Attribution of Extreme Drought Events and Associated Physical Drivers across Southwest China Using the Budyko Framework
<p>The spatial distribution of climate zones in Southwest China.</p> "> Figure 2
<p>Schematic diagram of the Budyko framework. The red line in the diagram represents the energy limitation, and the blue line represents the moisture limitation.</p> "> Figure 3
<p>The frequency of moderate-to-severe agricultural droughts in Southwest China from 2000 to 2020 was calculated using <span class="html-italic">SSMI</span>. The blue line in the figure is the area with a low frequency of agricultural droughts in the southwest region.</p> "> Figure 4
<p>The seasonal characteristics of drought frequency in the high agricultural drought-prone regions of Southwest China as calculated by <span class="html-italic">SSMI</span>. The vertical coordinates in the figure represent the percentage of drought areas. The vertical coordinates were obtained by calculating the ratio of the cumulative drought area of the region over 16 years to the area of the region. The horizontal coordinates represent the different months.</p> "> Figure 5
<p><span class="html-italic">SSMI</span> variation curves for 2000–2020 for the Southwest region as a whole and for the high drought-prone areas in Southwest China. The grey area in the figure contains the years in which consecutive droughts occurred in Southwest China. The blue and red lines are the UFK and UBK lines of the MK change. The intersection of the two lines represents the inflection point of the trend change.</p> "> Figure 6
<p>The trajectory of Budyko changes in different regions of the southwest. The blue line in the figure represents the water moisture limitation relative to the yellow area. The red line represents the energy limitation close to the grey area.</p> "> Figure 7
<p>Changes in Budyko trajectories in different regions of Southwest China from 2000 to 2020. The red and blue dashed lines in <a href="#remotesensing-15-02702-f007" class="html-fig">Figure 7</a> represent the fitted Budyko curves at the maximum and minimum values of <math display="inline"><semantics> <mrow> <mi>ω</mi> </mrow> </semantics></math>.</p> "> Figure 8
<p>Comparative changes in the drivers of agricultural drought in Yunnan during consecutive drought years and from 2000 to 2020. The black line represents the monthly variation of agricultural drought drivers in Yunnan’s consecutive drought years (2009–2014). PREC, TEMP, and SM are precipitation, temperature, and soil moisture, respectively. Can_eva, Soil_tran, and Can_tran are vegetation transpiration, soil evaporation, and vegetation transpiration, respectively.</p> "> Figure 9
<p>Comparative changes in the drivers of agricultural drought in the Sichuan and Chongqing border area during consecutive drought years and from 2000 to 2020. The black line represents the monthly variation of agricultural drought drivers in the Sichuan and Chongqing border area’s consecutive drought years (2009–2014). PREC, TEMP, and SM are precipitation, temperature, and soil moisture, respectively. Can_eva, Soil_tran, and Can_tran are vegetation transpiration, soil evaporation, and vegetation transpiration, respectively.</p> "> Figure 10
<p>Comparative changes in the drivers of agricultural drought in Guizhou during consecutive drought years and from 2000 to 2020. The black line represents the monthly variation of agricultural drought drivers in Guizhou’s consecutive drought years (2009–2013). PREC, TEMP, and SM are precipitation, temperature, and soil moisture, respectively. Can_eva, Soil_tran, and Can_tran are vegetation transpiration, soil evaporation, and vegetation transpiration, respectively.</p> "> Figure 11
<p>Comparative changes in the drivers of agricultural drought in Guangxi during consecutive drought years and from 2000 to 2020. The black line represents the monthly variation of agricultural drought drivers in Guangxi’s consecutive drought years (2009–2012). PREC, TEMP, and SM are precipitation, temperature, and soil moisture, respectively. Can_eva, Soil_tran, and Can_tran are vegetation transpiration, soil evaporation, and vegetation transpiration, respectively.</p> "> Figure 12
<p>Deviation degree of driving factors in different months of drought years in Yunnan.</p> ">
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area
2.2. Data
2.3. Agricultural Drought Index SSMI
2.4. Budyko Model
3. Results
3.1. Results of Agricultural Drought Monitoring in Southwest China
3.2. Budyko Change Trajectory in Southwest China
3.3. Analysis of Agricultural Drought Drivers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Dai, A.G. Increasing Drought under Global Warming in Observations and Models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Alam, I.; Otani, S.; Majbauddin, A.; Qing, Q.; Ishizu, S.F.; Masumoto, T.; Amano, H.; Kurozawa, Y. The Effects of Drought Severity and Its Aftereffects on Mortality in Bangladesh. Yonago Acta Med. 2021, 64, 292–302. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Lu, G.H.; Wen, L.; Lin, C.A. Reconstructing and Analyzing China’s Fifty-Nine Year (1951–2009) Drought History Using Hydrological Model Simulation. Hydrol. Earth Syst. Sci. 2011, 15, 2881–2894. [Google Scholar] [CrossRef]
- Wu, D.; Li, Y.A.; Kong, H.; Meng, T.T.; Sun, Z.H.; Gao, H. Scientometric Analysis-Based Review for Drought Modelling, Indices, Types, and Forecasting Especially in Asia. Water 2021, 13, 2593. [Google Scholar] [CrossRef]
- Liu, X.; Guo, P.; Tan, Q.; Zhang, F.; Huang, Y.; Wang, Y. Drought Disaster Risk Management Based on Optimal Allocation of Water Resources. Nat. Hazards 2021, 108, 285–308. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Bilal, M.; Habtemicheal, B.A.; Mustafa, F.; Arshad, M.; Ullah, I.; Ishfaq, S.; Iqbal, R. Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sens. 2021, 13, 2059. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Mendicino, G.; Senatore, A.; Versace, P. A Groundwater Resource Index (Gri) for Drought Monitoring and Forecasting in a Mediterranean Climate. J. Hydrol. 2008, 357, 282–302. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The Quantification of Drought: An Evaluation of Drought Indices. Bull. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T.T. A Global Dataset of Palmer Drought Severity Index for 1870–2002: Relationship with Soil Moisture and Effects of Surface Warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the Standardized Precipitation Index: A Calculation Algorithm. J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Garen, D.C. Revised Surface-Water Supply Index for Western United-States. J. Water Resour. Plan. Manag. Asce 1993, 119, 437–554. [Google Scholar] [CrossRef]
- Du, L.T.; Tian, Q.J.; Yu, T.; Meng, Q.Y.; Jancso, T.; Udvardy, P.; Huang, Y. A Comprehensive Drought Monitoring Method Integrating Modis and Trmm Data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Ross, K.W.; Liu, C.; Berry, K. Standardized Soil Moisture Index for Drought Monitoring Based on Smap Observations and 36 Years of Nldas Data: A Case Study in the Southeast United States. Remote Sens. 2018, 10, 301. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Shuanglin, L.; Gao, S.; Khan, A.H.; Mahmood, R. Comparison of Various Drought Indices to Monitor Drought Status in Pakistan. Clim. Dyn. 2018, 51, 1885–1899. [Google Scholar] [CrossRef]
- Narasimhan, B.; Srinivasan, R. Development and Evaluation of Soil Moisture Deficit Index (Smdi) and Evapotranspiration Deficit Index (Etdi) for Agricultural Drought Monitoring. Agric. For. Meteorol. 2005, 133, 69–88. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moradkhani, H.; Chen, N.; Zhang, X. Continental Drought Monitoring Using Satellite Soil Moisture, Data Assimilation and an Integrated Drought Index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing. Geophys. Res. Lett. 2007, 34, 56–88. [Google Scholar] [CrossRef]
- Shahzaman, M.; Zhu, W.; Ullah, I.; Mustafa, F.; Bilal, M.; Ishfaq, S.; Nisar, S.; Arshad, M.; Iqbal, R.; Aslam, R.W. Comparison of Multi-Year Reanalysis, Models, and Satellite Remote Sensing Products for Agricultural Drought Monitoring over South Asian Countries. Remote Sens. 2021, 13, 3294. [Google Scholar] [CrossRef]
- Wilhelmi, O.V.; Wilhite, D.A. Assessing Vulnerability to Agricultural Drought: A Nebraska Case Study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Feng, S.; Zhang, X.; Xu, Y.; Hao, F. Agricultural Drought Prediction in China Based on Drought Propagation and Large-Scale Drivers. Agric. Water Manag. 2021, 255, 107028. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, J.; Ullah, I.; Khan, F.; Lee, Y. Investigating Drought and Flood Evolution Based on Remote Sensing Data Products over the Punjab Region in Pakistan. Remote Sens. 2023, 15, 1680. [Google Scholar] [CrossRef]
- Zeng, Z.; Wu, W.; Li, Z.; Zhou, Y.; Guo, Y.; Huang, H. Agricultural Drought Risk Assessment in Southwest China. Water 2019, 11, 1064. [Google Scholar] [CrossRef]
- Mannocchi, F.; Todisco, F.; Vergni, L. Agricultural Drought: Indices, Definition and Analysis. Int. Assoc. Hydrol. Sci. Publ. 2000, 286, 246–254. [Google Scholar]
- Ajaz, A.; Taghvaeian, S.; Khand, K.; Gowda, P.H.; Moorhead, J.E. Development and Evaluation of an Agricultural Drought Index by Harnessing Soil Moisture and Weather Data. Water 2019, 11, 1375. [Google Scholar] [CrossRef]
- Han, P.-F.; Istanbulluoglu, E.; Wan, L.; Wang, X.-S. A New Hydrologic Sensitivity Framework for Unsteady-State Responses to Climate Change and Its Application to Catchments with Croplands in Illinois. Water Resour. Res. 2021, 57, e2020WR027762. [Google Scholar] [CrossRef]
- Sposito, G. Understanding the Budyko Equation. Water 2017, 9, 236. [Google Scholar] [CrossRef]
- Maurer, T.; Avanzi, F.; Glaser, S.D.; Bales, R.C. Drivers of Drought-Induced Shifts in the Water Balance through a Budyko Approach. Hydrol. Earth Syst. Sci. 2022, 26, 589–607. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The Propagation from Meteorological to Hydrological Drought and Its Potential Influence Factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Hrachowitz, M.; Clark, M.P. Hess Opinions: The Complementary Merits of Competing Modelling Philosophies in Hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 3953–3973. [Google Scholar] [CrossRef]
- Lin, W.; Wen, C.; Wen, Z.; Gang, H. Drought in Southwest China: A review. Atmos. Ocean. Sci. Lett. 2015, 8, 339–344. [Google Scholar]
- Hao, C.; Zhang, J.; Yao, F. Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Christian, J.I.; Basara, J.B.; Hunt, E.D.; Otkin, J.A.; Furtado, J.C.; Mishra, V.; Xiao, X.; Randall, R.M. Global Distribution, Trends, and Drivers of Flash Drought Occurrence. Nat. Commun. 2021, 12, 6330. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Zhou, W.; Zhang, Y.; Yan, H. Spatiotemporal Characteristics of Spring Rainfall over Southwest China and Their Relationships with Sea Surface Temperature during 1961–2017. Theor. Appl. Climatol. 2021, 145, 775–786. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, Ecosystem Processes and Services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Xu, W.; Jin, X.; Liu, J.; Yang, X.; Ren, J.; Zhou, Y. Analysis of Spatio-Temporal Changes in Forest Biomass in China. J. For. Res. 2022, 33, 261–278. [Google Scholar] [CrossRef]
- Zhen Feng, M.; Jia, L.; Shu-Qun, Y. Climate Change in Southwest China during 1961–2010: Impacts and Adaptation. Adv. Clim. Change Res. 2013, 4, 223–229. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Liu, Y.; Dong, Y.; Li, M.; An, Y.; Shi, F.; Beazley, R. Effects of the Interaction among Climate, Terrain and Human Activities on Biodiversity on the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 794, 148497. [Google Scholar] [CrossRef] [PubMed]
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Huang, Q.; Huang, S.; Leng, G.; Bai, Q.; Liang, H.; Wang, L.; Zhao, J.; Fang, W. Spatial-Temporal Dynamics of Agricultural Drought in the Loess Plateau under a Changing Environment: Characteristics and Potential Influencing Factors. Agric. Water Manag. 2021, 244, 106540. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, J.; Arsenault, K.; Brian, C.; Radakovich, J.; Mg, B.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Ma, N.; Kong, D.; Tian, J.; Shao, X.; Tang, Q. Greening-Induced Increase in Evapotranspiration over Eurasia Offset by CO2 Induced Vegetational Stomatal Closure. Environ. Res. Lett. 2021, 16, 124008. [Google Scholar] [CrossRef]
- Syed, T.H.; Famiglietti, J.S.; Rodell, M.; Chen, J.; Wilson, C.R. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS. Water Resour. Res. 2008, 44, 15. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Wood, E.F. Evapotranspiration and Runoff from Large Land Areas: Land Surface Hydrology for Atmospheric General Circulation Models. Surv. Geophys. 1991, 12, 179–204. [Google Scholar] [CrossRef]
- Koster, R.D.; Guo, Z.; Yang, R.; Dirmeyer, P.A.; Mitchell, K.; Puma, M.J. On the Nature of Soil Moisture in Land Surface Models. J. Clim. 2009, 22, 4322–4335. [Google Scholar] [CrossRef]
- Shen, H.; Jiang, Y.; Li, T.; Cheng, Q.; Zeng, C.; Zhang, L. Deep Learning-Based Air Temperature Mapping by Fusing Remote Sensing, Station, Simulation and Socioeconomic Data. Remote Sens. Environ. 2020, 240, 111692. [Google Scholar] [CrossRef]
- Courault, D.; Seguin, B.; Olioso, A. Review on Estimation of Evapotranspiration from Remote Sensing Data: From Empirical to Numerical Modeling Approaches. Irrig. Drain. Syst. 2005, 19, 223–249. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote Sensing of Drought: Progress, Challenges and Opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring Meteorological Drought in Semiarid Regions Using Multi-Sensor Microwave Remote Sensing Data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- West, H.; Quinn, N.; Horswell, M. Remote Sensing for Drought Monitoring & Impact Assessment: Progress, Past Challenges and Future Opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar] [CrossRef]
- Albergel, C.; Calvet, J.C.; de Rosnay, P.; Balsamo, G.; Wagner, W.; Hasenauer, S.; Naeimi, V.; Martin, E.; Bazile, E.; Bouyssel, F.; et al. Cross-Evaluation of Modelled and Remotely Sensed Surface Soil Moisture with In Situ Data in Southwestern France. Hydrol. Earth Syst. Sci. 2010, 14, 2177–2191. [Google Scholar] [CrossRef]
- Juglea, S.; Kerr, Y.; Mialon, A.; Lopez-Baeza, E.; Braithwaite, D.; Hsu, K. Soil Moisture Modelling of a Smos Pixel: Interest of Using the Persiann Database over the Valencia Anchor Station. Hydrol. Earth Syst. Sci. 2010, 14, 1509–1525. [Google Scholar] [CrossRef]
- Lievens, H.; Verhoest, N.E.C.; De Keyser, E.; Vernieuwe, H.; Matgen, P.; Álvarez-Mozos, J.; De Baets, B. Effective Roughness Modelling as a Tool for Soil Moisture Retrieval from C- and L-Band SAR. Hydrol. Earth Syst. Sci. 2011, 15, 151–162. [Google Scholar] [CrossRef]
- Hogue, T.S.; Bastidas, L.; Gupta, H.; Sorooshian, S.; Mitchell, K.; Emmerich, W. Evaluation and Transferability of the Noah Land Surface Model in Semiarid Environments. J. Hydrometeorol. 2005, 6, 68–84. [Google Scholar] [CrossRef]
- Grillakis, M.G. Increase in Severe and Extreme Soil Moisture Droughts for Europe under Climate Change. Sci. Total Environ. 2019, 660, 1245–1255. [Google Scholar] [CrossRef]
- Hunt, E.D.; Hubbard, K.G.; Wilhite, D.A.; Arkebauer, T.J.; Dutcher, A.L. The Development and Evaluation of a Soil Moisture Index. J. R. Meteorol. Soc. 2009, 29, 747–759. [Google Scholar] [CrossRef]
- Sandeep, P.; Obi Reddy, G.P.; Jegankumar, R.; Arun Kumar, K.C. Monitoring of Agricultural Drought in Semi-Arid Ecosystem of Peninsular India through Indices Derived from Time-Series Chirps and Modis Datasets. Ecol. Indic. 2021, 121, 107033. [Google Scholar] [CrossRef]
- Xu, L.; Chen, N.; Yang, C.; Zhang, C.; Yu, H. A Parametric Multivariate Drought Index for Drought Monitoring and Assessment under Climate Change. Agric. For. Meteorol. 2021, 310, 108657. [Google Scholar] [CrossRef]
- Das, P.K.; Das, R.; Das, D.K.; Midya, S.K.; Bandyopadhyay, S.; Raj, U. Quantification of Agricultural Drought Over Indian Region: A Multivariate Phenology-Based Approach. Nat. Hazards 2020, 101, 225–274. [Google Scholar] [CrossRef]
- Meng, L.; Paudel, R.; Hess, P.G.M.; Mahowald, N.M. Seasonal and Interannual Variability in Wetland Methane Emissions Simulated by Clm4me’ and Cam-Chem and Comparisons to Observations of Concentrations. Biogeosciences 2015, 12, 4029–4049. [Google Scholar] [CrossRef]
- Sun, X.; Lai, P.; Wang, S.; Song, L.; Ma, M.; Han, X. Monitoring of Extreme Agricultural Drought of the Past 20 Years in Southwest China Using GLDAS Soil Moisture. Remote Sens. 2022, 14, 1323. [Google Scholar] [CrossRef]
- Ji, Z.; Pei, T.; Chen, Y.; Wu, H.; Hou, Q.; Shi, F.; Xie, B.; Zhang, J. The Driving Factors of Grassland Water Use Efficiency along Degradation Gradients on the Qinghai-Tibet Plateau, China. Glob. Ecol. Conserv. 2022, 35, e02090. [Google Scholar] [CrossRef]
- Xu, X.; Liu, W.; Scanlon, B.R.; Zhang, L.; Pan, M. Local and Global Factors Controlling Water-Energy Balances within the Budyko Framework. Geophys. Res. Lett. 2013, 40, 6123–6129. [Google Scholar] [CrossRef]
- Fu, B. On the Calculation of the Evaporation from Land Surface. Sci. Atmos. Sin 1981, 5, 23–31. [Google Scholar]
- Zhang, L.; Hickel, K.; Dawes, W.; Chiew, F.H.; Western, A.; Briggs, P. A Rational Function Approach for Estimating Mean Annual Evapotranspiration. Water Resour. Res. 2004, 40, 12–19. [Google Scholar] [CrossRef]
- Zhang, L.; Walker, G.R.; Dawes, W.R. Water Balance Modelling: Concepts and Applications. ACIAR Monogr. Ser. 2002, 84, 31–47. [Google Scholar]
- Lawrence, D.M.; Thornton, P.E.; Oleson, K.W.; Bonan, G.B. The Partitioning of Evapotranspiration into Transpiration, Soil Evaporation, and Canopy Evaporation in a Gcm: Impacts on Land–Atmosphere Interaction. J. Hydrometeorol. 2007, 8, 862–880. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Sensitivities of Terrestrial Water Cycle Simulations to the Variations of Precipitation and Air Temperature in China. J. Geophys. Res. Atmos. 2011, 10, 110–116. [Google Scholar] [CrossRef]
- Li, Q.; Yan, N.; Zhang, F.; Chang, S.; Wu, B. Drought Monitoring and Its Impacts Assessment in Southwest China Using Remote Sensing in the Spring of 2010. Acta Geogr. Sin. 2010, 65, 771–780. [Google Scholar]
- Cheng, Q.; Gao, L.; Zhong, F.; Zuo, X.; Ma, M. Spatiotemporal Variations of Drought in the Yunnan-Guizhou Plateau, Southwest China, during 1960–2013 and Their Association with Large-Scale Circulations and Historical Records. Ecol. Indic. 2020, 112, 106041. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.F.; Zhao, J.X.; Qi, L.; Ren, H.L. The Possible Influence of a Nonconventional El Niño on the Severe Autumn Drought of 2009 in Southwest China. J. Clim. 2013, 26, 8392–8405. [Google Scholar] [CrossRef]
- Teuling, A.J.; Van Loon, A.F.; Seneviratne, S.I.; Lehner, I.; Aubinet, M.; Heinesch, B.; Bernhofer, C.; Grünwald, T.; Prasse, H.; Spank, U. Evapotranspiration Amplifies European Summer Drought. Geophys. Res. Lett. 2013, 40, 2071–2075. [Google Scholar] [CrossRef]
- Maes, W.; Steppe, K. Estimating Evapotranspiration and Drought Stress with Ground-Based Thermal Remote Sensing in Agriculture: A review. J. Exp. Bot. 2012, 63, 4671–4712. [Google Scholar] [CrossRef]
- Ullah, R.; Khan, J.; Ullah, I.; Khan, F.; Lee, Y. Assessing Impacts of Flood and Drought over the Punjab Region of Pakistan Using Multi-Satellite Data Products. Remote Sens. 2023, 15, 1484. [Google Scholar] [CrossRef]
- Mie Sein, Z.M.; Ullah, I.; Saleem, F.; Zhi, X.; Syed, S.; Azam, K. Interdecadal Variability in Myanmar Rainfall in the Monsoon Season (May–October) Using Eigen Methods. Water 2021, 13, 729. [Google Scholar] [CrossRef]
- Sein, Z.M.M.; Zhi, X.; Ullah, I.; Azam, K.; Ngoma, H.; Saleem, F.; Xing, Y.; Iyakaremye, V.; Syed, S.; Hina, S.; et al. Recent Variability of Sub-Seasonal Monsoon Precipitation and Its Potential Drivers in Myanmar Using In-Situ Observation during 1981–2020. Int. J. Climatol. 2022, 42, 3341–3359. [Google Scholar] [CrossRef]
- Iyakaremye, V.; Zeng, G.; Yang, X.; Zhang, G.; Ullah, I.; Gahigi, A.; Vuguziga, F.; Asfaw, T.G.; Ayugi, B. Increased High-temperature Extremes and Associated Population Exposure in Africa by the Mid-21st Century. Sci. Total Environ. 2021, 790, 148162. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, A.M.J.; HHGSavenije EJMVeling Pfister, L. Analytical Derivation of the Budyko Curve Based on Rainfall Characteristics and a Simple Evaporation Model. Water Resour. Res. 2009, 45, 11–18. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X.; Zhang, D.; Liu, C. Estimation of the Budyko Model Parameter for Small Basins in China. Hydrol. Process. 2020, 34, 125–138. [Google Scholar] [CrossRef]
Category | SSMI |
---|---|
Extreme drought | ≤−2.0 |
Severe drought | −2.0 to −1.5 |
Moderate drought | −1.5 to −1.0 |
Mild drought | −1.0 to −0.5 |
No drought | ≥−0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Wang, J.; Ma, M.; Han, X. Attribution of Extreme Drought Events and Associated Physical Drivers across Southwest China Using the Budyko Framework. Remote Sens. 2023, 15, 2702. https://doi.org/10.3390/rs15112702
Sun X, Wang J, Ma M, Han X. Attribution of Extreme Drought Events and Associated Physical Drivers across Southwest China Using the Budyko Framework. Remote Sensing. 2023; 15(11):2702. https://doi.org/10.3390/rs15112702
Chicago/Turabian StyleSun, Xupeng, Jinghan Wang, Mingguo Ma, and Xujun Han. 2023. "Attribution of Extreme Drought Events and Associated Physical Drivers across Southwest China Using the Budyko Framework" Remote Sensing 15, no. 11: 2702. https://doi.org/10.3390/rs15112702
APA StyleSun, X., Wang, J., Ma, M., & Han, X. (2023). Attribution of Extreme Drought Events and Associated Physical Drivers across Southwest China Using the Budyko Framework. Remote Sensing, 15(11), 2702. https://doi.org/10.3390/rs15112702