Land Use Transitions and the Associated Impacts on Carbon Storage in the Poyang Lake Basin, China
<p>Location (<b>a</b>) and elevation (<b>b</b>) of the PYLB.</p> "> Figure 2
<p>The research framework of this study.</p> "> Figure 3
<p>Spatial pattern of land use types of the PYLB.</p> "> Figure 4
<p>Land use transitions in the PYLB.</p> "> Figure 5
<p>Spatial distribution of hotspots and cold spots of changes in carbon storage in the PYLB.</p> ">
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Methods
2.2.1. Geo-Information Tupu Method
2.2.2. The InVEST Model
2.2.3. Hotspot Analysis
2.3. Data Sources
2.3.1. Land Use Data
2.3.2. Carbon Density Data
3. Results
3.1. Land Use Change from 1990 to 2020
3.2. Land Use Transitions from 1990 to 2020
3.3. Temporal Changes in Carbon Storage
3.4. Hotspots and Cold Spots of Changes in Carbon Storage
3.5. Contributions of LUTs to Change in Carbon Storage
4. Discussion
4.1. Impact of Land Use Change on Carbon Storage
4.2. Policy Implication
4.3. Uncertainties and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Li, X.; Mao, Y.; Li, L.; Wang, X.; Lin, Q. Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China. Ecol. Indic. 2022, 134, 108499. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Tokarska, K.B.; Gillett, N.P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Chang. 2018, 8, 296–299. [Google Scholar] [CrossRef]
- Mendoza-Ponce, A.; Corona-Núñez, R.; Kraxner, F.; Leduc, S.; Patrizio, P. Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Glob. Environ. Chang. 2018, 53, 12–23. [Google Scholar] [CrossRef]
- Aneseyee, A.B.; Soromessa, T.; Elias, E.; Noszczyk, T.; Hernik, J.; Benti, N.E. Expressing carbon storage in economic terms: The case of the upper Omo Gibe Basin in Ethiopia. Sci. Total Environ. 2022, 808, 152166. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Dybala, K.E.; Steger, K.; Walsh, R.G.; Smart, D.R.; Gardali, T.; Seavy, N.E.; Macinnis-Ng, C. Optimizing carbon storage and biodiversity co-benefits in reforested riparian zones. J. Appl. Ecol. 2018, 56, 343–353. [Google Scholar] [CrossRef]
- Tian, L.; Tao, Y.; Fu, W.; Li, T.; Ren, F.; Li, M. Dynamic Simulation of Land Use/Cover Change and Assessment of Forest Ecosystem Carbon Storage under Climate Change Scenarios in Guangdong Province, China. Remote Sens. 2022, 14, 2330. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Yang, H.; Huang, J.; Liu, D. Linking climate change and socioeconomic development to urban land use simulation: Analysis of their concurrent effects on carbon storage. Appl. Geogr. 2020, 115, 102135. [Google Scholar] [CrossRef]
- Rajbanshi, J.; Das, S. Changes in carbon stocks and its economic valuation under a changing land use pattern—A multitemporal study in Konar catchment, India. Land Degrad. Dev. 2021, 32, 3573–3587. [Google Scholar] [CrossRef]
- Gao, J.; Wang, L. Embedding spatiotemporal changes in carbon storage into urban agglomeration ecosystem management—A case study of the Yangtze River Delta, China. J. Clean. Prod. 2019, 237, 117764. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Han, J.; Hu, Z.; Mao, Z.; Li, G.; Liu, S.; Yuan, D.; Guo, J. How to Account for Changes in Carbon Storage from Coal Mining and Reclamation in Eastern China? Taking Yanzhou Coalfield as an Example to Simulate and Estimate. Remote Sens. 2022, 14, 2014. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landsc. Urban Plan. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Raciti, S.M.; Hutyra, L.R.; Newell, J.D. Mapping carbon storage in urban trees with multi-source remote sensing data: Relationships between biomass, land use, and demographics in Boston neighborhoods. Sci. Total Environ. 2014, 500-501, 72–83. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.; Chan, K.M.A.; Daily, G.C.; Goldstein, J.; Kareiva, P.M.; et al. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, Y.; Huang, P.; Zhao, X.; Feng, W.; Li, Q.; Xue, D.; Dou, J.; Shi, W.; Wei, W.; et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol. Indic. 2020, 118, 106803. [Google Scholar] [CrossRef]
- Zhao, M.; Yue, T.; Zhao, N.; Sun, X.; Zhang, X. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. J. Geogr. Sci. 2014, 24, 249–268. [Google Scholar] [CrossRef]
- Parton, W.J.; Scurlock, J.M.O.; Ojima, D.S.; Gilmanov, T.G.; Scholes, R.J.; Schimel, D.S.; Kirchner, T.; Menaut, J.C.; Seastedt, T.; Moya, E.G.; et al. Observations and Modeling of Biomass and Soil Organic-Matter Dynamics for the Grassland Biome Worldwide. Glob. Biogeochem. Cycles 1993, 7, 785–809. [Google Scholar] [CrossRef]
- Melillo, J.M.; Borchers, J.; Chaney, J.; Fisher, H.; Fox, S.; Haxeltine, A.; Janetos, A.; Kicklighter, D.W.; Kittel, T.G.F.; Mcguire, A.D.; et al. Vegetation Ecosystem Modeling and Analysis Project-Comparing Biogeography and Biogeochemistry Models in a Continental-Scale Study of Terrestrial Ecosystem Responses to Climate-Change and CO2 Doubling. Glob. Biogeochem. Cycles 1995, 9, 407–437. [Google Scholar] [CrossRef]
- Brilli, L.; Bechini, L.; Bindi, M.; Carozzi, M.; Cavalli, D.; Conant, R.; Dorich, C.D.; Doro, L.; Ehrhardt, F.; Farina, R.; et al. Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci. Total Environ. 2017, 598, 445–470. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Du, J.; Chen, L.; Lin, P.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Hu, X.Q.; Li, Z.W.; Chen, J.; Nie, X.D.; Liu, J.Y.; Wang, L.X.; Ning, K. Carbon sequestration benefits of the grain for Green Program in the hilly red soil region of southern China. Int. Soil Water Conserv. Res. 2021, 9, 271–278. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Jia, Y.; Xu, H.; Liu, D. Increased Ecosystem Carbon Storage between 2001 and 2019 in the Northeastern Margin of the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3986. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.-M.; Li, S.; Zhu, J. Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef]
- Tang, L.; Ke, X.; Zhou, T.; Zheng, W.; Wang, L. Impacts of cropland expansion on carbon storage: A case study in Hubei, China. J. Environ. Manag. 2020, 265, 110515. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Chu, X.; Zhan, J.; Li, Z.; Zhang, F.; Qi, W. Assessment on forest carbon sequestration in the Three-North Shelterbelt Program region, China. J. Clean. Prod. 2019, 215, 382–389. [Google Scholar] [CrossRef]
- Ye, Q.; Tian, G.; Liu, G.; Ye, J.; Yao, X.; Liu, Q.; Lou, W.; Wu, S. Tupu methods of spatial-temporal pattern on land use change: A case study in the Yellow River Delta. J. Geogr. Sci. 2004, 14, 131–142. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land use transitions and the associated impacts on ecosystem services in the Middle Reaches of the Yangtze River Economic Belt in China based on the geo-informatic Tupu method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Jin, X.; Ren, J.; Gu, Z.; Zhou, Y. A research framework of land use transition in Suzhou City coupled with land use structure and landscape multifunctionality. Sci. Total Environ. 2020, 737, 139932. [Google Scholar] [CrossRef]
- Song, Y.; Wang, M.; Sun, X.; Fan, Z. Quantitative assessment of the habitat quality dynamics in Yellow River Basin, China. Environ. Monit. Assess. 2021, 193, 614. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, K.; Li, L.; Zhu, Y. Assessing the Terrain Gradient Effect of Landscape Ecological Risk in the Dianchi Lake Basin of China Using Geo-Information Tupu Method. Int. J. Environ. Res. Public Health 2022, 19, 9634. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Quantifying Influences of Natural and Anthropogenic Factors on Vegetation Changes Based on Geodetector: A Case Study in the Poyang Lake Basin, China. Remote Sens. 2021, 13, 5081. [Google Scholar] [CrossRef]
- Liu, F.-h.; Xu, C.-Y.; Yang, X.-x.; Ye, X.-c. Controls of Climate and Land-Use Change on Terrestrial Net Primary Productivity Variation in a Subtropical Humid Basin. Remote Sens. 2020, 12, 3525. [Google Scholar] [CrossRef]
- Wang, R.; Peng, W.; Liu, X.; Jiang, C.; Wu, W.; Chen, X. Characteristics of Runoff Variations and Attribution Analysis in the Poyang Lake Basin over the Past 55 Years. Sustainability 2020, 12, 944. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Lai, L. Carbon Emission Effect of Land Use in China. Ph.D. Thesis, Nanjing University, Nanjing, China, 2010. [Google Scholar]
- Liu, G.; Chen, L. Study on carbon storage in Honghu lake wetland. J. Cent. South Univ. For. Technol. 2013, 33, 103–107. [Google Scholar]
- Xi, X.; Li, M.; Zhang, X.; Zhang, Y.; Zhang, D.; Zhang, J.; Dou, L.; Yang, Y. Research on soil organic carbon distribution and change trend in middle-east plain and its vicinity in China. Earth Sci. Front. 2013, 20, 154–165. [Google Scholar]
- Ke, X.; Tang, L. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China. Acta Ecol. Sin. 2019, 39, 672–683. [Google Scholar]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Ke, X.; Zhou, Q.; Wang, L.; Koomen, E. Projecting future impacts of cropland reclamation policies on carbon storage. Ecol. Indic. 2020, 119, 106835. [Google Scholar] [CrossRef]
- Xie, H.; He, Y.; Choi, Y.; Chen, Q.; Cheng, H. Warning of negative effects of land-use changes on ecological security based on GIS. Sci. Total Environ. 2020, 704, 135427. [Google Scholar] [CrossRef]
- Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Deng, X.; Seto, K.C. Multi-level modeling of urban expansion and cultivated land conversion for urban hotspot counties in China. Landsc. Urban Plan. 2012, 108, 131–139. [Google Scholar] [CrossRef]
- Chen, W.; Ye, X.; Li, J.; Fan, X.; Liu, Q.; Dong, W. Analyzing requisition–compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations. Land Use Policy 2019, 83, 134–146. [Google Scholar] [CrossRef]
- Shen, X.; Wang, L.; Wu, C.; Lv, T.; Lu, Z.; Luo, W.; Li, G. Local interests or centralized targets? How China’s local government implements the farmland policy of Requisition–Compensation Balance. Land Use Policy 2017, 67, 716–724. [Google Scholar] [CrossRef]
- Chen, H.; Tan, Y.; Xiao, W.; Li, G.; Meng, F.; He, T.; Li, X. Urbanization in China drives farmland uphill under the constraint of the requisition-compensation balance. Sci. Total Environ. 2022, 831, 154895. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Horion, S.; Wang, K.; Keersmaecker, W.D.; Tian, F.; Schurgers, G.; Xiao, X.; Luo, Y.; et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 2018, 1, 44–50. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Chen, X. Spatiotemporal change in ecosystem service value in response to land use change in Guizhou Province, southwest China. Ecol. Indic. 2022, 144, 109514. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Davidson, N.C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Beuel, S.; Alvarez, M.; Amler, E.; Behn, K.; Kotze, D.; Kreye, C.; Leemhuis, C.; Wagner, K.; Willy, D.K.; Ziegler, S.; et al. A rapid assessment of anthropogenic disturbances in East African wetlands. Ecol. Indic. 2016, 67, 684–692. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Deng, X.; Liu, B.; Li, Z.; Jin, G. Impacts of Grain-for-Green and Grain-for-Blue Policies on Valued Ecosystem Services in Shandong Province, China. Adv. Meteorol. 2015, 2015, 213534. [Google Scholar] [CrossRef]
- Gao, R.; Chuai, X.; Ge, J.; Wen, J.; Zhao, R.; Zuo, T. An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China. Land Use Policy 2022, 116, 106057. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Song, W. Review of the evolution of cultivated land protection policies in the period following China’s reform and liberalization. Land Use Policy 2017, 67, 660–669. [Google Scholar] [CrossRef]
- Wu, Y.; Shan, L.; Guo, Z.; Peng, Y. Cultivated land protection policies in China facing 2030: Dynamic balance system versus basic farmland zoning. Habitat Int. 2017, 69, 126–138. [Google Scholar] [CrossRef]
Carbon Density (Mg/ha) | References | |||||
---|---|---|---|---|---|---|
Aboveground Carbon | Belowground Carbon | Dead Organic Carbon | Soil Organic Carbon | Total | ||
Farmland | 16.65 | 10.98 | 2.13 | 76.54 | 106.30 | [29,44,45] |
Forest | 26.93 | 5.39 | 2.48 | 89.50 | 124.30 | [29,44,45] |
Grassland | 12.11 | 14.54 | 2.05 | 73.80 | 102.50 | [29,44,45] |
Wetland | 10.83 | 19.18 | 3.98 | 106.70 | 140.68 | [29,45,46] |
Built-up land | 7.61 | 1.52 | 0.00 | 34.33 | 43.46 | [29,45,47] |
Unused land | 10.36 | 2.07 | 0.96 | 34.42 | 47.81 | [29,45,47] |
1990 | 2000 | 2010 | 2020 | |||||
---|---|---|---|---|---|---|---|---|
Land Use | Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) |
Farmland | 4,379,812 | 27.01 | 4,360,597 | 26.89 | 4,325,216 | 26.67 | 4,251,024 | 26.21 |
Forestland | 10,109,322 | 62.34 | 10,131,987 | 62.48 | 10,119,166 | 62.40 | 10,022,057 | 61.80 |
Grassland | 757,781 | 4.67 | 734,691 | 4.53 | 688,883 | 4.25 | 720,956 | 4.45 |
Wetland | 722,019 | 4.45 | 725,672 | 4.47 | 717,934 | 4.43 | 722,639 | 4.46 |
Built-up land | 246,129 | 1.52 | 262,118 | 1.62 | 364,150 | 2.25 | 498,739 | 3.08 |
Unused land | 2141 | 0.01 | 2139 | 0.01 | 1856 | 0.01 | 1788 | 0.01 |
LUT | 1990–2000 | 2000–2010 | 2010–2020 | |||
---|---|---|---|---|---|---|
Area (ha) | Percent (%) | Area (ha) | Percent (%) | Area (ha) | Percent (%) | |
12 | 17,215 | 14.06 | 53,036 | 14.15 | 163,130 | 23.82 |
13 | 978 | 0.80 | 3886 | 1.04 | 14,442 | 2.11 |
14 | 12,568 | 10.27 | 22,440 | 5.99 | 17,015 | 2.48 |
15 | 11,984 | 9.79 | 70,069 | 18.70 | 93,059 | 13.59 |
16 | 0 | 0.00 | 55 | 0.01 | 40 | 0.01 |
21 | 12,182 | 9.95 | 66,486 | 17.74 | 166,271 | 24.28 |
23 | 12,257 | 10.01 | 10,628 | 2.84 | 62,716 | 9.16 |
24 | 2553 | 2.09 | 5067 | 1.35 | 10,927 | 1.60 |
25 | 3374 | 2.76 | 33,034 | 8.82 | 56,380 | 8.23 |
26 | 121 | 0.10 | 47 | 0.01 | 58 | 0.01 |
31 | 1086 | 0.89 | 11,291 | 3.01 | 13,432 | 1.96 |
32 | 35,162 | 28.72 | 43,712 | 11.67 | 23,469 | 3.43 |
34 | 403 | 0.33 | 1749 | 0.47 | 2055 | 0.30 |
35 | 392 | 0.32 | 4571 | 1.22 | 8185 | 1.20 |
36 | 3 | 0.00 | 8 | 0.00 | 23 | 0.00 |
41 | 10,156 | 8.30 | 30,303 | 8.09 | 13,336 | 1.95 |
42 | 622 | 0.51 | 4233 | 1.13 | 8312 | 1.21 |
43 | 717 | 0.59 | 877 | 0.23 | 1231 | 0.18 |
45 | 382 | 0.31 | 3554 | 0.95 | 3699 | 0.54 |
46 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
51 | 105 | 0.09 | 5958 | 1.59 | 20,423 | 2.98 |
52 | 28 | 0.02 | 1240 | 0.33 | 4271 | 0.62 |
53 | 4 | 0.00 | 122 | 0.03 | 828 | 0.12 |
54 | 7 | 0.01 | 1961 | 0.52 | 1284 | 0.19 |
56 | 0 | 0.00 | 1 | 0.00 | 4 | 0.00 |
61 | 0 | 0.00 | 68 | 0.02 | 34 | 0.00 |
62 | 125 | 0.10 | 220 | 0.06 | 61 | 0.01 |
63 | 0 | 0.00 | 8 | 0.00 | 19 | 0.00 |
64 | 0 | 0.00 | 14 | 0.00 | 2 | 0.00 |
65 | 0 | 0.00 | 83 | 0.02 | 76 | 0.01 |
Total | 122,424 | 100.00 | 374,721 | 100.00 | 684,779 | 100.00 |
Year | Land Use Type | ||||||
---|---|---|---|---|---|---|---|
Farmland | Forest | Grassland | Wetland | Built-Up Land | Unused Land | Total | |
1990 | 465.57 | 1256.59 | 77.67 | 101.58 | 10.70 | 0.10 | 1912.22 |
2000 | 463.53 | 1259.41 | 75.31 | 102.09 | 11.39 | 0.10 | 1911.83 |
2010 | 459.77 | 1257.81 | 70.61 | 101.01 | 15.83 | 0.09 | 1905.11 |
2020 | 451.88 | 1245.74 | 73.90 | 101.67 | 21.68 | 0.09 | 1894.95 |
Carbon Pool | Carbon Storage | Carbon Storage Change | ||||||
---|---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | |
AGC | 364.06 | 364.23 | 363.43 | 361.04 | −0.17 | −0.80 | −2.39 | −3.01 |
BGC | 127.82 | 127.49 | 126.38 | 125.80 | −0.33 | −1.12 | −0.58 | −2.02 |
DOC | 38.83 | 38.81 | 38.58 | 38.27 | −0.02 | −0.23 | −0.31 | −0.56 |
SOC | 1381.50 | 1381.29 | 1376.73 | 1369.84 | −0.21 | −4.57 | −6.88 | −11.66 |
Total | 1912.22 | 1911.83 | 1905.11 | 1894.95 | −0.38 | −6.72 | −10.16 | −17.26 |
Status | LUT | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | ||||
---|---|---|---|---|---|---|---|---|---|
CS Change (Mg) | Percent (%) | CS Change (Mg) | Percent (%) | CS Change (Mg) | Percent (%) | CS Change (Mg) | Percent (%) | ||
CS gain | 12 | 309,864 | 19.50 | 954,655 | 26.76 | 2,936,346 | 47.73 | 3,277,984 | 36.87 |
14 | 432,197 | 27.19 | 771,704 | 21.63 | 585,157 | 9.51 | 1,412,761 | 15.89 | |
24 | 41,840 | 2.63 | 83,050 | 2.33 | 179,087 | 2.91 | 239,727 | 2.70 | |
31 | 4127 | 0.26 | 42,906 | 1.20 | 51,040 | 0.83 | 83,381 | 0.94 | |
32 | 766,540 | 48.23 | 952,920 | 26.71 | 511,623 | 8.32 | 2,007,448 | 22.58 | |
34 | 15,398 | 0.97 | 66,783 | 1.87 | 78,479 | 1.28 | 140,333 | 1.58 | |
51 | 6600 | 0.42 | 374,384 | 10.50 | 1,283,352 | 20.86 | 1,156,847 | 13.01 | |
52 | 2234 | 0.14 | 100,229 | 2.81 | 345,264 | 5.61 | 273,155 | 3.07 | |
53 | 234 | 0.01 | 7195 | 0.20 | 48,864 | 0.79 | 25,112 | 0.28 | |
54 | 665 | 0.04 | 190,634 | 5.34 | 124,820 | 2.03 | 238,763 | 2.69 | |
56 | 0 | 0.00 | 3 | 0.00 | 16 | 0.00 | 16 | 0.00 | |
61 | 11 | 0.00 | 3995 | 0.11 | 2000 | 0.03 | 5469 | 0.06 | |
62 | 9569 | 0.60 | 16,825 | 0.47 | 4640 | 0.08 | 28,011 | 0.32 | |
63 | 15 | 0.00 | 458 | 0.01 | 1058 | 0.02 | 1147 | 0.01 | |
64 | 0 | 0.00 | 1271 | 0.04 | 192 | 0.00 | 1404 | 0.02 | |
Total | 1,589,292 | 100.00 | 3,567,010 | 100.00 | 6,151,937 | 100.00 | 8,891,560 | 100.00 | |
CS loss | 13 | −3717 | 0.19 | −14,768 | 0.14 | −54,881 | 0.34 | −57,847 | 0.22 |
15 | −753,066 | 38.18 | −4,403,162 | 42.81 | −5,847,800 | 35.85 | −10,445,028 | 39.94 | |
16 | −21 | 0.00 | −3195 | 0.03 | −2353 | 0.01 | −4885 | 0.02 | |
21 | −219,280 | 11.12 | −1,196,739 | 11.64 | −2,992,871 | 18.35 | −3,464,683 | 13.25 | |
23 | −267,199 | 13.55 | −231,693 | 2.25 | −1,367,202 | 8.38 | −1,667,098 | 6.37 | |
25 | −272,784 | 13.83 | −2,670,502 | 25.97 | −4,557,792 | 27.94 | −7,338,527 | 28.06 | |
26 | −9238 | 0.47 | −3594 | 0.03 | −4426 | 0.03 | −13,933 | 0.05 | |
35 | −23,141 | 1.17 | −269,888 | 2.62 | −483,213 | 2.96 | −782,560 | 2.99 | |
36 | −143 | 0.01 | −413 | 0.00 | −1240 | 0.01 | −1413 | 0.01 | |
41 | −349,257 | 17.71 | −1,042,129 | 10.13 | −458,620 | 2.81 | −1,478,709 | 5.65 | |
42 | −10,197 | 0.52 | −69,374 | 0.67 | −136,231 | 0.84 | −153,030 | 0.59 | |
43 | −27,377 | 1.39 | −33,505 | 0.33 | −47,016 | 0.29 | −76,960 | 0.29 | |
45 | −37,173 | 1.88 | −345,574 | 3.36 | −359,610 | 2.20 | −669,105 | 2.56 | |
46 | 0 | 0.00 | −42 | 0.00 | −8 | 0.00 | −8 | 0.00 | |
65 | 0 | 0.00 | −361 | 0.00 | −330 | 0.00 | −661 | 0.00 | |
Total | −1,972,593 | 100.00 | −10,284,938 | 100.00 | −16,313,595 | 100.00 | −26,154,446 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhang, Z.; Chen, X. Land Use Transitions and the Associated Impacts on Carbon Storage in the Poyang Lake Basin, China. Remote Sens. 2023, 15, 2703. https://doi.org/10.3390/rs15112703
Wang Y, Zhang Z, Chen X. Land Use Transitions and the Associated Impacts on Carbon Storage in the Poyang Lake Basin, China. Remote Sensing. 2023; 15(11):2703. https://doi.org/10.3390/rs15112703
Chicago/Turabian StyleWang, Yiming, Zengxin Zhang, and Xi Chen. 2023. "Land Use Transitions and the Associated Impacts on Carbon Storage in the Poyang Lake Basin, China" Remote Sensing 15, no. 11: 2703. https://doi.org/10.3390/rs15112703
APA StyleWang, Y., Zhang, Z., & Chen, X. (2023). Land Use Transitions and the Associated Impacts on Carbon Storage in the Poyang Lake Basin, China. Remote Sensing, 15(11), 2703. https://doi.org/10.3390/rs15112703