>,<b>f</b>,<b>h</b>) regions from 2019 to 2022. Mean, mode, and Standard Deviation (SD) in meters. Bimodal mode values in the western Weddell are depicted in parenthesis.</p> "> Figure 4
<p>Location of ICESat-2 tracks in red with field data in blue. Field data from 2019 and 2021 are point measurements. The data from 2022 are thickness measurements on board Endurance 22 ship EM data.</p> "> Figure 5
<p>Mean thickness from (<b>a</b>) northwestern and (<b>b</b>) southwestern Weddell Sea.</p> "> Figure 6
<p>ERA5 monthly averaged 2 m air temperature in Kelvin for the (<b>a</b>) western and (<b>b</b>) eastern Weddell, 2019–2022.</p> "> Figure 7
<p>Comparison of ICESat and IceBridge mean thickness results in blue from [<a href="#B7-remotesensing-16-03909" class="html-bibr">7</a>] using the same method, with ICESat-2 results from this study in orange.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. Sea Ice Freeboard Observations from ICESat-2, Temperature Data and Study Area
2.2. Sea Ice Thickness Estimates from ICESat-2 Freeboard Observation
2.3. Sea Ice Thickness Estimates from Field Observations
2.4. Temperature Data and Data from Previous Litretaure
3. Results and Discussion
3.1. Freeboard Comparison of Western and Eastern Weddell Sea Sectors (2019–2022)
3.2. Estimating Sea Ice Thickness from ICESat-2 Using the Empirical Formula
3.3. Comparing ICESat-2 Estimates of Sea Ice Properties with Field Data
3.4. Analysis of the Estimated Variability from 2019 to 2022
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ackley, S.F.; Perovich, D.K.; Maksym, T.; Weissling, B.; Xie, H. Surface flooding of Antarctic summer sea ice. Ann. Glaciol. 2020, 61, 117–126. [Google Scholar] [CrossRef]
- Kwok, R.; Kacimi, S.; Markus, T.; Kurtz, N.T.; Studinger, M.; Sonntag, J.G.; Manizade, S.S.; Boisvert, L.N.; Harbeck, J.P. ICESat-2 Surface Height and Sea Ice Freeboard Assessed with ATM Lidar Acquisitions from Operation IceBridge. Geophys. Res. Lett. 2019, 46, 11228–11236. [Google Scholar] [CrossRef]
- Kwok, R.; Rothrock, D.A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 2009, 36, L15501. [Google Scholar] [CrossRef]
- Ozsoy-Cicek, B.; Ackley, S.; Xie, H.; Yi, D.; Zwally, J. Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry. J. Geophys. Res. Oceans 2013, 118, 3807–3822. [Google Scholar] [CrossRef]
- Zwally, H.J.; Yi, D.; Kwok, R.; Zhao, Y. ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea. J. Geophys. Res. Oceans 2008, 113. [Google Scholar] [CrossRef]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, W.; Xie, H.; Ackley, S.; Li, H. Decadal Variations of Sea Ice Thickness in the Amundsen-Bellingshausen and Weddell Seas Retrieved from ICESat and IceBridge Laser Altimetry, 2003–2017. J. Geophys. Res. Oceans 2020, 125, e2020JC016077. [Google Scholar] [CrossRef]
- Roach, L.A.; Meier, W.N. Sea ice in 2023. Nat. Rev. Earth Environ. 2024, 5, 235–237. [Google Scholar] [CrossRef]
- Shi, Q.; Yang, Q.; Mu, L.; Wang, J.; Massonnet, F.; Mazloff, M.R. Evaluation of sea-ice thickness from four reanalyses in the Antarctic Weddell Sea. Cryosphere 2021, 15, 31–47. [Google Scholar] [CrossRef]
- Morioka, Y.; Behera, S.K. Remote and Local Processes Controlling Decadal Sea Ice Variability in the Weddell Sea. J. Geophys. Res. Oceans 2021, 126, e2020JC017036. [Google Scholar] [CrossRef]
- Maksym, T.; Jeffries, M.O. A one-dimensional percolation model of flooding and snow ice formation on Antarctic sea ice. J. Geophys. Res. Oceans 2000, 105, 26313–26331. [Google Scholar] [CrossRef]
- Willatt, R.C.; Giles, K.A.; Laxon, S.W.; Stone-Drake, L.; Worby, A.P. Field Investigations of Ku-Band Radar Penetration Into Snow Cover on Antarctic Sea Ice. IEEE Trans. Geosci. Remote Sens. 2010, 48, 365–372. [Google Scholar] [CrossRef]
- Fons, S.; Kurtz, N.; Bagnardi, M. A decade-plus of Antarctic sea ice thickness and volume estimates from CryoSat-2 using a physical model and waveform fitting. Cryosphere 2023, 17, 2487–2508. [Google Scholar] [CrossRef]
- Giovinetto, M.B.; Bromwich, D.H.; Wendler, G. Atmospheric net transport of water vapor and latent heat across 70 °S. J. Geophys. Res. Atmos. 1992, 97, 917–930. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Worby, A.P. Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Rothrock, D.A.; Yu, Y.; Maykut, G.A. Thinning of the Arctic sea-ice cover. Geophys. Res. Lett. 1999, 26, 3469–3472. [Google Scholar] [CrossRef]
- Li, H.; Xie, H.; Kern, S.; Wan, W.; Ozsoy, B.; Ackley, S.; Hong, Y. Spatio-temporal variability of Antarctic sea-ice thickness and volume obtained from ICESat data using an innovative algorithm. Remote Sens. Environ. 2018, 219, 44–61. [Google Scholar] [CrossRef]
- Warren, S.G.; Rigor, I.G.; Untersteiner, N.; Radionov, V.F.; Bryazgin, N.N.; Aleksandrov, Y.I.; Colony, R. Snow depth on Arctic sea ice. J. Clim. 1999, 12, 1814–1829. [Google Scholar] [CrossRef]
- Kern, S.; Ozsoy-Çiçek, B.; Worby, A. Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches. Remote Sens. 2016, 8, 538. [Google Scholar] [CrossRef]
- Tamura, T.; Ohshima, K.I.; Markus, T.; Cavalieri, D.J.; Nihashi, S.; Hirasawa, N. Estimation of Thin Ice Thickness and Detection of Fast Ice from SSM/I Data in the Antarctic Ocean. J. Atmos. Oceans Technol. 2007, 24, 1757–1772. [Google Scholar] [CrossRef]
- Martin, S.; Drucker, R.S.; Kwok, R. The areas and ice production of the western and central Ross Sea polynyas, 1992–2002, and their relation to the B-15 and C-19 iceberg events of 2000 and 2002. J. Mar. Syst. 2007, 68, 201–214. [Google Scholar] [CrossRef]
- Kaleschke, L.; Tian-Kunze, X.; Hendricks, S.; Ricker, R. SMOS-derived Antarctic thin sea ice thickness: Data description and validation in the Weddell Sea. Earth Syst. Sci. Data 2024, 16, 3149–3170. [Google Scholar] [CrossRef]
- Wang, J.; Min, C.; Ricker, R.; Shi, Q.; Han, B.; Hendricks, S.; Wu, R.; Yang, Q. A comparison between Envisat and ICESat sea ice thickness in the Southern Ocean. Cryosphere 2022, 16, 4473–4490. [Google Scholar] [CrossRef]
- Kurtz, N.T.; Markus, T. Satellite observations of Antarctic sea ice thickness and volume. J. Geophys. Res. Oceans 2012, 117, C08025. [Google Scholar] [CrossRef]
- Xie, H.; Tekeli, A.E.; Ackley, S.F.; Yi, D.; Zwally, H.J. Sea ice thickness estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003–2009. J. Geophys. Res. Oceans 2013, 118, 2438–2453. [Google Scholar] [CrossRef]
- Yi, D.; Zwally, H.J.; Robbins, J.W. ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003–2009). Ann. Glaciol. 2011, 52, 43–51. [Google Scholar] [CrossRef]
- Neumann, T.A.; Martino, A.J.; Markus, T.; Bae, S.; Bock, M.R.; Brenner, A.C.; Brunt, K.M.; Cavanaugh, J.; Fernandes, S.T.; Hancock, D.W.; et al. The Ice, Cloud, and Land Elevation Satellite—2 Mission: A Global Geolocated Photon Product Derived from the Advanced Topographic Laser Altimeter System. Remote Sens. Environ. 2019, 233, 111325. [Google Scholar] [CrossRef]
- Kacimi, S.; Kwok, R. The Antarctic sea ice cover from ICESat-2 and CryoSat-2: Freeboard, snow depth, and ice thickness. Cryosphere 2020, 14, 4453–4474. [Google Scholar] [CrossRef]
- Kwok, R.; Cunningham, G.F.; Markus, T.; Hancock, D.; Morison, J.; Palm, S.; Farrell, S.; Ivanoff, A.; Wimert, J. ATLAS/ICESat-2 User Guide. In ATLAS/ICESat-2 L3A Sea Ice Height, Version 1; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Kwok, R.; Markus, T.; Kurtz, N.T.; Petty, A.A.; Neumann, T.A.; Farrell, S.L.; Cunningham, G.F.; Hancock, D.W.; Ivanoff, A.; Wimert, J.T. Surface Height and Sea Ice Freeboard of the Arctic Ocean from ICESat-2: Characteristics and Early Results. J. Geophys. Res. Oceans 2019, 124, 6942–6959. [Google Scholar] [CrossRef]
- Fons, S.W.; Kurtz, N.T.; Bagnardi, M.; Petty, A.A.; Tilling, R.L. Assessing CryoSat-2 Antarctic Snow Freeboard Retrievals Using Data from ICESat-2. Earth Space Sci. 2021, 8, e2021EA001728. [Google Scholar] [CrossRef]
- Xie, H.; Ackley, S.F.; Yi, D.; Zwally, H.J.; Wagner, P.; Weissling, B.; Lewis, M.; Ye, K. Sea-ice thickness distribution of the Bellingshausen Sea from surface measurements and ICESat altimetry. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 1039–1051. [Google Scholar] [CrossRef]
- Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter Arctic Sea Ice Thickness from ICESat-2 Freeboards. J. Geophys. Res. Oceans 2020, 125, e2019JC015764. [Google Scholar] [CrossRef]
- Sturm, M.; Holmgren, J. An Automatic Snow Depth Probe for Field Validation Campaigns. Water Resour. Res. 2018, 54, 9695–9701. [Google Scholar] [CrossRef]
- Haas, C.; Gerland, S.; Eicken, H.; Miller, H. Comparison of sea-ice thickness measurements under summer and winter conditions in the Arctic using a small electromagnetic induction device. Geophysics 1997, 62, 749–757. [Google Scholar] [CrossRef]
- Kovacs, A.; Morey, R.M. Sounding sea ice thickness using a portable electromagnetic induction instrument. Geophysics 1991, 56, 1992–1998. [Google Scholar] [CrossRef]
- Worby, A.P.; Griffin, P.W.; Lytle, V.I.; Massom, R.A. On the use of electromagnetic induction sounding to determine winter and spring sea ice thickness in the Antarctic. Cold Reg. Sci. Technol. 1999, 29, 49–58. [Google Scholar] [CrossRef]
- Haas, C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica. Cold Reg. Sci. Technol. 1998, 27, 1–16. [Google Scholar] [CrossRef]
- Xu, Y.; Li, H.; Liu, B.; Xie, H.; Ozsoy-Cicek, B. Deriving Antarctic Sea-Ice Thickness from Satellite Altimetry and Estimating Consistency for NASA’s ICESat/ICESat-2 Missions. Geophys. Res. Lett. 2021, 48, e2021GL093425. [Google Scholar] [CrossRef]
- Lange, M.A.; Eicken, H. The sea ice thickness distribution in the northwestern Weddell Sea. J. Geophys. Res. Oceans 1991, 96, 4821–4837. [Google Scholar] [CrossRef]
- Holland, P.R.; Kwok, R. Wind-driven trends in Antarctic sea-ice drift. Nat. Geosci. 2012, 5, 872–875. [Google Scholar] [CrossRef]
- Arndt, S.; Haas, C.; Meyer, H.; Peeken, I.; Krumpen, T. Recent observations of superimposed ice and snow ice on sea ice in the northwestern Weddell Sea. Cryosphere 2021, 15, 4165–4178. [Google Scholar] [CrossRef]
- Turner, J.; Holmes, C.; Harrison, T.C.; Phillips, T.; Jena, B.; Reeves-Francois, T.; Fogt, R.; Thomas, E.R.; Bajish, C.C. Record Low Antarctic Sea Ice Cover in February 2022. Geophys. Res. Lett. 2022, 49, e2022GL098904. [Google Scholar] [CrossRef]
Sea Sector | c (cm) | d |
---|---|---|
Western Weddell | 0.9 | 0.88 |
Eastern Weddell | −1.0 | 0.87 |
ICESat-2, CryoSat-2 Difference [28] | April | May | June | July | August | September | October | November | |
---|---|---|---|---|---|---|---|---|---|
W-Wedd | Freeboard (m) | 0.365 ± 0.2 | 0.411 ± 0.19 | 0.362 ± 0.17 | - | 0.387 ± 0.197 | 0.38 ± 0.192 | 0.382 ± 0.2 | 0.395 ± 0.18 |
Snow depth (m) | 0.2 ± 0.138 | 0.22 ± 0.12 | 0.20 ± 0.12 | - | 0.225 ± 0.14 | 0.225 ± 0.14 | 0.227 ± 0.16 | 0.22 ± 0.13 | |
ICESat-2 (empirical equation) | |||||||||
W-Wedd | Freeboard (m) | 0.35 ± 0.24 | 0.40 ± 0.25 | 0.35 ± 0.25 | - | 0.39 ± 0.25 | 0.37 ± 0.25 | 0.38 ± 0.25 | 0.38 ± 0.24 |
Snow depth (m) | 0.32 ± 0.21 | 0.36 ± 0.22 | 0.32 ± 0.22 | - | 0.35 ± 0.22 | 0.33 ± 0.22 | 0.34 ± 0.22 | 0.34 ± 0.21 |
Mean ± SD (EW) | Jannuary | February | March | April | May | June | July | August | September | October |
---|---|---|---|---|---|---|---|---|---|---|
IS2 | 0.8 ± 0.88 | 1.01 ± 0.97 | 0.89 ± 0.8 | 0.86 ± 0.71 | 0.88 ± 0.7 | 0.84 ± 0.66 | 0.89 ± 0.64 | 1.01 ± 0.64 | 1.04 ± 0.69 | 1.14 ± 0.77 |
Xu 21 | 1.03 ± 0.82 | 1.11 ± 0.9 | 0.86 ± 0.8 | 0.83 ± 0.68 | 0.81 ± 0.58 | 0.78 ± 0.55 | 0.83 ± 0.51 | 0.83 ± 0.51 | 0.94 ± 0.6 | 0.95 ± 0.7 |
Mean ± SD (WW) | ||||||||||
IS2 | 1.13 ± 1.02 | 1.06 ± 1.0 | 1.12 ± 0.9 | 1.31 ± 1.05 | 1.43 ± 1.1 | 1.35 ± 1.1 | 1.54 ± 1.1 | 1.64 ± 1.1 | 1.54 ± 1.1 | 1.28 ± 1.2 |
Xu 21 | 1.19 ± 0.88 | 1.05 ± 0.85 | 1.08 ± 0.8 | 1.24 ± 0.88 | 1.25 ± 0.87 | 1.24 ± 0.84 | 1.45 ± 0.97 | 1.48 ± 1.02 | 1.39 ± 1 | 1.5 ± 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, M.; Mestas-Nuñez, A.M.; Ackley, S.F.; Arndt, S.; Macdonald, G.J.; Haas, C. Seasonal and Interannual Variations in Sea Ice Thickness in the Weddell Sea, Antarctica (2019–2022) Using ICESat-2. Remote Sens. 2024, 16, 3909. https://doi.org/10.3390/rs16203909
Joshi M, Mestas-Nuñez AM, Ackley SF, Arndt S, Macdonald GJ, Haas C. Seasonal and Interannual Variations in Sea Ice Thickness in the Weddell Sea, Antarctica (2019–2022) Using ICESat-2. Remote Sensing. 2024; 16(20):3909. https://doi.org/10.3390/rs16203909
Chicago/Turabian StyleJoshi, Mansi, Alberto M. Mestas-Nuñez, Stephen F. Ackley, Stefanie Arndt, Grant J. Macdonald, and Christian Haas. 2024. "Seasonal and Interannual Variations in Sea Ice Thickness in the Weddell Sea, Antarctica (2019–2022) Using ICESat-2" Remote Sensing 16, no. 20: 3909. https://doi.org/10.3390/rs16203909
APA StyleJoshi, M., Mestas-Nuñez, A. M., Ackley, S. F., Arndt, S., Macdonald, G. J., & Haas, C. (2024). Seasonal and Interannual Variations in Sea Ice Thickness in the Weddell Sea, Antarctica (2019–2022) Using ICESat-2. Remote Sensing, 16(20), 3909. https://doi.org/10.3390/rs16203909