Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations
<p>Schematic of the AMSR-E bootstrap algorithm. Gray circles represent sea ice areas and blue triangles correspond to open water areas or <10% sea ice concentration (SIC). The thin solid line is the SIC 100% line. The red triangle (O) is the open water tie-point (SIC 0% point), and the red circle is the SIC 100% point (point A). Point B is one of the observation points. Point I is the intersection of the SIC 100% line and the extension of the OB line. The SIC at point B is the ratio of OB to OI.</p> "> Figure 2
<p>Open Ocean mask lines for SSM/I. Blue points correspond to ice-free or less than 10% SIC and those in gray correspond to SIC 0–100% data (all valid data). Scatter plots for (<b>a</b>) 36 V versus 18 V (36 V 18 V). The black line in (<b>a</b>) is the open ocean mask line for 36 V 18 V. Scatter plots for (<b>b</b>) 23 V against 18 V (black line) and difference in thresholds of 23 V and 18 V (red line). The black line for 23 V 18 V in (<b>b</b>) is the regression line of the residual blue points over the 36 V 18 V line. The red line at 23 V 18 V has a slope of 1.0.</p> "> Figure 3
<p>Comparison of the AMSR-E and MODIS SICs. The AMSR-E SIC was validated using the Aqua/MODIS sea ice/cloud flag (MYD29) throughout the Northern and Southern Hemispheres. The figure represents a sample of the validated area. (<b>a</b>) Validation area map (26 June 2006, 14:10 UTC). (<b>b</b>) Aqua/MODIS RGB (R: 7 ch G: 2 ch B: 1 ch). Pink and white are clouds, blue is sea ice, black is open water, and gray is no observation. (<b>c</b>) SIC differences between AMSR-E and MODIS (AMSR-E minus MODIS equals difference). To validate the AMSR-E SIC, clear-sky pixels (80% cloud-free) were selected. MODIS SIC was derived as a fraction of the MYD29 sea ice flag (spatial resolution of 1 km) within the AMSR-E footprint size (14.4 × 8.2 km).</p> "> Figure 4
<p>Differences in the SIC between AMSR-E and MODIS (AMSR-E minus MODIS equals difference) were plotted in the (<b>a</b>) Northern and (<b>b</b>) Southern Hemispheres in 2006.</p> "> Figure 5
<p>Root-mean-square error (RMSE) and bias (AMSR-E minus MODIS) of AMSR-E compared with those of MODIS in the entire (<b>a</b>) Northern and (<b>b</b>) Southern Hemispheres in 2006. MODIS SIC = 0, 20, 40, 60, 80, and 100% plot indicates the average RMSE and bias of MODIS SIC = 0%, 0% < SIC ≤ 30%, 30% < SIC ≤ 50%, 50% < SIC ≤ 70%, 70% < SIC ≤ 90%, and 90% < SIC ≤ 100%, respectively. The horizontal solid lines show −15% and 15% bias.</p> "> Figure 6
<p>Time-series of sea ice extent (<b>a</b>) before adjusting the SIC threshold value (SSMI SIC > 15% (blue line) and AMSR-E > 15% (red line)) and (<b>b</b>) after adjusting the SIE of SSM/I to that of AMSR-E (SSMI SIC > 21% (blue line) and AMSR-E > 15% (red line)), and (<b>c</b>) time-series of sea ice extent difference of SSM/I and AMSR-E before adjusting (blue line) and after adjusting (red line) in the Northern Hemisphere.</p> "> Figure 7
<p>AMSR-E-based daily sea ice extent (12.5 km resolution) trends in (<b>a</b>) the Northern Hemisphere; (<b>b</b>) the Southern Hemisphere; and (<b>c</b>) both hemispheres for 45 years, i.e., from 1 November 1978, to 31 December 2023. The red lines are the sea ice extent trend per year.</p> "> Figure 8
<p>AMSR-E-based global yearly sea ice extent trends. The red, orange, green, and blue lines show the first, second, third, and fourth lowest SIE from November 1978 to December 2023, respectively. The first, second, third, and fourth lowest SIE were reached in 2023, 2018, 2017, and 2006, respectively. The lightest gray, light gray, and gray dotted lines show the average SIE in the 1980s, 1990s, and 2000s, respectively.</p> "> Figure 9
<p>(<b>a</b>) Daily sea ice extent (SIE) trends of JAXA, OSISAF, BOOT, and NASA from October 2002 to September 2003 in the Northern Hemisphere (lines with increasing to decreasing curves) and Southern (lines with decreasing to increasing curves) Hemisphere. “JAXA” is the dataset in this study. “BOOT” is the Goddard bootstrap product at NSIDC (NSIDC-0192 in <a href="#remotesensing-16-03549-t002" class="html-table">Table 2</a>). “NASA” means NASA Team product (G0192 in <a href="#remotesensing-16-03549-t002" class="html-table">Table 2</a>). “OSISAF” is OSI-SAF (Bristol/Bootstrap) product (OSI-420 in <a href="#remotesensing-16-03549-t002" class="html-table">Table 2</a>) at EUMETSAT. The black solid line and lightest gray, light gray, and gray dotted lines show the SIE of JAXA, OSISAF, BOOT, and NASA, respectively. (<b>b</b>) Difference of daily sea ice extent among the JAXA, OSISAF, BOOT, and NASA in the Northern Hemisphere (solid line) and Southern Hemisphere (dashed line). The differences of BOOT–JAXA, NASA–JAXA, and OSISAF–JAXA are the red, blue, and black lines, respectively.</p> "> Figure 10
<p>(<b>a</b>) AMSR-E daily sea ice extent (SIE) trends derived from different land–ocean flags from October 2002 to September 2003 in Northern (lines with increasing to decreasing curves) and Southern (lines with decreasing to increasing curves) Hemispheres. The solid line represents new land, and the dashed line indicates old land. The new land is AMSR-E-based, and the old land is SSM/I-based. (<b>b</b>) Difference of sea ice extent with new and old land in Northern (solid line) and Southern (dashed line) Hemispheres.</p> "> Figure 11
<p>(<b>a</b>) Effect of land filter on the AMSR-E daily sea ice extent (SIE) trends from October 2002 to September 2003 in Northern (lines with increasing to decreasing curves) and Southern (lines with decreasing to increasing curves) Hemispheres. The solid line represents the SIE applied to the land filter, and the dashed line indicates the SIE of the no land filter. (<b>b</b>) Difference of applying land filter and no land filter in Northern (solid line) and Southern Hemispheres (dashed line).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spaceborne PMR Data
2.2. Validation and Comparison Data
2.3. Methodology for Intersensor Calibration
2.4. Methodology for SIC Algorithm (ABA) Tuning and Retrieval
2.4.1. Open Water Tie-Point Tuning
2.4.2. Open Ocean Mask Line Tuning
2.4.3. SIC Retrieval
2.5. Methodology for SIC Adjustment and SIE Retrieval
3. Results
3.1. SIC Validation
3.2. SIC Threshold to Estimate SIE Trends
3.3. SIE Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [Google Scholar] [CrossRef]
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Lavergne, T.; Sørensen, A.M.; Kern, S.; Tonboe, R.; Notz, D.; Aaboe, S.; Bell, L.; Dybkjær, G.; Eastwood, S.; Gabarro, C.; et al. Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records. Cryosphere 2019, 13, 49–78. [Google Scholar] [CrossRef]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I and SMMR Data. J. Geophys. Res. 2008, 113, C02S07. [Google Scholar] [CrossRef]
- Long, D.G.; Brodzik, M.J. Optimum image formation for spaceborne microwave radiometer products. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2763–2779. [Google Scholar] [CrossRef] [PubMed]
- Comiso, J.C.; Meier, W.N.; Gersten, R. Variability and trends in the Arctic Sea ice cover: Results from different techniques. J. Geophys. Res.-Ocean. 2017, 122, 1226883–1226900. [Google Scholar] [CrossRef]
- Wentz, F.J. User’s Manual, SSM/I Antenna Temperature Tapes, 1st Revision; Technical Report 120191; Remote Sensing Systems: Santa Rosa, CA, USA, 1991. [Google Scholar]
- Wentz, F.J. User’s Manual, SSM/I Antenna Temperature Tapes, 2nd Revision; Technical Report 120193; Remote Sensing Systems: Santa Rosa, CA, USA, 1993. [Google Scholar]
- Wentz, F.J. User’s Manual, SSM/I Antenna Temperature, Version 6; Technical Memo 082806; Remote Sensing Systems: Santa Rosa, CA, USA, 2006. [Google Scholar]
- Lin, G.; Li, L.; Weiser, P. Sea ice retrievals from Windsat data. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 730–733. [Google Scholar]
- Njoku, E.G.; Rague, B.; Fleming, K. The Nimbus-7 SMMR Pathfinder Brightness Temperature Data Set; Jet Propulsion Laboratory Publication: Pasadena, CA, USA, 1999. [Google Scholar]
- Gaiser, P.W.; Germain, K.M.S.; Twarog, E.M.; Poe, G.A.; Purdy, W.; Richardson, D.; Grossman, W.; Jones, W.L.; Spencer, D.; Golba, G.; et al. The WindSat spaceborne polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2347–2361. [Google Scholar] [CrossRef]
- King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A.; Heidinger, A.K.; Yang, P. MODIS cloud-top property refinement for collection 6. J. Appl. Meteorol. Climatol. 2012, 51, 1145–1163. [Google Scholar] [CrossRef]
- Riggs, G.A.; Hall, D.K.; Ackerman, S.A. Sea ice extent and classification mapping with the moderate resolution imaging spectroradiometer airborne simulator. Remote Sens. Environ. 1999, 68, 152–163. [Google Scholar] [CrossRef]
- Fetterer, F.; Fowler, C. National Ice Center Arctic Sea Ice Charts and Climatology; NSIDC: Boulder, CO, USA, 2006. [Google Scholar]
- Fetterer, F. A Selection of Documentation Related to National Ice Center Sea Ice Charts in Digital Format; National Snow and Ice Data Center (NSIDC): Boulder, CO, USA, 2006. [Google Scholar]
- Fetterer, F.; Knowles, K.; Meiser, W.; Savoie, M.; Windnagel, A.K. Sea Ice Index, Version 3; NSIDC National Snow and Ice Data Center: Boulder, CO, USA, 2017. [Google Scholar]
- Stroeve, J.; Meier, W.N. Sea Ice Trends and Climatologies from SMMR and SSM/I-SSMIS. (NSIDC-0192, Version 3); NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018. [Google Scholar] [CrossRef]
- OSI SAF Sea Ice Index 1978-Onwards, Version 2.1, OSI-420; EUMETSAT Ocean and Sea Ice Satellite Application Facility: Darmstadt, Germany, 2020.
- DiGirolamo, N.; Parkinson, C.L.; Cavalieri, D.J.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. (NSIDC-0051, Version 2); NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- OSI SAF: Global Sea Ice Concentration Climate Data Record 1978–2020, (OSI-450-a, v3.0); EUMETSAT Ocean and Sea Ice Satellite Application Facility: Darmstadt, Germany, 2022. [CrossRef]
- Comiso, J.C.; Parkinson, C.L. Arctic sea ice parameters from AMSR-E data using two techniques and comparison with sea ice from SSM/I. J. Geophys. Res. 2008, 113, C02S05. [Google Scholar] [CrossRef]
- Comiso, J.C. Enhanced sea ice concentrations and ice extents from AMSR-E data. J. Remote Sens. Jpn. 2009, 29, 199–215. [Google Scholar]
- Cho, K.; Sasaki, N.; Shimoda, H.; Sakata, T.; Nishio, F. Evaluation and improvement of SSM/I sea ice concentration algorithms for the Sea of Okhotsk. J. Remote Sens. Jpn. 1996, 16, 47–58. [Google Scholar]
- Kurihara, Y.; Sakurai, T.; Kuragano, T. Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations. Weather. Serv. Bull. 2006, 73, 1–18. (In Japanese) [Google Scholar]
- Bjørgo, E.; Johannessen, O.M.; Miles, M.W. Analysis of merged SMMR-SSMI time series of Arctic and Antarctic Sea ice parameters 1978–1995. Geophys. Res. Lett. 1997, 24, 413–416. [Google Scholar] [CrossRef]
- Gloersen, P.; Campbell, W.J.; Cavalieri, D.J.; Comiso, J.C.; Parkinson, C.L.; Zwally, H.J. Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice 1978–1987. Ann. Glaciol. 1993, 17, 149–154. [Google Scholar] [CrossRef]
- Lu, J.; Heygster, G.; Spreen, G. Atmospheric correction of sea ice concentration retrieval for 89 GHz AMSR-E observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1442–1457. [Google Scholar] [CrossRef]
- Tonboe, R.T.; Eastwood, S.; Lavergne, T.; Sørensen, A.M.; Rathmann, N.; Dybkjær, G.; Pedersen, L.T.; Høyer, J.L.; Kern, S. The EUMETSAT sea ice concentration climate data record. Cryosphere 2016, 10, 2275–2290. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Markus, T.; Hall, D.K.; Ivanoff, A.; Glick, E. Assessment of AMSR-E Antarctic winter sea-ice concentrations using Aqua MODIS. IEEE Tran. Geosci. Remote Sens. 2010, 48, 1442–1457. [Google Scholar] [CrossRef]
- Kern, S.; Rösel, A.; Pedersen, L.T.; Ivanova, N.; Saldo, R.; Tonboe, R.T. The impact of melt ponds on summertime microwave brightness temperatures and sea-ice concentrations. Cryosphere 2016, 10, 2217–2239. [Google Scholar] [CrossRef]
- Meier, W.N.; Stewart, J.S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 2019, 14, 035005. [Google Scholar] [CrossRef]
- Kern, S.; Lavergne, T.; Notz, D.; Pedersen, L.T.; Tonboe, R.T.; Saldo, R.; Sørensen, A.M. Satellite passive microwave sea-ice concentration data set intercomparison: Closed ice and ship-based observations. Cryosphere 2019, 13, 3261–3307. [Google Scholar] [CrossRef]
Instrument | SMMR | SSM/I | AMSR-E | WindSat | AMSR2 |
---|---|---|---|---|---|
Aboard satellite | NASA Nimbus-7 | U.S. Defense Meteorological Satellite Program (DMSP) F08, F10, F13 | NASA Earth Observing System (EOS) Aqua | Coriolis | JAXA Global Change Observation Mission—Water (GCOM-W) |
Available period | 1 November 1978–15 July 1987 | F08: 16 July 1987–17 December 1991 F10: 18 December 1991–17 May 1995 F13: 18 May 1995–20 June 2002 | June 21, 2002–3 October 2011 | 4 October 2011–23 July 2012 | 24 July 2012–present |
Algorithm frequencies (GHz) | 37.0 V, 37.0 H, 18.0 V | 37.0 V, 37.0 H, 19.35 V, 22 V | 36.5 V, 36.5 H, 18.7 V, 23.8 V, 6.925 V | 37.0 V, 37.0 H, 18.7 V, 23.8 V | 36.5 V, 36.5 H, 18.7 V, 23.8 V, 6.925 V |
Incidence angle (°) | 50 | 53.1 | 55 | 53 (37.0 G) 55.3 (18.7 G) | 55 |
Swath width (km) | 780 | 1400 | 1450 | 1000 | 1450 (nominal) 1600 (effective) |
IFOV (km) | 27 × 18 37.0 GHz L1B | 38 × 30 37.0 GHz L1B | 14.4 × 8.2 36.5 GHz L1B | 27 × 16 18.7 GHz SDR | 26 × 15 23.8 GHz L1R |
Original spatial resolution at 36.5 or 37.0 GHz (km) | 27 × 18 at 37.0 GHz | 38 × 30 at 37.0 GHz | 14.4 × 8.2 at 36.5 GHz | 13 × 8 at 37.0 GHz | 12 × 7 at 36.5 GHz |
Purpose of Use | Dataset | Sensor | Sea Ice Concentration Algorithm | Gridded Resolution (km) | Data Provider |
---|---|---|---|---|---|
SIC validation | Sea Ice Flag (MYD29) | MODIS | Sea Ice Cloud Flag | 1 | NASA |
SIC validation | Ice Chart MASIE | Multiple | Manual interpolation | 1 | U.S. National Ice Center, NSIDC |
SIE comparison | Sea Ice Index (G02135) | F17&F18 SSMIS | NASA team | 25 | NSIDC |
SIE comparison | Sea Ice Extent (NSIDC-0192) | F17 SSMIS | Goddard Bootstrap | 25 | NASA Goddard, NSIDC |
SIE comparison | Sea Ice Extent (OSI-420) | SSM/I | OSI-SAF (Bristol/ Bootstrap) | 25 | EUMETSAT |
SIC (%) | 0 | 10–30 | 30–50 | 50–70 | 70–90 | 90–100 | Average |
---|---|---|---|---|---|---|---|
Bias (N/S) | 0.7/0.1 | 2.2/0.2 | −3.2/−7.0 | −12.3/−17.6 | −5.3/−12.4 | −1.7/−4.4 | −3.2/−6.8 |
RMSE (N/S) | 5.4/3.0 | 20.6/16.8 | 19.0/19.1 | 21.0/23.4 | 18.7/21.7 | 5.4/8.8 | 15.0/15.5 |
Instrument | SMMR | SSM/I | AMSR-E | WindSat | AMSR2 |
---|---|---|---|---|---|
Earth incidence angle (°) | 50 | 53.1 | 55 | 53 (36 G) 55.3 (18 G) | 55 |
IFOV (km) | 27 × 18 36 G L1B | 38 × 30 36 G L1B | 14.4 × 8.2 36 G L1B | 27 × 16 18 G SDR | 26 × 15 23 G L1R |
SIC threshold value (%) | 22 | 21 | 15 | 19 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seki, M.; Hori, M.; Naoki, K.; Kachi, M.; Imaoka, K. Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations. Remote Sens. 2024, 16, 3549. https://doi.org/10.3390/rs16193549
Seki M, Hori M, Naoki K, Kachi M, Imaoka K. Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations. Remote Sensing. 2024; 16(19):3549. https://doi.org/10.3390/rs16193549
Chicago/Turabian StyleSeki, Mieko, Masahiro Hori, Kazuhiro Naoki, Misako Kachi, and Keiji Imaoka. 2024. "Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations" Remote Sensing 16, no. 19: 3549. https://doi.org/10.3390/rs16193549
APA StyleSeki, M., Hori, M., Naoki, K., Kachi, M., & Imaoka, K. (2024). Intersensor Calibration of Spaceborne Passive Microwave Radiometers and Algorithm Tuning for Long-Term Sea Ice Trend Analysis Based on AMSR-E Observations. Remote Sensing, 16(19), 3549. https://doi.org/10.3390/rs16193549