Sea Surface Height Estimation from Improved Modified, and Decontaminated Sub-Waveform Retracking Methods over Coastal Areas
<p>The location of the Sentinel-3A ground passes and tide gauge stations A (Bushehr) and B (Kangan) in the Persian Gulf.</p> "> Figure 2
<p>The location of the Sentinel-3A ground passes and tide gauge stations A (La-Rochelle) and B (ILE-D-AIX) in the Bay of Biscay.</p> "> Figure 3
<p>Example of waveforms from pass 25 over the Persian Gulf at 10 km from the coast.</p> "> Figure 4
<p>Retracking the full original waveform using threshold retracker with 30% threshold for pass 139 over Persian Gulf; (<b>a</b>) is an ocean-like and (<b>b</b>) is a corrupted waveform.</p> "> Figure 5
<p>Meaningful detected sub-waveforms in (<b>a</b>) pass 485 cycle 3 and (<b>b</b>) pass 216 cycle 14 over the Bay of Biscay.</p> "> Figure 6
<p>Retracked gates obtained from the full-waveform and the first sub-waveform of pass 25 cycle 31 over the Persian Gulf.</p> "> Figure 7
<p>Waveform modification for a waveform in pass 25 of cycle 34 in the Persian Gulf (<b>a</b>) is the original waveform, (<b>b</b>) is the detected outlier powers, and (<b>c</b>) is the modified waveform.</p> "> Figure 8
<p>Retracked the original and modified waveform of a given waveform in pass 25 cycle 44 in the Persian Gulf.</p> "> Figure 9
<p>Fitting the reference waveforms (<b>a</b>) and detection of outliers (<b>b</b>) in a particular waveform of pass 139 and cycle 37 over the Persian Gulf using the modification and decontamination strategies.</p> "> Figure 10
<p>(<b>a</b>) Reference and original waveforms with detected outliers for a waveform of pass 139 in cycle 47 over the Persian Gulf, (<b>b</b>) retracked gates/corrections of the decontaminated and original waveform derived from the threshold retracker.</p> "> Figure 11
<p>Retracking of the first sub-waveform of the original and decontaminated waveform of pass 216 from cycle 56 over the Bay of Biscay.</p> "> Figure 12
<p>Retracking of the first sub-waveform of the original and modified waveform of pass 25 and cycle 34 over the Persian Gulf.</p> "> Figure 13
<p>(<b>a</b>) The instantaneous (blue) and mean (magenta) water level of the Bay of Biscay from track 485 and cycle 39 as well as (<b>b</b>) outliers’ rejection.</p> "> Figure 14
<p>Example of waveforms from pass 139 over the Persian Gulf at 0 to 10 km from the coast.</p> "> Figure 15
<p>Water level time series of the Persian Gulf pass 25 based on our waveform retracking scenarios and ALES dataset in front of tide gauges, (<b>a</b>): full-waveform and (<b>b</b>): sub-waveform.</p> "> Figure 16
<p>Water level time series of the Persian Gulf pass 139 based on our waveform retracking scenarios and ALES dataset in front of tide gauges, (<b>a</b>): full-waveform and (<b>b</b>): sub-waveform.</p> "> Figure 17
<p>Water level time series of the Bay of Biscay pass 216 based on our waveform retracking scenarios and ALES dataset in front of tide gauges, (<b>a</b>): full-waveform and (<b>b</b>): sub-waveform.</p> "> Figure 18
<p>Water level time series of the Bay of Biscay pass 485 based on our waveform retracking scenarios and ALES dataset in front of tide gauges, (<b>a</b>): full-waveform and (<b>b</b>): sub-waveform.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Study Areas
2.1.1. Sentinel-3 SRAL Data
2.1.2. Tide Gauge Dataset
2.1.3. ALES Dataset
2.1.4. Persian Gulf
2.1.5. Bay of Biscay
2.2. Principles of Satellite Radar Altimetry
2.3. Waveform Retracking Scenarios in This Study
2.3.1. Retracking the Full Original Waveforms
2.3.2. Retracking the First Sub-Waveform in the Original Waveforms
2.3.3. Retracking the Modified Full-Waveforms
2.3.4. Retracking the Decontaminated Full-Waveforms
2.3.5. Retracking the First Sub-Waveform in the Decontaminated Waveforms
2.3.6. Retracking the First Sub-Waveform in the Modified Waveforms
2.4. Water Level Estimation and Validation
- Instantaneous water level estimation
- 2.
- Detecting and removing outliers
- 3.
- Water level time series for each pass
- 4.
- Elimination of possible bias between satellite water level time series and tide gauge data
3. Results and Discussion
3.1. Water Level from L2 Products
3.2. Water Level from Our Retracking Scenarios
4. Conclusions
- In coastal areas, waveform retracking is necessary to achieve a qualified determination of the water level;
- In these areas, the approaches of retracking the first sub-waveform in the decontaminated waveform, the modified waveform, and in the original waveform generally outperform the full-waveform retracking. This is in agreement with previous studies;
- Retracking the first sub-waveform in the decontaminated waveforms outperforms the first sub-waveform retracking in the modified waveforms because in the decontamination scenario, all waveforms within 10 km of the coast are involved in the definition of the reference waveform. So, the reference waveform fits better to the waveforms to detect and remove the outlier powers. Therefore, the outlier powers are correctly detected and, consequently, an accurate retracked correction is estimated which leads to an accurate determination of the water level. However, in the modified waveform, the reference waveform is defined outside the study areas (20–30 km from the coast), so the reference is defined independently of the tested waveforms. Therefore, the reference waveform does not fit well to the waveform to detect and modify the outlier powers;
- Our sub-waveform retracking scenarios outperform the ALES because it is based on the Brown model. The Brown model is defined for waveforms over the open ocean. However, in the coastal areas, the threshold retracker has a better performance in the retracking process. This has been approved by previous studies, e.g., in [12,43,44];
- Decontaminated and modified scenarios in full-waveform retracking have a slightly better performance than full-waveform retracking in the original waveform;
- Based on our numerical results for both study areas, the optimized retracking scenario is retracking the first sub-waveform in the decontaminated waveforms. As an alternative, we recommend retracking the first sub-waveform in the original and then modified waveform. This is in line with our objective in this study.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cipollini, P.; Calafat, F.M.; Jevrejeva, S.; Melet, A.; Prandi, P. Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges. Surv. Geophys. 2017, 38, 33–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salameh, E.; Frappart, F.; Marieu, V.; Spodar, A.; Parisot, J.-P.; Hanquiez, V.; Turki, I.; Laignel, B. Monitoring Sea Level and Topography of Coastal Lagoons Using Satellite Radar Altimetry: The Example of the Arcachon Bay in the Bay of Biscay. Remote Sens. 2018, 10, 297. [Google Scholar] [CrossRef] [Green Version]
- Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard, J.; et al. Requirements for a Coastal Hazards Observing System. Front. Mar. Sci. 2019, 6, 348. [Google Scholar] [CrossRef] [Green Version]
- Benveniste, J.; Birol, F.; Calafat, F.; Cazenave, A.; Dieng, H.; Gouzenes, Y.; Legeais, J.F.; Léger, F.; Niño, F.; Passaro, M.; et al. Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018. Sci. Data 2020, 7, 357. [Google Scholar] [CrossRef]
- Esselborn, S.; Schöne, T.; Illigner, J.; Weiß, R.; Artz, T.; Huang, X. Validation of Recent Altimeter Missions at Non-Dedicated Tide Gauge Stations in the Southeastern North Sea. Remote Sens. 2022, 14, 236. [Google Scholar] [CrossRef]
- Handoko, E.Y.; Fernandes, M.J.; Lázaro, C. Assessment of Altimetric Range and Geophysical Corrections and Mean Sea Surface Models—Impacts on Sea Level Variability around the Indonesian Seas. Remote Sens. 2017, 9, 102. [Google Scholar] [CrossRef] [Green Version]
- Roohi, S.; Amini, A.; Voosoghi, B.; Battles, D. Lake Monitoring from a Combination of Multi Copernicus Missions: Sentinel-1 A and B and Sentinel-3A. J. Hydrogeol. Hydrol. Eng. 2019, 8, 3. [Google Scholar]
- Vignudelli, S.; Scozzari, A.; Abileah, R.; Gómez-Enri, J.; Benveniste, J.; Cipollini, P. Chapter Four—Water surface elevation in coastal and inland waters using satellite radar altimetry. In Extreme Hydroclimatic Events and Multivariate Hazards in a Changing Environment; Maggioni, V., Massari, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 87–127. [Google Scholar] [CrossRef]
- Vignudelli, S.; Birol, F.; Benveniste, J.; Fu, L.-L.; Picot, N.; Raynal, M.; Roinard, H. Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surv. Geophys. 2019, 40, 1319–1349. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Z. Waveform Decontamination for Improving Satellite Radar Altimeter Data Over Nearshore Area: Upgraded Algorithm and Validation. Front. Earth Sci. 2021, 9, 788. [Google Scholar] [CrossRef]
- Brown, G. The average impulse response of a rough surface and its applications. IEEE Trans. Antennas Propag. 1977, 25, 67–74. [Google Scholar] [CrossRef]
- Guo, J.Y.; Guo, Y.G.; Chang, X.C.; Huang, J.W. Optimized threshold algorithm of Envisat waveform retracking over coastal sea. Chin. J. Geophys. 2010, 53, 807–814. [Google Scholar] [CrossRef]
- Wang, X.; Ichikawa, K.; Wei, D. Coastal Waveform Retracking in the Slick-Rich Sulawesi Sea of Indonesia, Based on Variable Footprint Size with Homogeneous Sea Surface Roughness. Remote Sens. 2019, 11, 1274. [Google Scholar] [CrossRef] [Green Version]
- Idris, N.H.; Vignudelli, S.; Deng, X. Assessment of retracked sea levels from Sentinel-3A Synthetic Aperture Radar (SAR) mode altimetry over the marginal seas at Southeast Asia. Int. J. Remote Sens. 2021, 42, 1535–1555. [Google Scholar] [CrossRef]
- Donlon, C.J.; Cullen, R.; Giulicchi, L.; Vuilleumier, P.; Francis, C.R.; Kuschnerus, M.; Simpson, W.; Bouridah, A.; Caleno, M.; Bertoni, R.; et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space. Remote Sens. Environ. 2021, 258, 112395. [Google Scholar] [CrossRef]
- Raynal, M.; Labroue, S.; Moreau, T.; Boy, F.; Picot, N. From conventional to Delay Doppler altimetry: A demonstration of continuity and improvements with the Cryosat-2 mission. Adv. Space Res. 2018, 62, 1564–1575. [Google Scholar] [CrossRef]
- Wingham, D.J.; Rapley, C.; Griffiths, H.D. New techniques in satellite altimeter tracking systems. In Proceedings of the IGARSS 86 Symposium, Zurich, Switzerland, 8–11 September 1986; Volume 86, pp. 1339–1344. [Google Scholar]
- Davis, C.H. Growth of the Greenland ice sheet: A performance assessment of altimeter retracking algorithms. IEEE Trans. Geosci. Remote Sens. 1995, 33, 1108–1116. [Google Scholar] [CrossRef]
- Hwang, C.; Guo, J.; Deng, X.; Hsu, H.-Y.; Liu, Y. Coastal Gravity Anomalies from Retracked Geosat/GM Altimetry: Improvement, Limitation and the Role of Airborne Gravity Data. J. Geod. 2006, 80, 204–216. [Google Scholar] [CrossRef]
- Martin, T.V.; Zwally, H.J.; Brenner, A.C.; Bindschadler, R.A. Analysis and retracking of continental ice sheet radar altimeter waveforms. J. Geophys. Res. Ocean. 1983, 88, 1608–1616. [Google Scholar] [CrossRef]
- Tseng, K.H.; Shum, C.K.; Yi, Y.; Emery, W.J.; Kuo, C.Y.; Lee, H.; Wang, H. The Improved Retrieval of Coastal Sea Surface Heights by Retracking Modified Radar Altimetry Waveforms. IEEE Trans. Geosci. Remote Sens. 2014, 52, 991–1001. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, H.; Luo, Z.; Shum, C.K.; Tseng, K.-H.; Zhong, B. Improving Jason-2 Sea Surface Heights within 10 km Offshore by Retracking Decontaminated Waveforms. Remote Sens. 2017, 9, 1077. [Google Scholar] [CrossRef]
- Roohi, S.; Sneeuw, N.; Benveniste, J.; Dinardo, S.; Issawy, E.A.; Zhang, G. Evaluation of CryoSat-2 water level derived from different retracking scenarios over selected inland water bodies. Adv. Space Res. 2019, 68, 947–962. [Google Scholar] [CrossRef]
- Passaro, M.; Cipollini, P.; Vignudelli, S.; Quartly, G.D.; Snaith, H.M. ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sensing of Environment 2014, 145, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.-Y.; Birol, F.; Cazenave, A. Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry. Remote Sens. 2018, 10, 282. [Google Scholar]
- Birol, F.; Léger, F.; Passaro, M.; Cazenave, A.; Niño, F.; Calafat, F.M.; Shaw, A.; Legeais, J.-F.; Gouzenes, Y.; Schwatke, C.; et al. The X-TRACK/ALES multi-mission processing system: New advances in altimetry towards the coast. Adv. Space Res. 2021, 67, 2398–2415. [Google Scholar] [CrossRef]
- Quartly, G.D.; Nencioli, F.; Raynal, M.; Bonnefond, P.; Nilo Garcia, P.; Garcia-Mondéjar, A.; Flores de la Cruz, A.; Crétaux, J.-F.; Taburet, N.; Frery, M.-L.; et al. The Roles of the S3MPC: Monitoring, Validation and Evolution of Sentinel-3 Altimetry Observations. Remote Sens. 2020, 12, 1763. [Google Scholar] [CrossRef]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Sentinel-3 Team. Sentinel-3 User Handbook; EUMETSAT: Darmstadt, Germany, 2013. [Google Scholar]
- Passaro, M.; Fenoglio-Marc, L.; Cipollini, P. Validation of Significant Wave Height from Improved Satellite Altimetry in the German Bight. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2146–2156. [Google Scholar] [CrossRef]
- Passaro, M.; Smith, W.; Schwatke, C.; Piccioni, G.; Dettmering, D. Validation of a global dataset based on subwaveform retracking: Improving the precision of pulse-limited satellite altimetry. In Proceedings of the 11th Coastal Altimetry Workshop, Frascati, Italy, 13–15 June 2018. [Google Scholar]
- Forootan, E.; Rietbroek, R.; Kusche, J.; Sharifi, M.A.; Awange, J.L.; Schmidt, M.; Omondi, P.; Famiglietti, J. Separation of large scale water storage patterns over Iran using GRACE, altimetry and hydrological data. Remote Sens. Environ. 2014, 140, 580–595. [Google Scholar] [CrossRef] [Green Version]
- Kämpf, J.; Sadrinasab, M. The circulation of the Persian Gulf: A numerical study. Ocean Sci. 2006, 2, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Vu, P.L.; Frappart, F.; Darrozes, J.; Marieu, V.; Blarel, F.; Ramillien, G.; Bonnefond, P.; Birol, F. Multi-Satellite Altimeter Validation along the French Atlantic Coast in the Southern Bay of Biscay from ERS-2 to SARAL. Remote Sens. 2018, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Ries, J.C.; Haines, B.J.; Fu, L.-L.; Callahan, P.S. Chapter 1 Satellite Altimetry. In International Geophysics; Fu, L.-L., Cazenave, A., Eds.; Academic Press: Cambridge, MA, USA, 2001; Volume 69, p. 1-ii. [Google Scholar]
- Idris, N.H. Regional validation of the Coastal Altimetry Waveform Retracking Expert System (CAWRES) over the largest archipelago in Southeast Asian seas. Int. J. Remote Sens. 2020, 41, 5680–5694. [Google Scholar] [CrossRef]
- Arabsahebi, R.; Voosoghi, B.; Tourian, M.J. The Inflection-Point Retracking Algorithm: Improved Jason-2 Sea Surface Heights in the Strait of Hormuz. Mar. Geod. 2018, 41, 331–352. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Lázaro, C. Independent Assessment of Sentinel-3A Wet Tropospheric Correction over the Open and Coastal Ocean. Remote Sens. 2018, 10, 484. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Guo, J.; Niu, Y.; Zhu, C.; Li, Z.; Liu, X. Denoising Effect of Jason-1 Altimeter Waveforms with Singular Spectrum Analysis: A Case Study of Modelling Mean Sea Surface Height over South China Sea. J. Mar. Sci. Eng. 2020, 8, 426. [Google Scholar] [CrossRef]
- Roohi, S. Capability of Pulse-Limited Satellite Radar Altimetry to Monitor Inland Water Bodies. Master Thesis, University of Stuttgart, Stuttgart, Germany, 2015. [Google Scholar]
- Ganguly, D.; Chander, S.; Desai, S.; Chauhan, P. A Subwaveform-Based Retracker for Multipeak Waveforms: A Case Study over Ukai Dam/Reservoir. Mar. Geod. 2015, 38 (Suppl. 1), 581–596. [Google Scholar] [CrossRef]
- Jain, M.; Andersen, O.B.; Dall, J.; Stenseng, L. Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers. Adv. Space Res. 2015, 55, 40–50. [Google Scholar] [CrossRef]
- Jinyum, G.; Cheiway, H.; Xiaotao, C.; Yuting, L. Improved threshold retracker for satellite altimeter waveform retracking over coastal sea. Prog. Nat. Sci. 2006, 16, 732–738. [Google Scholar] [CrossRef]
- Lee, H.; Shum, C.K.; Emery, W.; Calmant, S.; Deng, X.; Kuo, C.-Y.; Roesler, C.; Yi, Y. Validation of Jason-2 Altimeter Data by Waveform Retracking over California Coastal Ocean. Mar. Geod. 2010, 33 (Suppl. 1), 304–316. [Google Scholar] [CrossRef]
Characteristic. | Description | Characteristic | Description |
---|---|---|---|
Orbit Height (km) | 814.5 | Repeat cycle (day) | 27 |
Bands (GHz) | Ku (13.6), C (5.4) | Along-track resolution (m) | 300 |
Pulse length (ns) | 3.125 | PRF (KHz) | 17.8 |
Number of waveform gates | 128 | Nominal gate | 43 |
Coastal Zone | Pass | Tide Gauge | Latitude | Longitude | Data Duration | Direct Distance from Track Position (Km) |
---|---|---|---|---|---|---|
Persian Gulf | 25 | Bushehr | 28°59′N | 50°50′E | 17 January 2018 18 May 2019 | 4 |
139 | Kangan | 27°50′N | 52°03′E | 21 September 2018 27 September 2019 | 2 | |
Bay of Biscay | 216 | ILE-D-AIX | 46°0.42′N | 1°10.44′W | 16 April 2016 26 August 2020 | 3.5 |
485 | La-Rochelle | 46°8.88′N | 1°13.5′W | 25 April 2016 12 July 2020 | 19 |
Pass/Retracker | OCOG | Ocean | Ice Sheet | Sea Ice | Tracker |
---|---|---|---|---|---|
25 | 32 | 39 | 37 | 57 | 40 |
139 | 12 | 14 | 12 | 28 | 75 |
216 | 116 | 148 | 89 | 194 | 210 |
485 | 9 | 9 | 9 | 20 | 144 |
Pass/Threshold | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|---|---|---|---|
25 | 21/54 | 21/31 | 20/26 | 20/28 | 20/29 | 20/31 | 19/32 | 19/32 | 18/32 |
139 | 15/288 | 14/56 | 13/38 | 14/14 | 13/13 | 13/12 | 12/12 | 12/12 | 11/12 |
216 | 24/36 | 23/33 | 21/54 | 20/64 | 18/61 | 18/75 | 17/109 | 16/122 | 18/122 |
485 | 10/10 | 9/10 | 9/9 | 9/9 | 9/9 | 9/9 | 9/9 | 9/9 | 10/9 |
Pass | Total Number of Waveforms | Multi-Peak | Percentage (%) |
---|---|---|---|
25 | 982 | 629 | 64 |
139 | 391 | 58 | 15 |
216 | 1955 | 954 | 49 |
485 | 2279 | 518 | 23 |
Pass/Threshold | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|---|---|---|---|
25 | 57/44 | 23/44 | 25/33 | 29/21 | 30/24 | 28/29 | 30/33 | 34/34 | 40/33 |
139 | -/299 | -/116 | -/40 | 14/14 | 13/15 | 13/14 | 11/15 | 11/13 | 11/14 |
216 | 29/27 | 46/25 | 53/27 | 75/34 | 106/37 | 124/51 | 144/67 | 148/88 | 178/110 |
485 | 10/38 | 9/25 | 9/20 | 9/18 | 8/16 | 8/11 | 8/9 | 8/9 | 9/10 |
Pass/Threshold | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% |
---|---|---|---|---|---|---|---|---|---|
25 | 20/14 | 17/14 | 16/15 | 15/19 | 18/19 | 19/16 | 19/12 | 19/11 | 18/11 |
139 | 15/21 | 15/15 | 14/17 | 14/16 | 13/14 | 12/14 | 11/14 | 10/15 | 11/14 |
216 | 21/25 | 19/23 | 16/22 | 14/20 | 13/20 | 15/20 | 12/19 | 14/19 | 17/20 |
485 | 9/14 | 9/15 | 9/12 | 9/10 | 8/10 | 8/11 | 8/12 | 9/14 | 10/17 |
Pass/Retracker | L2 | ALES | Original Full-Waveform | Modified Full-Waveform | Decontaminated Full-Waveform | First Sub-Waveform in Original Waveform | First Sub-Waveform in Modified Waveform | First Sub-Waveform in Decontaminated Waveform | |
---|---|---|---|---|---|---|---|---|---|
25 | RMSE (cm) | 32 | 25 | 26 | 21 | 23 | 18 | 11 | 15 |
IMP (%) | - | 22 | 19 | 34 | 28 | 44 | 66 | 53 | |
Valid data (%) | 94 | 95 | 92 | 93 | 93 | 92 | 93 | 92 | |
139 | RMSE (cm) | 12 | 20 | 12 | 13 | 11 | 11 | 14 | 10 |
IMP (%) | - | - | - | - | 8 | 8 | - | 17 | |
Valid data (%) | 95 | 79 | 95 | 94 | 95 | 94 | 94 | 95 | |
216 | RMSE (cm) | 89 | 51 | 33 | 25 | 29 | 16 | 19 | 12 |
IMP (%) | - | 43 | 63 | 72 | 67 | 82 | 79 | 86 | |
Valid data (%) | 95 | 87 | 93 | 94 | 93 | 93 | 93 | 93 | |
485 | RMSE (cm) | 9 | 13 | 9 | 9 | 8 | 9 | 10 | 8 |
IMP (%) | - | - | - | - | 11 | - | - | 11 | |
Valid data (%) | 94 | 100 | 94 | 95 | 94 | 93 | 95 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agar, P.; Roohi, S.; Voosoghi, B.; Amini, A.; Poreh, D. Sea Surface Height Estimation from Improved Modified, and Decontaminated Sub-Waveform Retracking Methods over Coastal Areas. Remote Sens. 2023, 15, 804. https://doi.org/10.3390/rs15030804
Agar P, Roohi S, Voosoghi B, Amini A, Poreh D. Sea Surface Height Estimation from Improved Modified, and Decontaminated Sub-Waveform Retracking Methods over Coastal Areas. Remote Sensing. 2023; 15(3):804. https://doi.org/10.3390/rs15030804
Chicago/Turabian StyleAgar, Parisa, Shirzad Roohi, Behzad Voosoghi, Arash Amini, and Davod Poreh. 2023. "Sea Surface Height Estimation from Improved Modified, and Decontaminated Sub-Waveform Retracking Methods over Coastal Areas" Remote Sensing 15, no. 3: 804. https://doi.org/10.3390/rs15030804