Non-Dominated Sorting Genetic Algorithm II (NSGA2)-Based Parameter Optimization of the MSMGWB Model Used in Remote Infrared Sensing Prediction for Hot Combustion Gas Plume
"> Figure 1
<p>The relationship between <span class="html-italic">k</span> and <math display="inline"><semantics> <msub> <mi>g</mi> <mrow> <mi>n</mi> <mi>m</mi> </mrow> </msub> </semantics></math> of a group in different reference temperatures and thermodynamic states at 8~14 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band.</p> "> Figure 2
<p>Relationship between probability density of objective function value and three critical factors (Gaussian quadrature point quantity, reference temperature, and wavenumber subinterval grouping).</p> "> Figure 3
<p>Genotype and crossover process diagram.</p> "> Figure 4
<p>NSGA2 algorithm workflow diagram.</p> "> Figure 5
<p>Offspring generation workflow diagram.</p> "> Figure 6
<p>Convergence results of the NSGA2 method: (<b>a</b>) the foremost 10 Pareto front results, (<b>b</b>) convergence iteration process of 10 random grouping strategy combinations.</p> "> Figure 7
<p><math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mn>0</mn> </mrow> </msub> </semantics></math> results between exhaustive search method and NSGA2 method.</p> "> Figure 8
<p>The <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mn>0</mn> </mrow> </msub> </semantics></math> results among 100 <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">H</mi> <mn>2</mn> </msub> <mi mathvariant="normal">O</mi> </mrow> </semantics></math> and 400 <math display="inline"><semantics> <msub> <mi>CO</mi> <mn>2</mn> </msub> </semantics></math> grouping strategy combinations.</p> "> Figure 9
<p>Diagram of 4 iterative scan method process plans.</p> "> Figure 10
<p>Convergence perfomance of 4 plans for scan iteration process.</p> "> Figure 11
<p>Ratio of the <math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mn>0</mn> </mrow> </msub> </semantics></math> at the current sample population size to its corresponding baseline value.</p> "> Figure 12
<p><math display="inline"><semantics> <msub> <mi>f</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mn>0</mn> </mrow> </msub> </semantics></math> results between the same grouping result combination in the NSGA2 model population sizes of 5000 and 40,000.</p> "> Figure 13
<p>Optimization results at 2~2.5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band: (<b>a</b>) Pareto front, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mi>o</mi> <msub> <mi>r</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> in 56 0-D cases.</p> "> Figure 14
<p>Optimization results at 3.7~4.8 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band: (<b>a</b>) Pareto front, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mi>o</mi> <msub> <mi>r</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> in 56 0-D cases.</p> "> Figure 15
<p>Optimization results at 3~5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band: (<b>a</b>) Pareto front, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mi>o</mi> <msub> <mi>r</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> in 56 0-D cases.</p> "> Figure 16
<p>Optimization results at 7.7~9.7 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band: (<b>a</b>) Pareto front, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mi>o</mi> <msub> <mi>r</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> in 56 0-D cases.</p> "> Figure 17
<p>Optimization results at 8~14 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band: (<b>a</b>) Pareto front, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>e</mi> <mi>r</mi> <mi>r</mi> <mi>o</mi> <msub> <mi>r</mi> <mrow> <mi>j</mi> <mo>,</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> </mrow> </semantics></math> in 56 0-D cases.</p> "> Figure 18
<p>Aerosol spectral extinction coefficient at 0~7 km altitude and 2~14 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m: (<b>a</b>) large-sized case, (<b>b</b>) small-sized case.</p> "> Figure 19
<p>Diagram of the Large-sized exhaust system with a cooling structure.</p> "> Figure 20
<p>Distribution of temperature (<span class="html-italic">T</span>), pressure (<span class="html-italic">p</span>), carbon dioxide mass fraction (<math display="inline"><semantics> <msub> <mi>y</mi> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </msub> </semantics></math>), and Mach number (<math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> </mrow> </semantics></math>) in the meridional and axial sections of the fluid field of the large-sized exhaust system with a cooling structure.</p> "> Figure 21
<p>Temperature (<span class="html-italic">T</span>) distribution of the solid part of the large-sized exhaust system with a cooling structure.</p> "> Figure 22
<p>Remote infrared imaging of the large-sized exhaust system with a cooling structure in different atmospheric window bands (<b>left</b>), and the distribution of calculation errors of the optimized MSMGWB model (<b>right</b>), (<b>a</b>,<b>b</b>) 2~2.5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>c</b>,<b>d</b>) 3.7~4.8 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>e</b>,<b>f</b>) 3~5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>g</b>,<b>h</b>) 7.7~9.7 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>i</b>,<b>j</b>) 8~14 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band.</p> "> Figure 23
<p>Diagram of the small-sized exhaust system without a cooling structure.</p> "> Figure 24
<p>Distribution of temperature (<span class="html-italic">T</span>), pressure (<span class="html-italic">p</span>), carbon dioxide mass fraction (<math display="inline"><semantics> <msub> <mi>y</mi> <mrow> <mi>C</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </mrow> </msub> </semantics></math>), and Mach number (<math display="inline"><semantics> <mrow> <mi>M</mi> <mi>a</mi> </mrow> </semantics></math>) in the meridional and axial sections of the fluid field of the small-sized exhaust system without a cooling structure.</p> "> Figure 25
<p>Temperature (<span class="html-italic">T</span>) distribution of the major components of the small-sized exhaust system without a cooling structure.</p> "> Figure 26
<p>Remote infrared imaging of the small-sized exhaust system without a cooling structure in different atmospheric window bands (<b>left</b>) and the distribution of calculation errors of the optimized MSMGWB model (<b>right</b>), (<b>a</b>,<b>b</b>) 2~2.5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>c</b>,<b>d</b>) 3.7~4.8 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>e</b>,<b>f</b>) 3~5 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>g</b>,<b>h</b>) 7.7~9.7 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band, (<b>i</b>,<b>j</b>) 8~14 <math display="inline"><semantics> <mi mathvariant="sans-serif">μ</mi> </semantics></math>m band.</p> "> Figure A1
<p>Two types of radiative transfer paths, diagram of 56 0-D cases.</p> ">
Abstract
:1. Introduction
2. MSMGWB Model
- Step i. Select the representative thermodynamic states encountered during the computation of atmospheric transmission characteristics for radiation emitted by hydrocarbon fuel combustion gases, as listed in Table 1.
- Step ii. Stochastically assign an initial group membership for each wavenumber subinterval within the absorption spectrum of the water vapor.
- Step iii. Compute group tags, which are given by
- Step iv. Iterate Step iii until fewer than 0.1% of the total numbers change their group assignment.
- Step v. Repeat Steps ii~iv for each .
3. Parameter Optimization Method
3.1. Genotype Modeling
3.2. Non-Dominated Genetic Algorithm Process
3.2.1. Initializing
3.2.2. Generating Offspring
3.2.3. Iteration Ending
3.2.4. Iteration Results
3.3. Grouping Result Selection Based on an Iterative Scan Method
3.3.1. Iterative Scan Method
- Step i. Randomly select an , combine it with all and conduct the genetic algorithm iteration, arrange them in ascending order based on the , and identify the that results in the minimum .
- Step ii. Select the from step i, combine it with all , and conduct the genetic algorithm iteration, arrange them in ascending order based on the , and identify the that results in the minimum .
- Step iii. Select the from step ii, combine it with all and conduct the genetic algorithm iteration, and record the first p serial numbers with the smallest as a set .
- Step iv. Select the in from step iii, combine it with all and conduct the genetic algorithm iteration, and record the first q serial numbers with the smallest as a set .
- Step v. Combine the set and , then find out the optimal grouping result combination from the total combinations.
3.3.2. Population Size Selection
4. Results
4.1. 0-D Cases
4.2. Two High-Temperature Exhaust System 3-D Cases
4.3. Small-Sized High-Temperature Exhaust System 3-D Cases
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Hot Gas Parameters | Cold Gas Parameters | Environmental Atmospheric Parameters | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | Lh [cm] | p [atm] | T [K] | [K] | [cm] | [atm] | [K] | [cm] | [atm] | [K] | ||||||||
1 | 50 | 1 | 800 | 0.1 | 0.1 | 40 | 1 | 308.15 | 0.05724 | |||||||||
2 | 50 | 1 | 600 | 0.1 | 0.1 | 40 | 1 | 288.15 | 0.00184 | |||||||||
3 | 50 | 1 | 800 | 0.1 | 0.1 | 40 | 1 | 288.15 | 0.00184 | |||||||||
4 | 80 | 1.5 | 1300 | 0.1 | 0.1 | 100 | 0.9 | 298.15 | 0.03226 | |||||||||
5 | 80 | 1 | 1300 | 0.1 | 0.1 | 100 | 1 | 298.15 | 0.03226 | |||||||||
6 | 80 | 2 | 1300 | 0.1 | 0.1 | 100 | 0.8 | 285.2 | 0.00959 | |||||||||
7 | 80 | 1 | 1300 | 0.1 | 0.1 | 100 | 1 | 298.15 | 0.03226 | |||||||||
8 | 80 | 1 | 400 | 0.11 | 0.11 | 40 | 1 | 300 | 0.0323 | |||||||||
9 | 80 | 1 | 1600 | 0.11 | 0.11 | 100 | 1 | 300 | 0.0323 | |||||||||
10 | 80 | 2 | 1600 | 0.11 | 0.11 | 100 | 0.9 | 300 | 0.0323 | |||||||||
11 | 80 | 1 | 1900 | 0.12 | 0.12 | 100 | 1 | 300 | 0.0323 | |||||||||
12 | 80 | 1.5 | 1900 | 0.12 | 0.12 | 100 | 0.9 | 300 | 0.0323 | |||||||||
13 | 80 | 1.5 | 1900 | 0.12 | 0.12 | 100 | 0.9 | 294.2 | 0.0184 | |||||||||
14 | 70 | 1.6 | 1800 | 0.14 | 0.12 | 100 | 0.8 | 300 | 0.03 | |||||||||
15 | 60 | 1 | 1050 | 0.1 | 0.1 | 80 | 1 | 294.2 | 0.0184 | |||||||||
16 | 60 | 2 | 1050 | 0.1 | 0.1 | 80 | 0.9 | 294.2 | 0.0184 | |||||||||
17 | 60 | 2 | 1050 | 0.1 | 0.1 | 80 | 1 | 294.2 | 0.0184 | |||||||||
18 | 60 | 2 | 1050 | 0.1 | 0.1 | 80 | 0.7 | 279.2 | 0.00595 | |||||||||
19 | 100 | 0.42 | 1500 | 0.08 | 0.08 | 200 | 0.42 | 254.7 | 0.00102 | |||||||||
20 | 100 | 0.177 | 1800 | 0.1 | 0.1 | 200 | 0.177 | 215.8 | ||||||||||
21 | 50 | 1 | 1500 | 0.1 | 0.1 | 900 | 150 | 1 | 550 | 0.05 | 0.05 | 100 | 0.9 | 300 | 0.0323 | |||
22 | 50 | 1 | 1500 | 0.1 | 0.1 | 450 | 150 | 1 | 550 | 0.05 | 0.05 | 100 | 0.9 | 300 | 0.0323 | |||
23 | 50 | 2 | 1500 | 0.1 | 0.1 | 450 | 150 | 1 | 550 | 0.05 | 0.05 | 100 | 0.9 | 300 | 0.0323 | |||
24 | 50 | 2.5 | 1700 | 0.1 | 0.1 | 650 | 300 | 1 | 550 | 0.05 | 0.05 | 200 | 0.62 | 273.2 | 0.0038 | |||
25 | 50 | 1.5 | 1700 | 0.1 | 0.1 | 650 | 300 | 1 | 550 | 0.05 | 0.05 | 200 | 0.62 | 273.2 | 0.0038 | |||
26 | 50 | 2.5 | 1700 | 0.1 | 0.1 | 650 | 100 | 1 | 550 | 0.05 | 0.05 | 200 | 0.62 | 273.2 | 0.0038 | |||
27 | 50 | 2.5 | 1400 | 0.1 | 0.1 | 450 | 300 | 1 | 550 | 0.05 | 0.05 | 200 | 0.62 | 273.2 | 0.0038 | |||
28 | 50 | 0.7 | 1800 | 0.12 | 0.12 | 500 | 150 | 0.48 | 550 | 0.1 | 0.1 | 200 | 0.32 | 241.7 | ||||
29 | 50 | 1 | 800 | 0.1 | 0.1 | 40 | 1 | 308.15 | 0.05724 | |||||||||
30 | 50 | 1 | 600 | 0.1 | 0.1 | 40 | 1 | 288.15 | 0.00184 | |||||||||
31 | 50 | 1 | 800 | 0.1 | 0.1 | 40 | 1 | 288.15 | 0.00184 | |||||||||
32 | 80 | 1 | 1300 | 0.1 | 0.1 | 100 | 1 | 298.15 | 0.03226 | |||||||||
33 | 80 | 1 | 1300 | 0.1 | 0.1 | 100 | 1 | 298.15 | 0.03226 | |||||||||
34 | 80 | 1 | 1300 | 0.1 | 0.1 | 30 | 1 | 298.15 | 0.03226 | |||||||||
35 | 80 | 1 | 400 | 0.11 | 0.11 | 40 | 1 | 300 | 0.0323 | |||||||||
36 | 80 | 2 | 1600 | 0.11 | 0.14 | 60 | 0.9 | 300 | 0.0323 | |||||||||
37 | 2 | 1.6 | 1800 | 0.14 | 0.12 | 20 | 0.8 | 300 | 0.024 | |||||||||
38 | 60 | 1 | 1050 | 0.1 | 0.1 | 80 | 1 | 294.2 | 0.0184 | |||||||||
39 | 60 | 2 | 1050 | 0.1 | 0.1 | 80 | 0.9 | 294.2 | 0.0184 | |||||||||
40 | 100 | 0.42 | 1500 | 0.08 | 0.08 | 200 | 0.42 | 254.7 | 0.00102 | |||||||||
41 | 100 | 0.177 | 1800 | 0.1 | 0.1 | 200 | 0.177 | 215.8 | ||||||||||
42 | 50 | 1 | 1500 | 0.1 | 0.1 | 150 | 1 | 550 | 0.05 | 0.05 | 100 | 0.9 | 300 | 0.0323 | ||||
43 | 15 | 0.8 | 650 | 0.1 | 0.1 | 100 | 0.8 | 288.15 | 0.005 | |||||||||
44 | 5 | 1 | 750 | 0.1 | 0.1 | 100 | 0.8 | 288.15 | 0.01 | |||||||||
45 | 5 | 0.5 | 900 | 0.1 | 0.1 | 120 | 0.5 | 263.15 | 0.002 | |||||||||
46 | 10 | 0.5 | 500 | 0.1 | 0.1 | 40 | 1 | 293.15 | 0.015 | |||||||||
47 | 10 | 1 | 550 | 0.12 | 0.1 | 100 | 0.6 | 273.15 | 0.004 | |||||||||
48 | 10 | 1 | 500 | 0.1 | 0.12 | 80 | 1 | 300 | 0.012 | |||||||||
49 | 150 | 2.5 | 1600 | 0.1 | 0.1 | 100 | 0.8 | 288.15 | 0.015 | |||||||||
50 | 10 | 0.5 | 1500 | 0.13 | 0.1 | 120 | 0.9 | 293.15 | 0.02 | |||||||||
51 | 70 | 1 | 1400 | 0.12 | 0.12 | 400 | 30 | 1 | 300 | 0.03 | 120 | 0.6 | 260 | 0.0015 | ||||
52 | 150 | 0.6 | 1700 | 0.1 | 0.12 | 600 | 10 | 0.6 | 260 | 0.0015 | 40 | 1 | 300 | 0.03 | ||||
53 | 80 | 2 | 1600 | 0.11 | 0.14 | 100 | 0.9 | 300 | 0.0323 | |||||||||
54 | 20 | 3 | 1800 | 0.12 | 0.12 | 1000 | 40 | 1.5 | 1400 | 0.1 | 0.1 | 40 | 1 | 300 | 0.03 | |||
55 | 3 | 0.8 | 600 | 0.05 | 0.05 | 450 | 5 | 0.8 | 500 | 0.02 | 0.02 | 30 | 1 | 300 | 0.02 | |||
56 | 3 | 0.8 | 350 | 0.05 | 0.05 | 450 | 0.8 | 400 | 400 | 0.02 | 40 | 1 | 288 | 0.01 |
References
- Jiang, W.; Pan, H.; Wang, Y.; Li, Y.; Lin, Y.; Bi, F. A Multi-Level Cross-Attention Image Registration Method for Visible and Infrared Small Unmanned Aerial Vehicle Targets via Image Style Transfer. Remote Sens. 2024, 16, 2880. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Q.; Li, T. A new model to simulate infrared radiation from an aircraft exhaust system. Chin. J. Aeronaut. 2017, 30, 651–662. [Google Scholar] [CrossRef]
- Modest, M.F. The Treatment of Nongray Properties in Radiative Heat Transfer: From Past to Present. J. Heat Transf.-Trans. ASME 2013, 135, 061801. [Google Scholar] [CrossRef]
- Hartmann, J.M.; Levi Di Leon, R.; Taine, J. Line-by-line and narrow-band statistical model calculations for H2O. J. Quant. Spectrosc. Radiat. Transf. 1984, 32, 119–127. [Google Scholar] [CrossRef]
- Soufiani, A.; Taine, J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-k model for H2O and CO2. Int. J. Heat Mass Transf. 1997, 40, 987–991. [Google Scholar] [CrossRef]
- Modest, M.F. Narrow-band and full-spectrum K-distributions for radiative heat transfer–correlated-k vs. scaling approximation. J. Quant. Spectrosc. Radiat. Transf. 2003, 76, 69–83. [Google Scholar] [CrossRef]
- Marin, O.; Buckius, R.O. Wide Band Correlated-k Approach to Thermal Radiative Transport in Nonhomogeneous Media. J. Heat Transf. 1997, 119, 719–729. [Google Scholar] [CrossRef]
- André, F. The L-distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media. J. Quant. Spectrosc. Radiat. Transf. 2016, 179, 19–32. [Google Scholar] [CrossRef]
- Curtis, A. A statistical model for watervapour absorption. Q. J. R. Met. Soc. 1952, 78, 639–640. [Google Scholar]
- Godson, W.L. The computation of infrared transmission by atmospheric water vapor. J. Atmos. Sci. 1955, 12, 272–284. [Google Scholar] [CrossRef]
- Malkmus, W. Random Lorentz band model with exponential-tailed S-1 line-intensity distribution function. JOSA 1967, 57, 323–329. [Google Scholar] [CrossRef]
- Penner, S.; Landshoff, R. Quantitative molecular spectroscopy and gas emissivities. Phys. Today 1960, 13, 38–40. [Google Scholar] [CrossRef]
- Edwards, D.; Menard, W. Comparison of models for correlation of total band absorption. Appl. Opt. 1964, 3, 621–625. [Google Scholar] [CrossRef]
- Edwards, D.; Balakrishnan, A. Thermal radiation by combustion gases. Int. J. Heat Mass Transf. 1973, 16, 25–40. [Google Scholar] [CrossRef]
- Yin, X.M.; Liu, L.H.; Li, B.X. Numerical simulation of infrared signature emitted by liquid rocket plume using wide band K-distribution model. Adv. Mater. Res. 2012, 516, 41–53. [Google Scholar] [CrossRef]
- Modest, M.F.; Mazumder, S. Radiative Heat Transfer; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Zhang, F.; Zhu, M.; Li, J.; Li, W.; Di, D.; Shi, Y.N.; Wu, K. Alternate Mapping Correlated k-Distribution Method for Infrared Radiative Transfer Forward Simulation. Remote Sens. 2019, 11, 994. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Hu, H. Numerical simulation of remote infrared imaging for marine exhaust system using wide-band k-distribution model combined with a new grouping method for spectral sub-intervals. Infrared Phys. Technol. 2019, 96, 276–290. [Google Scholar] [CrossRef]
- Zhang, H.; Modest, M.F. A multi-scale full-spectrum correlated-k distribution for radiative heat transfer in inhomogeneous gas mixtures. J. Quant. Spectrosc. Radiat. Transf. 2002, 73, 349–360. [Google Scholar] [CrossRef]
- Rivière, P.; Soufiani, A.; Taine, J. Correlated-k fictitious gas model for H2O infrared radiation in the Voigt regime. J. Quant. Spectrosc. Radiat. Transf. 1995, 53, 335–346. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Q. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems. J. Quant. Spectrosc. Radiat. Transf. 2018, 213, 17–34. [Google Scholar] [CrossRef]
- Zhang, H.; Modest, M.F. Scalable Multi-Group Full-Spectrum Correlated-k Distributions for Radiative Transfer Calculations. J. Heat Transf. 2003, 125, 454–461. [Google Scholar] [CrossRef]
- Khodyko, Y.V.; Kurskov, A.A.; Antiporovich, N.V. Multigroup method for the calculation of selective IR radiation transfer in nonhomogeneous media. J. Appl. Spectrosc. 1986, 44, 284–288. [Google Scholar] [CrossRef]
- Pierrot, L.; Rivière, P.; Soufiani, A.; Taine, J. A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J. Quant. Spectrosc. Radiat. Transf. 1999, 62, 609–624. [Google Scholar] [CrossRef]
- Soufiani, A.; André, F.; Taine, J. A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature. J. Quant. Spectrosc. Radiat. Transf. 2002, 73, 339–347. [Google Scholar] [CrossRef]
- West, R.; Crisp, D.; Chen, L. Mapping transformations for broadband atmospheric radiation calculations. J. Quant. Spectrosc. Radiat. Transf. 1990, 43, 191–199. [Google Scholar] [CrossRef]
- André, F.; Hou, L.; Roger, M.; Vaillon, R. The multispectral gas radiation modeling: A new theoretical framework based on a multidimensional approach to K-Distrib. Methods. J. Quant. Spectrosc. Radiat. Transf. 2014, 147, 178–195. [Google Scholar] [CrossRef]
- André, F.; Solovjov, V.P.; Webb, B.W.; Galtier, M.; Dubuisson, P. Spectral mapping method based on intervals of comonotonicity for modelling of radiative transfer in non-uniform gaseous media. J. Quant. Spectrosc. Radiat. Transf. 2019, 229, 33–39. [Google Scholar] [CrossRef]
- Pierrot, L.; Soufiani, A.; Taine, J. Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperature. J. Quant. Spectrosc. Radiat. Transf. 1999, 62, 523–548. [Google Scholar] [CrossRef]
- Shi, G.; Xu, N.; Wang, B.; Dai, T.; Zhao, J. An improved treatment of overlapping absorption bands based on the correlated k distribution model for thermal infrared radiative transfer calculations. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 435–451. [Google Scholar] [CrossRef]
- Zhang, H.; Nakajima, T.; Shi, G.; Suzuki, T.; Imasu, R. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res. Atmos. 2003, 108. [Google Scholar] [CrossRef]
- Pal, G.; Modest, M.F. A New Hybrid Full-Spectrum Correlated k-Distribution Method for Radiative Transfer Calculations in Nonhomogeneous Gas Mixtures. In Proceedings of the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference Collocated with the ASME 2007 InterPACK Conference, Vancouver, BC, Canada, 8–12 July 2007. [Google Scholar] [CrossRef]
- Wang, L.; Modest, M.F. A Hybrid Multi-Scale Full-Spectrum k-Distribution Method for Radiative Transfer in Inhomogeneous Gas Mixtures. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, 5–11 November 2005; Volume 42223, pp. 175–182. [Google Scholar]
- Hu, H.; Li, Y.; Wei, Z.; Wang, Q. Parameter optimization for MSMGWB model used to calculate infrared remote sensing signals emitted by hot combustion gases of hydrocarbon fuel. J. Quant. Spectrosc. Radiat. Transf. 2020, 249, 107003. [Google Scholar] [CrossRef]
- Wang, Q.; Hao, J.; Hu, H.; Li, Y.; Wu, Y.; Xie, Y.; Deng, H. Optimization of the MSMGWB models used to predict remote infrared signals of jet engine in various spectral intervals. Infrared Phys. Technol. 2024, 140, 105403. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Washington, R.; Garmatyuk, D.; Mudaliar, S.; Narayanan, R.M. Many-Objective RadarCom Signal Design via NSGA-II Genetic Algorithm Implementation and Simulation Analysis. Remote Sens. 2022, 14, 3787. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barber, R.J.; Dothe, H.; Gamache, R.R.; Goldman, A.; Perevalov, V.I.; Tashkun, S.A.; Tennyson, J. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2139–2150. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared Refractive Index of Atmospheric Aerosol Substances. Appl. Opt. 1972, 11, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Wiscombe, W.J. Improved Mie scattering algorithms. Appl. Opt. 1980, 19, 1505–1509. [Google Scholar] [CrossRef] [PubMed]
- Pal, G.; Modest, M.F. A Narrow Band-Based Multiscale Multigroup Full-Spectrum k-Distribution Method for Radiative Transfer in Nonhomogeneous Gas-Soot Mixtures. J. Heat Transf. 2009, 132, 023307. [Google Scholar] [CrossRef]
- Hu, H.; Wang, Q. Improved spectral absorption-coefficient grouping strategies in radiation heat transfer calculations for combustion gases with pressure and temperature inhomogeneity. Numer. Heat Transf. Part B Fundam. 2019, 75, 178–197. [Google Scholar] [CrossRef]
Scenario | Thermodynamic State | |||||
---|---|---|---|---|---|---|
Aeroengine jet plume | 1900 | 0.12 | 0.12 | 0 | 2 | |
1900 | 0.12 | 0.12 | 0 | 1 | ||
1500 | 0.1 | 0.1 | 0 | 0.5 | ||
900 | 0.08 | 0.08 | 0 | 1 | ||
900 | 0.08 | 0.08 | 0 | 0.5 | ||
Atmosphere | 300 | 0.034 | 1 | |||
300 | 0.0068 | 1 | ||||
293 | 0.02 | 0.9 | ||||
263 | 0.002 | 0.5 |
Parameter | 2~2.5 m | 3.7~4.8 m | 3~5 m | 7.7~9.7 m | 8~14 m |
---|---|---|---|---|---|
3196 | 247 | 115 | 10,000 | 10,000 | |
728 | 10,000 | 10,000 | 10 | 2172 | |
15 | 5 | 5 | 11 | 10 | |
5 | 10 | 10 | 2 | 10 |
Number of Solved RTEs/Transmissivities | ||||||||
---|---|---|---|---|---|---|---|---|
Wave-band | MSMGWB-new | MSMGWB in [35] | SNBFG | NBKD | MSMGWB-new | MSMGWB in [35] | SNBFG | NBKD |
2~2.5 m | 8.19 | 17.35 | 54.21 | 1212.4 | 109 | 123 | 272 | 3280 |
3.7~4.8 m | 5.15 | 13.33 | 130.9 | 51.0 | 82 | 87 | 216 | 10,300 |
3~5 m | 2.10 | 5.59 | 216.1 | 111.9 | 64 | 70 | 336 | 11,840 |
7.7~9.7 m | 6.30 | 16.72 | 24.23 | 1097.2 | 59 | 61 | 65 | 550 |
8~14 m | 3.4 | 7.01 | 12.86 | 1111.2 | 72 | 95 | 137 | 1730 |
Altitude [km] | p [atm] | T [K] | |||
---|---|---|---|---|---|
0~1 | 0.947 | 296.7 | |||
1~2 | 0.843 | 290.7 | |||
2~3 | 0.750 | 285.7 | |||
3~4 | 0.665 | 280.4 | |||
4~5 | 0.588 | 273.6 | |||
5~6 | 0.519 | 267.0 | |||
6~7 | 0.456 | 260.3 |
Altitude [km] | p [atm] | T [K] | |||
---|---|---|---|---|---|
0~1 | 0.938 | 258.1 | |||
1~2 | 0.822 | 257.5 | |||
2~3 | 0.719 | 254.3 | |||
3~4 | 0.628 | 250.2 | |||
4~5 | 0.547 | 244.3 | |||
5~6 | 0.475 | 237.5 | |||
6~7 | 0.411 | 230.7 |
Wave-Band | Max Relative Error (Large-Sized Case) | Max Relative Error (Small-Sized Case) |
---|---|---|
2~2.5 m | −8.35/+9.95% | −3.24/+10.41% |
3.7~4.8 m | −6.19/+10.19% | −5.48/+12.17% |
3~5 m | −4.06/+3.78% | −4.43/+7.79% |
7.7~9.7 m | −9.84/+4.86% | −6.48/+0.04% |
8~14 m | −6.65/+5.56% | −8.49/+2.32% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hu, H.; Wang, Q. Non-Dominated Sorting Genetic Algorithm II (NSGA2)-Based Parameter Optimization of the MSMGWB Model Used in Remote Infrared Sensing Prediction for Hot Combustion Gas Plume. Remote Sens. 2024, 16, 3116. https://doi.org/10.3390/rs16173116
Li Y, Hu H, Wang Q. Non-Dominated Sorting Genetic Algorithm II (NSGA2)-Based Parameter Optimization of the MSMGWB Model Used in Remote Infrared Sensing Prediction for Hot Combustion Gas Plume. Remote Sensing. 2024; 16(17):3116. https://doi.org/10.3390/rs16173116
Chicago/Turabian StyleLi, Yihan, Haiyang Hu, and Qiang Wang. 2024. "Non-Dominated Sorting Genetic Algorithm II (NSGA2)-Based Parameter Optimization of the MSMGWB Model Used in Remote Infrared Sensing Prediction for Hot Combustion Gas Plume" Remote Sensing 16, no. 17: 3116. https://doi.org/10.3390/rs16173116
APA StyleLi, Y., Hu, H., & Wang, Q. (2024). Non-Dominated Sorting Genetic Algorithm II (NSGA2)-Based Parameter Optimization of the MSMGWB Model Used in Remote Infrared Sensing Prediction for Hot Combustion Gas Plume. Remote Sensing, 16(17), 3116. https://doi.org/10.3390/rs16173116