Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on Gradient Boosting Machine Learning and Class Balancing Methods
<p>The scheme of the present study.</p> "> Figure 2
<p>Overview map of the study area. (<b>a</b>) Geologic map at a scale of 1:200,000 overlain by the distribution of co-seismic landslides (source: geologic map in <a href="#remotesensing-14-05945-t001" class="html-table">Table 1</a>. The classification of rock groups has been modified.). (<b>b</b>) The locations and satellite imagery (source: <a href="http://goto.arcgisonline.com/maps/World_Imagery" target="_blank">http://goto.arcgisonline.com/maps/World_Imagery</a> accessed on 1 September 2022) of the study area. (<b>c</b>) Distribution of peak ground acceleration in the Hokkaido region during the 6 September 2018, earthquake (source: QuiQuake in <a href="#remotesensing-14-05945-t001" class="html-table">Table 1</a>). (<b>d</b>) Satellite imagery (source: Maxar imagery acquired on 11 September 2018) of the co-seismic landslides in the local zone in (<b>a</b>).</p> "> Figure 3
<p>The landslide influencing factors used in this study, obtained and processed by remote sensing and GIS technology. The yellow pentagram represents the epicenter. The names of the factors in (<b>a</b>–<b>w</b>) are below the color bar.</p> "> Figure 4
<p>Automatic extraction method for different parts of a landslide. (<b>a</b>) The division and extraction of the landslide parts. (<b>b</b>) A flowchart of our automatic extraction methodology. (<b>c</b>–<b>f</b>) The results of the landslide parts corresponding to <span class="html-italic">R<sub>d</sub></span> values of (<b>c</b>) 0.1, (<b>d</b>) 0.3, (<b>e</b>) 0.5, and (<b>f</b>) 0.9. The solid black lines represent the boundaries of the landslides. The colored cells represent the extracted parts of the landslide.</p> "> Figure 5
<p>The influence that parameters <span class="html-italic">a</span> and <span class="html-italic">b</span> in the DCE loss function exert on landslide susceptibility prediction using the (<b>a</b>,<b>b</b>,<b>e</b>,<b>f</b>) XGB<sub>DCE</sub> and (<b>c</b>,<b>d</b>,<b>g</b>,<b>h</b>) LGB<sub>DCE</sub> models. As <span class="html-italic">R<sub>d</sub></span> increases, the part of the landslide that the model seeks to predict is reduced from the entire landslide to the landslide scarp.</p> "> Figure 6
<p>Prediction of the susceptibilities of various landslide parts with combinations of the XGB algorithm with different class balancing methods: (<b>a</b>–<b>c</b>) XGB<sub>NB</sub>, (<b>d</b>–<b>f</b>) XGB<sub>EQS</sub>, (<b>g</b>–<b>i</b>) XGB<sub>DCE</sub>. As <span class="html-italic">R<sub>d</sub></span> increases, the part of the landslide that the model seeks to predict (the black polygon) is reduced from the entire landslide to the landslide scarp.</p> "> Figure 7
<p>Prediction of the susceptibilities of various landslide parts with combinations of the RF algorithm with different class balancing methods: (<b>a</b>–<b>c</b>) RF<sub>NB</sub>, (<b>d</b>–<b>f</b>) RF<sub>EQS</sub>, (<b>g</b>–<b>i</b>) RF<sub>ILW</sub>. As <span class="html-italic">R<sub>d</sub></span> increases, the part of the landslide that the model seeks to predict (the black polygon) is reduced from the entire landslide to the landslide scarp.</p> "> Figure 8
<p>The relationship between the proportion of landslides and the landslide susceptibility. From subfigures (<b>a</b>–<b>f</b>), the <span class="html-italic">R<sub>d</sub></span> increases, and the part of the landslide that the model seeks to predict is reduced from the entire landslide to the landslide scarp. Because some of the plots almost overlap (XGB-based model versus LGB-based model and EQS-based model versus ILW-based model), for greater clarity we only show representative model plots.</p> "> Figure 9
<p>The relationship between the landslide frequency and the landslide susceptibility. The models with the plots closest to the reference lines have predicted susceptibility values that are close to the actual landslide frequency. (<b>a</b>–<b>f</b>), the <span class="html-italic">R<sub>d</sub></span> increases, and the part of the landslide that the model seeks to predict is reduced from the entire landslide to the landslide scarp. Because some of the plots almost overlap (XGB-based model versus LGB-based model and EQS-based model versus ILW-based model), for clarity we show only representative model plots.</p> "> Figure 10
<p>The ranking of the importance of different landslide influencing factors using the (<b>a</b>) XGB<sub>NB</sub>, (<b>b</b>) XGB<sub>EQS</sub>, (<b>c</b>) XGB<sub>DCE</sub>, and (<b>d</b>) XGB<sub>ILW</sub> models. Different <span class="html-italic">R<sub>d</sub></span> (0.0–0.9) values correspond to predictions of different landslide parts in the models when landslide influencing factors are ranked by importance. Mean and STD refer to the mean and standard deviation, respectively, of the ranking of each landslide factor’s importance for all <span class="html-italic">R<sub>d</sub></span> values. Lower rankings represent more significant factor contributions. EL = elevation, diff = difference, and DIR = direction.</p> "> Figure 11
<p>The frequencies of the various parts of the landslide with respect to the landslide influencing factors (subfigures (<b>a</b>–<b>l</b>)). In Subfigure (<b>h</b>), Un (unknown lithology), Mm (marine mudstone), Sm (siliceous mudstone), Mc (marine conglomerate), Ss (Sandstone), and Qd (Quaternary deposits) denote the lithology.</p> "> Figure 12
<p>A combination of landslide source area prediction and landslide run-out modelling portraying the respective distribution of (<b>a</b>) the landslide impact frequency (expressed as the cumulative distribution function) and (<b>b</b>) the landslide impact probability. The landslide run-out model uses r.randomwalk [<a href="#B59-remotesensing-14-05945" class="html-bibr">59</a>], in which the motion is controlled by the landslide angle of reach. The average angle of reach (25°) and the probability distribution function used for modeling were calculated during the statistical analysis of the landslides.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Basic Data
2.3. Methodology
2.3.1. Automatic Extraction of Different Parts of Landslides
2.3.2. Validation Method
2.3.3. Evaluation Metrics
2.3.4. Landslide Susceptibility Algorithms
2.3.5. DCE Loss Function
2.3.6. Class Balancing Method
3. Results
3.1. Model Performance Evaluation
3.2. Landslide Susceptibility Mapping
3.3. The Analysis of Landslide Influencing Factors
4. Discussion
4.1. The Applicability of the Automatic Extraction Method
4.2. Comparison and Prospect of Landslide Learning Algorithms
4.3. Influence and Applicability of Class Balancing Methods
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Rossi, M.; Guzzetti, F.; Reichenbach, P.; Mondini, A.C.; Peruccacci, S. Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 2010, 114, 129–142. [Google Scholar] [CrossRef]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Ilia, I. Comparison of a logistic regression and Naïve Bayes classifier in landslide susceptibility assessments: The influence of models complexity and training dataset size. CATENA 2016, 145, 164–179. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Zhang, Z.; Xu, Q.; Li, W. Risk Factor Detection and Landslide Susceptibility Mapping Using Geo-Detector and Random Forest Models: The 2018 Hokkaido Eastern Iburi Earthquake. Remote Sens. 2021, 13, 1157. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia. Geosci. Front. 2021, 12, 639–655. [Google Scholar] [CrossRef]
- Sorbino, G.; Sica, C.; Cascini, L. Susceptibility analysis of shallow landslides source areas using physically based models. Nat. Hazards 2010, 53, 313–332. [Google Scholar] [CrossRef]
- Conoscenti, C.; Ciaccio, M.; Caraballo-Arias, N.A.; Gómez-Gutiérrez, Á.; Rotigliano, E.; Agnesi, V. Assessment of susceptibility to earth-flow landslide using logistic regression and multivariate adaptive regression splines: A case of the Belice River basin (western Sicily, Italy). Geomorphology 2015, 242, 49–64. [Google Scholar] [CrossRef]
- Trigila, A.; Iadanza, C.; Esposito, C.; Scarascia-Mugnozza, G. Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy). Geomorphology 2015, 249, 119–136. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Meisina, C.; Bartelletti, C.; Barsanti, M.; Giannecchini, R.; D’Amato Avanzi, G.; Galanti, Y.; Cevasco, A.; Brandolini, P.; et al. Shallow landslides susceptibility assessment in different environments. Geomat. Nat. Hazards Risk 2017, 8, 748–771. [Google Scholar] [CrossRef]
- Spinetti, C.; Bisson, M.; Tolomei, C.; Colini, L.; Galvani, A.; Moro, M.; Saroli, M.; Sepe, V. Landslide susceptibility mapping by remote sensing and geomorphological data: Case studies on the Sorrentina Peninsula (Southern Italy). GISci. Remote Sens. 2019, 56, 940–965. [Google Scholar] [CrossRef]
- Bordoni, M.; Galanti, Y.; Bartelletti, C.; Persichillo, M.G.; Barsanti, M.; Giannecchini, R.; Avanzi, G.D.A.; Cevasco, A.; Brandolini, P.; Galve, J.P.; et al. The influence of the inventory on the determination of the rainfall-induced shallow landslides susceptibility using generalized additive models. CATENA 2020, 193, 104630. [Google Scholar] [CrossRef]
- Dou, J.; Yunus, A.P.; Merghadi, A.; Shirzadi, A.; Nguyen, H.; Hussain, Y.; Avtar, R.; Chen, Y.; Pham, B.T.; Yamagishi, H. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Sci. Total Environ. 2020, 720, 137320. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, U.; Pittore, M.; Behling, R.; Roessner, S.; Andreani, L.; Korup, O. How robust are landslide susceptibility estimates? Landslides 2021, 18, 681–695. [Google Scholar] [CrossRef]
- Wang, L.-J.; Sawada, K.; Moriguchi, S. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Comput. Geosci. 2013, 57, 81–92. [Google Scholar] [CrossRef]
- Gupta, S.K.; Shukla, D.P. Data Imbalance in Landslide Susceptibility Zonation: A Case Study of Mandakini River Basin, Uttarakhand, India. In Proceedings of the IGARSS 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5234–5237. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, Q. Landslide Susceptibility Prediction Based on High-Trust Non-Landslide Point Selection. ISPRS Int. J. Geo-Inf. 2022, 11, 398. [Google Scholar] [CrossRef]
- Huang, F.; Yin, K.; Huang, J.; Gui, L.; Wang, P. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine. Eng. Geol. 2017, 223, 11–22. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Chen, Z.; Ren, F.; Feng, L.; Du, Q. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Int. J. Environ. Res. Public Health 2019, 16, 368. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yu, P. Seismic landslide susceptibility assessment based on ADASYN-LDA model. IOP Conf. Ser. Earth Environ. Sci. 2020, 525, 012087. [Google Scholar] [CrossRef]
- Ling, C.X.; Sheng, V.S. Cost-Sensitive Learning. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 231–235. [Google Scholar]
- Carrara, A.; Crosta, G.; Frattini, P. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 2008, 94, 353–378. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; McDonald, E.V.; Vitek, J.D. A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides 2014, 11, 247–262. [Google Scholar] [CrossRef]
- van Westen, C.J.; Rengers, N.; Soeters, R. Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Nat. Hazards 2003, 30, 399–419. [Google Scholar] [CrossRef]
- Thiery, Y.; Malet, J.P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007, 92, 38–59. [Google Scholar] [CrossRef] [Green Version]
- Xia, D.; Tang, H.; Sun, S.; Tang, C.; Zhang, B. Landslide Susceptibility Mapping Based on the Germinal Center Optimization Algorithm and Support Vector Classification. Remote Sens. 2022, 14, 2707. [Google Scholar] [CrossRef]
- Tanyu, B.F.; Abbaspour, A.; Alimohammadlou, Y.; Tecuci, G. Landslide susceptibility analyses using Random Forest, C4.5, and C5.0 with balanced and unbalanced datasets. CATENA 2021, 203, 105355. [Google Scholar] [CrossRef]
- Ageenko, A.; Hansen, L.C.; Lyng, K.L.; Bodum, L.; Arsanjani, J.J. Landslide Susceptibility Mapping Using Machine Learning: A Danish Case Study. ISPRS Int. J. Geo-Inf. 2022, 11, 324. [Google Scholar] [CrossRef]
- Chang, Z.; Du, Z.; Zhang, F.; Huang, F.; Chen, J.; Li, W.; Guo, Z. Landslide Susceptibility Prediction Based on Remote Sensing Images and GIS: Comparisons of Supervised and Unsupervised Machine Learning Models. Remote Sens. 2020, 12, 502. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA 2020, 191, 104580. [Google Scholar] [CrossRef]
- Yao, K.; Yang, S.; Wu, S.; Tong, B. Landslide Susceptibility Assessment Considering Spatial Agglomeration and Dispersion Characteristics: A Case Study of Bijie City in Guizhou Province, China. ISPRS Int. J. Geo-Inf. 2022, 11, 269. [Google Scholar] [CrossRef]
- Jiang, S.-H.; Huang, J.; Huang, F.; Yang, J.; Yao, C.; Zhou, C.-B. Modelling of spatial variability of soil undrained shear strength by conditional random fields for slope reliability analysis. Appl. Math. Model. 2018, 63, 374–389. [Google Scholar] [CrossRef]
- Bui, D.T.; Tsangaratos, P.; Nguyen, V.-T.; Liem, N.V.; Trinh, P.T. Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment. CATENA 2020, 188, 104426. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Jiang, S.-H.; Zhou, C.; Huang, J.; Guo, Z. Landslide susceptibility prediction based on a semi-supervised multiple-layer perceptron model. Landslides 2020, 17, 2919–2930. [Google Scholar] [CrossRef]
- Bravo-López, E.; Fernández Del Castillo, T.; Sellers, C.; Delgado-García, J. Landslide Susceptibility Mapping of Landslides with Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca, Ecuador. Remote Sens. 2022, 14, 3495. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar] [CrossRef]
- Zhang, S.; Li, R.; Wang, F.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nat. Geosci. 2010, 3, 247–251. [Google Scholar] [CrossRef]
- Geli, L.; Bard, P.-Y.; Jullien, B. The effect of topography on earthquake ground motion: A review and new results. Bull. Seismol. Soc. Am. 1988, 78, 42–63. [Google Scholar] [CrossRef]
- David, P. Earthquake Induced Landslides Lessons from Taiwan and Pakistan; Chengdu University of Technology: Chengdu, China, 2008. [Google Scholar]
- Iwahashi, J.; Pike, R.J. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology 2007, 86, 409–440. [Google Scholar] [CrossRef]
- Zakerinejad, R.; Maerker, M. An integrated assessment of soil erosion dynamics with special emphasis on gully erosion in the Mazayjan basin, southwestern Iran. Nat. Hazards 2015, 79, 25–50. [Google Scholar] [CrossRef]
- Mergili, M.; Chu, H.J. Integrated statistical modelling of spatial landslide probability. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 2015, 5677–5715. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Hastie, T.; Friedman, J.; Tibshirani, R. Linear Methods for Classification. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New York, NY, USA, 2009; pp. 79–113. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Milletari, F.; Navab, N.; Ahmadi, S. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar]
- Kanda, T.; Takata, Y.; Kohyama, K.; Ohkura, T.; Maejima, Y.; Wakabayashi, S.; Obara, H. New Soil Maps of Japan based on the Comprehensive Soil Classification System of Japan First Approximation and its Application to the World Reference Base for Soil Resources 2006. Jpn. Agric. Res. Q. JARQ 2018, 52, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Katsenis, L.C.; Stamatopoulos, C.A.; Panoskaltsis, V.P.; Di, B. Prediction of large seismic sliding movement of slopes using a 2-body non-linear dynamic model with a rotating stick-slip element. Soil Dyn. Earthq. Eng. 2020, 129, 105953. [Google Scholar] [CrossRef]
- Ambraseys, N.; Srbulov, M. Earthquake induced displacements of slopes. Soil Dyn. Earthq. Eng. 1995, 14, 59–71. [Google Scholar] [CrossRef]
- Rathje, E.M.; Bray, J.D. Nonlinear Coupled Seismic Sliding Analysis of Earth Structures. J. Geotech. Geoenviron. Eng. 2000, 126, 1002–1014. [Google Scholar] [CrossRef]
- Ji, J.; Wang, C.-W.; Gao, Y.; Zhang, L. Probabilistic investigation of the seismic displacement of earth slopes under stochastic ground motion: A rotational sliding block analysis. Can. Geotech. J. 2021, 58, 952–968. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.; Yao, X.; Dai, F. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 2014, 11, 441–461. [Google Scholar] [CrossRef] [Green Version]
- Roback, K.; Clark, M.K.; West, A.J.; Zekkos, D.; Li, G.; Gallen, S.F.; Chamlagain, D.; Godt, J.W. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal. Geomorphology 2018, 301, 121–138. [Google Scholar] [CrossRef]
- Regmi, A.D.; Dhital, M.R.; Zhang, J.-Q.; Su, L.-J.; Chen, X.-Q. Landslide susceptibility assessment of the region affected by the 25 April 2015 Gorkha earthquake of Nepal. J. Mt. Sci. 2016, 13, 1941–1957. [Google Scholar] [CrossRef]
- Mergili, M.; Krenn, J.; Chu, H.J. r. randomwalk v1, a multi-functional conceptual tool for mass movement routing. Geosci. Model Dev. 2015, 8, 4027–4043. [Google Scholar] [CrossRef]
Basic Data | Source | Date | Resolution |
---|---|---|---|
Digital elevation model (DEM) | Geospatial Authority Institute of Japan (https://fgd.gsi.go.jp/download/menu.php accessed on 1 September 2022) | 1 October 2016 | 10 m |
QuiQuake | Geological Survey of Japan, AIST (https://gbank.gsj.jp/QuiQuake/QuakeMap/index.en.html accessed on 1 September 2022) | 6 September 2018 | 250 m |
Shakemap | United States Geological Survey (USGS) (https://earthquake.usgs.gov/data/shakemap/ accessed on 1 September 2022) | 6 September 2018 | — |
CHIRPS | Climate Hazards Center (https://www.chc.ucsb.edu/data/chirps accessed on 1 September 2022) | 3 September 2018–6 September 2018 | 5000 m |
MODIS Vegetation Index | NASA (https://earthdata.nasa.gov/ accessed on 1 September 2022) | 13 August 2018–28 August 2018 | 250 m |
Geological map | Geological Survey of Japan, AIST (https://gbank.gsj.jp/seamless/v2.html accessed on 1 September 2022) | 22 January 2021 | 1:200,000 |
Google earth imagery | Google earth pro | 30 September 2016–10 July 2020 | 0.2 m |
Aerial photos | Geospatial Authority Institute of Japan (https://kmlnetworklink.gsi.go.jp/kmlnetworklink/index.html accessed on 1 September 2022) | 6 September 2018–13 September 2018 | 0.2 m |
Type | Factor | Basic Data | Range | Unit | Resolution |
---|---|---|---|---|---|
Seismic | Peak ground acceleration (PGA) | QuiQuake | 11.0–131.6 | g% | 250 m |
PGVA, the product of PGV (peak ground velocity) and PGA | 4.4–9.4 | — | 250 m | ||
The Euclidean distance to the focus (distancefocus) | Shakemap | 35.0–52.2 | km | 30 m | |
Epicentral direction | 0.0–180.0 | ° | 30 m | ||
The Euclidean distance to the nearest ridge (distanceridge) | DEM | 0.0–488.4 | m | 30 m | |
The angle between epicentral direction and the slope aspect (angleES) | DEM and QuiQuake | 0.0–360.0 | ° | 30 m | |
The angle between the horizontal and the line from calculated cell to focus (angleFH). AngleFH represents the direction of seismic wave propagation at a location, which would influence the occurrence of landslides. | 42.9–90.0 | ° | 30 m | ||
The sum of angleFH and the slope degree (angleFS) | 43.7–126.8 | ° | 30 m | ||
Geomorphologic | The maximum slope in the neighbourhood of the calculated cell (slopeMAX) | DEM | 0.0–57.7 | ° | 30 m |
The variation of the slope aspects in the neighbourhood of the calculated cell (aspectVAR) | 0.0–1.0 | — | 30 m | ||
The ratio of the elevation to the maximum elevation in the neighbourhood of the calculated cell (elevation ratio) | 0.0–1.0 | — | 30 m | ||
Elevation difference | 0.0–233.0 | m | 30 m | ||
The percentage of convex cells in the neighbourhood of the calculated cell (surface convexity) [43]. Surface convexity describes the shape (convex, concave, flat) of the slope, which affects the stability of the slope under earthquake shaking. | 1.2–74.4 | — | 30 m | ||
The standard deviation of the curvature in the neighbourhood of the calculated cell (curvatureSTD) | 0.0–4.1 | — | 30 m | ||
Hydrological | The shortest Euclidean distance to minor rivers (distanceSR) | DEM | 0.0–1855.6 | m | 30 m |
The shortest Euclidean distance to major rivers (distanceMR) | 0.0–10.2 | km | 30 m | ||
Stream power index (SPI) | −13.8–15.6 | — | 30 m | ||
Climatic | Cumulative precipitation in the 4 days before an earthquake (precipitation) | CHIRPS | 0.0–39.1 | mm | 5000 m |
Vegetation cover | Enhanced vegetation index (EVI) | MODIS Vegetation Index Products | −3879.0–9748.0 | — | 250 m |
Geological | Lithology | Geological map | — | — | — |
The Euclidean distance to the nearest fault (distancefault) | 0.0–13.2 | km | 30 m | ||
The Euclidean distance to the nearest fold (distancefold) | 0.0–12.3 | km | 30 m | ||
Fault density (LF × WF/AF). LF, WF, and AF are the total fault length, fault width, and area of the statistical zone, respectively. | 0.0–2.2 | — | 30 m | ||
Fold density (LO × WO/AO). LO, WO, and AO are the total fold length, fold width, and area of the statistical zone, respectively. | 0.0–1.6 | — | 30 m |
Rd | Number of Landslide Parts | Number of Landslide Cells | Number of Non-landslide Cells | Ratio of Landslide to Non-Landslide | Area of Landslide Cells | Total Study Area (km2) | Landslide Frequency | |
---|---|---|---|---|---|---|---|---|
Sum (km2) | Mean (m2) | |||||||
0.0 | 10,422 | 10,4826 | 2,101,479 | 1:20 | 94.34 | 9052.33 | 1985.67 | 0.048 |
0.1 | 10,422 | 83,663 | 2,122,642 | 1:25 | 75.30 | 7224.78 | 1985.67 | 0.038 |
0.3 | 10,422 | 66,120 | 2,140,185 | 1:32 | 59.51 | 5709.84 | 1985.67 | 0.030 |
0.5 | 10,422 | 48,864 | 2,157,441 | 1:44 | 43.98 | 4219.69 | 1985.67 | 0.022 |
0.7 | 10,422 | 31,152 | 2,175,153 | 1:70 | 28.04 | 2690.16 | 1985.67 | 0.014 |
0.9 | 10,422 | 16,061 | 2,190,244 | 1:136 | 14.45 | 1386.96 | 1985.67 | 0.007 |
Model | Rd = 0.0 | Rd = 0.1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PRE | REC | F1 | JACP | JACN | JAC | AUC | Freq | PRE | REC | F1 | JACP | JACN | JAC | AUC | Freq | |
XGBNB | 0.699 | 0.468 | 0.561 | 0.390 | 0.964 | 0.613 | 0.974 | 0.048 | 0.646 | 0.354 | 0.457 | 0.297 | 0.968 | 0.536 | 0.971 | 0.038 |
XGBEQS | 0.350 | 0.930 | 0.509 | 0.341 | 0.911 | 0.557 | 0.972 | 0.048 | 0.290 | 0.932 | 0.442 | 0.284 | 0.908 | 0.508 | 0.970 | 0.038 |
XGBILW | 0.366 | 0.916 | 0.523 | 0.354 | 0.917 | 0.570 | 0.972 | 0.048 | 0.307 | 0.916 | 0.460 | 0.299 | 0.916 | 0.523 | 0.970 | 0.038 |
XGBDCE | 0.520 | 0.771 | 0.621 | 0.451 | 0.954 | 0.655 | 0.973 | 0.048 | 0.464 | 0.727 | 0.566 | 0.395 | 0.957 | 0.615 | 0.971 | 0.038 |
LGBNB | 0.639 | 0.429 | 0.512 | 0.344 | 0.960 | 0.575 | 0.968 | 0.048 | 0.594 | 0.290 | 0.389 | 0.242 | 0.965 | 0.483 | 0.966 | 0.038 |
LGBEQS | 0.320 | 0.942 | 0.477 | 0.313 | 0.897 | 0.530 | 0.971 | 0.048 | 0.266 | 0.945 | 0.415 | 0.262 | 0.895 | 0.484 | 0.969 | 0.038 |
LGBILW | 0.322 | 0.941 | 0.480 | 0.316 | 0.898 | 0.532 | 0.971 | 0.048 | 0.268 | 0.944 | 0.418 | 0.264 | 0.897 | 0.486 | 0.969 | 0.038 |
LGBDCE | 0.471 | 0.797 | 0.592 | 0.421 | 0.946 | 0.631 | 0.970 | 0.048 | 0.419 | 0.760 | 0.540 | 0.370 | 0.949 | 0.592 | 0.968 | 0.038 |
RFNB | 0.751 | 0.414 | 0.534 | 0.364 | 0.965 | 0.593 | 0.969 | 0.048 | 0.656 | 0.274 | 0.387 | 0.240 | 0.967 | 0.481 | 0.963 | 0.038 |
RFEQS | 0.387 | 0.912 | 0.543 | 0.373 | 0.924 | 0.587 | 0.972 | 0.048 | 0.320 | 0.915 | 0.475 | 0.311 | 0.920 | 0.535 | 0.969 | 0.038 |
RFILW | 0.751 | 0.379 | 0.504 | 0.337 | 0.964 | 0.570 | 0.963 | 0.048 | 0.652 | 0.247 | 0.358 | 0.218 | 0.966 | 0.459 | 0.957 | 0.038 |
LDANB | 0.426 | 0.178 | 0.251 | 0.144 | 0.949 | 0.369 | 0.925 | 0.048 | 0.367 | 0.129 | 0.191 | 0.106 | 0.958 | 0.318 | 0.922 | 0.038 |
LDAEQS | 0.194 | 0.949 | 0.322 | 0.192 | 0.802 | 0.393 | 0.936 | 0.048 | 0.157 | 0.950 | 0.270 | 0.156 | 0.798 | 0.353 | 0.932 | 0.038 |
Model | Rd= 0.3 | Rd= 0.5 | ||||||||||||||
PRE | REC | F1 | JACP | JACN | JAC | AUC | Freq | PRE | REC | F1 | JACP | JACN | JAC | AUC | Freq | |
XGBNB | 0.631 | 0.274 | 0.382 | 0.236 | 0.973 | 0.479 | 0.971 | 0.030 | 0.623 | 0.198 | 0.301 | 0.177 | 0.980 | 0.416 | 0.971 | 0.022 |
XGBEQS | 0.240 | 0.931 | 0.382 | 0.236 | 0.907 | 0.463 | 0.969 | 0.030 | 0.183 | 0.932 | 0.305 | 0.180 | 0.904 | 0.404 | 0.968 | 0.022 |
XGBILW | 0.260 | 0.913 | 0.404 | 0.253 | 0.917 | 0.482 | 0.970 | 0.030 | 0.206 | 0.906 | 0.335 | 0.201 | 0.919 | 0.430 | 0.970 | 0.022 |
XGBDCE | 0.431 | 0.677 | 0.527 | 0.357 | 0.963 | 0.587 | 0.971 | 0.030 | 0.398 | 0.598 | 0.478 | 0.314 | 0.971 | 0.552 | 0.971 | 0.022 |
LGBNB | 0.480 | 0.212 | 0.280 | 0.163 | 0.965 | 0.395 | 0.960 | 0.030 | 0.480 | 0.140 | 0.214 | 0.120 | 0.977 | 0.342 | 0.964 | 0.022 |
LGBEQS | 0.222 | 0.945 | 0.359 | 0.219 | 0.896 | 0.443 | 0.969 | 0.030 | 0.171 | 0.942 | 0.289 | 0.169 | 0.895 | 0.389 | 0.969 | 0.022 |
LGBILW | 0.225 | 0.943 | 0.364 | 0.222 | 0.898 | 0.447 | 0.969 | 0.030 | 0.176 | 0.939 | 0.297 | 0.174 | 0.899 | 0.396 | 0.969 | 0.022 |
LGBDCE | 0.391 | 0.709 | 0.504 | 0.337 | 0.957 | 0.568 | 0.968 | 0.030 | 0.351 | 0.632 | 0.452 | 0.292 | 0.966 | 0.531 | 0.967 | 0.022 |
RFNB | 0.633 | 0.218 | 0.324 | 0.193 | 0.973 | 0.434 | 0.961 | 0.030 | 0.610 | 0.168 | 0.263 | 0.152 | 0.979 | 0.385 | 0.958 | 0.022 |
RFEQS | 0.263 | 0.919 | 0.409 | 0.257 | 0.918 | 0.486 | 0.969 | 0.030 | 0.197 | 0.925 | 0.325 | 0.194 | 0.913 | 0.421 | 0.969 | 0.022 |
RFILW | 0.624 | 0.195 | 0.298 | 0.175 | 0.972 | 0.412 | 0.953 | 0.030 | 0.604 | 0.153 | 0.244 | 0.139 | 0.979 | 0.369 | 0.950 | 0.022 |
LDANB | 0.354 | 0.099 | 0.154 | 0.084 | 0.967 | 0.284 | 0.921 | 0.030 | 0.344 | 0.064 | 0.108 | 0.057 | 0.977 | 0.236 | 0.922 | 0.022 |
LDAEQS | 0.126 | 0.949 | 0.223 | 0.125 | 0.796 | 0.316 | 0.932 | 0.030 | 0.095 | 0.947 | 0.173 | 0.094 | 0.795 | 0.274 | 0.933 | 0.022 |
Model | Rd= 0.7 | Rd= 0.9 | ||||||||||||||
PRE | REC | F1 | JACP | JACN | JAC | AUC | Freq | PRE | REC | F1 | JACP | JACN | JAC | AUC | Freq | |
XGBNB | 0.602 | 0.117 | 0.196 | 0.109 | 0.986 | 0.328 | 0.970 | 0.014 | 0.555 | 0.034 | 0.064 | 0.033 | 0.993 | 0.181 | 0.965 | 0.007 |
XGBEQS | 0.117 | 0.932 | 0.208 | 0.116 | 0.899 | 0.323 | 0.967 | 0.014 | 0.055 | 0.932 | 0.105 | 0.055 | 0.883 | 0.221 | 0.960 | 0.007 |
XGBILW | 0.139 | 0.898 | 0.241 | 0.137 | 0.919 | 0.354 | 0.968 | 0.014 | 0.072 | 0.874 | 0.133 | 0.071 | 0.916 | 0.255 | 0.963 | 0.007 |
XGBDCE | 0.353 | 0.481 | 0.407 | 0.255 | 0.980 | 0.500 | 0.970 | 0.014 | 0.266 | 0.277 | 0.271 | 0.157 | 0.989 | 0.394 | 0.965 | 0.007 |
LGBNB | 0.396 | 0.120 | 0.182 | 0.100 | 0.985 | 0.314 | 0.963 | 0.014 | 0.226 | 0.060 | 0.093 | 0.049 | 0.991 | 0.218 | 0.953 | 0.007 |
LGBEQS | 0.111 | 0.941 | 0.199 | 0.110 | 0.892 | 0.314 | 0.968 | 0.014 | 0.054 | 0.937 | 0.102 | 0.054 | 0.879 | 0.217 | 0.962 | 0.007 |
LGBILW | 0.117 | 0.935 | 0.207 | 0.116 | 0.898 | 0.322 | 0.969 | 0.014 | 0.058 | 0.929 | 0.109 | 0.058 | 0.889 | 0.227 | 0.963 | 0.007 |
LGBDCE | 0.288 | 0.511 | 0.366 | 0.225 | 0.974 | 0.466 | 0.963 | 0.014 | 0.230 | 0.296 | 0.259 | 0.149 | 0.988 | 0.383 | 0.959 | 0.007 |
RFNB | 0.598 | 0.111 | 0.187 | 0.103 | 0.986 | 0.319 | 0.952 | 0.014 | 0.500 | 0.035 | 0.066 | 0.034 | 0.993 | 0.184 | 0.932 | 0.007 |
RFEQS | 0.123 | 0.931 | 0.217 | 0.122 | 0.904 | 0.331 | 0.968 | 0.014 | 0.056 | 0.936 | 0.106 | 0.056 | 0.884 | 0.222 | 0.963 | 0.007 |
RFILW | 0.580 | 0.100 | 0.170 | 0.093 | 0.986 | 0.303 | 0.941 | 0.014 | 0.495 | 0.031 | 0.059 | 0.030 | 0.993 | 0.174 | 0.916 | 0.007 |
LDANB | 0.348 | 0.035 | 0.064 | 0.033 | 0.985 | 0.181 | 0.923 | 0.014 | 0.340 | 0.011 | 0.021 | 0.011 | 0.993 | 0.103 | 0.916 | 0.007 |
LDAEQS | 0.062 | 0.944 | 0.116 | 0.061 | 0.794 | 0.221 | 0.934 | 0.014 | 0.031 | 0.936 | 0.060 | 0.031 | 0.787 | 0.157 | 0.930 | 0.007 |
Rd = 0.0 | Rd = 0.3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | Landslide Susceptibility | Freq | Landslide Susceptibility | Freq | ||||||||
0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | |||
XGBNB | 2037.5 | 72.4 | 47.9 | 33.9 | 14.5 | 0.048 | 2094.2 | 64.3 | 32.2 | 13.3 | 2.2 | 0.030 |
XGBEQS | 1821.0 | 76.9 | 57.9 | 65.8 | 184.8 | 0.048 | 1840.1 | 78.5 | 57.5 | 64.8 | 165.4 | 0.030 |
XGBILW | 1842.8 | 73.5 | 54.0 | 60.2 | 175.9 | 0.048 | 1874.6 | 72.0 | 52.4 | 57.2 | 150.1 | 0.030 |
XGBDCE | 1969.0 | 58.8 | 46.7 | 57.0 | 74.8 | 0.048 | 2027.6 | 53.1 | 43.3 | 46.3 | 36.0 | 0.030 |
LGBNB | 2023.4 | 87.0 | 53.5 | 36.3 | 6.0 | 0.048 | 2087.6 | 74.3 | 31.1 | 11.1 | 2.1 | 0.030 |
LGBEQS | 1752.6 | 105.7 | 72.8 | 78.7 | 196.5 | 0.048 | 1778.1 | 104.4 | 73.4 | 75.8 | 174.5 | 0.030 |
LGBILW | 1752.7 | 104.9 | 73.4 | 78.6 | 196.6 | 0.048 | 1782.2 | 105.4 | 72.6 | 74.4 | 171.7 | 0.030 |
LGBDCE | 1929.9 | 70.5 | 58.2 | 74.7 | 73.0 | 0.048 | 1997.8 | 62.4 | 53.7 | 62.3 | 30.1 | 0.030 |
RFNB | 2069.3 | 58.8 | 37.4 | 26.3 | 14.4 | 0.048 | 2119.2 | 50.3 | 23.6 | 10.3 | 2.9 | 0.030 |
RFEQS | 1834.9 | 90.7 | 64.6 | 71.3 | 144.8 | 0.048 | 1829.5 | 107.2 | 71.8 | 73.4 | 124.4 | 0.030 |
RFILW | 2078.9 | 55.0 | 35.5 | 24.9 | 12.0 | 0.048 | 2128.9 | 44.0 | 21.5 | 9.6 | 2.3 | 0.030 |
LDANB | 2015.5 | 121.1 | 41.6 | 17.6 | 10.5 | 0.048 | 2099.2 | 75.4 | 20.9 | 8.6 | 2.3 | 0.030 |
LDAEQS | 1448.9 | 181.9 | 120.7 | 122.6 | 332.2 | 0.048 | 1466.4 | 178.0 | 125.7 | 127.2 | 309.0 | 0.030 |
Rd= 0.5 | Rd= 0.9 | |||||||||||
Model | 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | Freq | 0.0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1.0 | Freq |
XGBNB | 2125.9 | 52.5 | 19.5 | 7.1 | 1.2 | 0.022 | 2193.4 | 10.7 | 1.8 | 0.4 | 0.0 | 0.007 |
XGBEQS | 1845.8 | 81.9 | 59.3 | 64.9 | 154.4 | 0.022 | 1800.5 | 96.0 | 71.1 | 78.6 | 160.1 | 0.007 |
XGBILW | 1890.5 | 73.1 | 52.3 | 56.6 | 133.7 | 0.022 | 1902.7 | 78.4 | 57.8 | 62.9 | 104.5 | 0.007 |
XGBDCE | 2064.4 | 49.5 | 36.5 | 34.0 | 21.9 | 0.022 | 2153.8 | 28.3 | 13.1 | 7.5 | 3.5 | 0.007 |
LGBNB | 2125.7 | 56.6 | 14.7 | 5.8 | 3.6 | 0.022 | 2193.4 | 8.3 | 1.4 | 0.8 | 2.3 | 0.007 |
LGBEQS | 1784.3 | 112.6 | 75.4 | 74.9 | 159.1 | 0.022 | 1743.0 | 131.0 | 89.4 | 95.2 | 147.6 | 0.007 |
LGBILW | 1794.6 | 109.4 | 74.3 | 73.5 | 154.5 | 0.022 | 1779.5 | 122.0 | 82.3 | 91.5 | 131.0 | 0.007 |
LGBDCE | 2036.4 | 57.6 | 47.1 | 45.6 | 19.7 | 0.022 | 2141.5 | 34.9 | 16.3 | 9.7 | 3.9 | 0.007 |
RFNB | 2142.9 | 40.4 | 15.7 | 6.0 | 1.4 | 0.022 | 2192.4 | 11.3 | 2.1 | 0.4 | 0.0 | 0.007 |
RFEQS | 1814.0 | 120.7 | 79.3 | 76.8 | 115.5 | 0.022 | 1696.1 | 180.2 | 115.5 | 103.6 | 110.9 | 0.007 |
RFILW | 2150.4 | 34.8 | 14.4 | 5.6 | 1.1 | 0.022 | 2194.1 | 9.9 | 1.8 | 0.4 | 0.0 | 0.007 |
LDANB | 2142.7 | 47.8 | 11.0 | 4.4 | 0.5 | 0.022 | 2197.6 | 7.4 | 1.3 | 0.1 | 0.0 | 0.007 |
LDAEQS | 1466.6 | 184.8 | 129.7 | 132.6 | 292.5 | 0.022 | 1436.9 | 210.0 | 148.3 | 158.5 | 252.6 | 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Y.; Wu, G. Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on Gradient Boosting Machine Learning and Class Balancing Methods. Remote Sens. 2022, 14, 5945. https://doi.org/10.3390/rs14235945
Zhang S, Wang Y, Wu G. Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on Gradient Boosting Machine Learning and Class Balancing Methods. Remote Sensing. 2022; 14(23):5945. https://doi.org/10.3390/rs14235945
Chicago/Turabian StyleZhang, Shuhao, Yawei Wang, and Guang Wu. 2022. "Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on Gradient Boosting Machine Learning and Class Balancing Methods" Remote Sensing 14, no. 23: 5945. https://doi.org/10.3390/rs14235945