Improved Landscape Expansion Index and Its Application to Urban Growth in Urumqi
"> Figure 1
<p>Schematic diagram of the three landscape expansion patterns. (<b>a</b>–<b>c</b>) represents <span class="html-italic">infilling</span> growth, (<b>d</b>) represents <span class="html-italic">edge-expansion</span> growth, and (<b>e</b>) represents <span class="html-italic">outlying</span> growth.</p> "> Figure 2
<p>Process framework for landscape expansion pattern identification and compactness calculation.</p> "> Figure 3
<p>Cases of misclassification of landscape expansion index based on the envelope and the buffer method. (<b>a</b>,<b>b</b>) is the envelop box method. (<b>c</b>,<b>d</b>) is the buffer method.</p> "> Figure 4
<p>Overview map of the study area. (<b>a</b>,<b>b</b>) The spatial location of the study area. (<b>c</b>) The spatial distribution of expansion patches in Urumqi from 1990–2015.</p> "> Figure 5
<p>Percentage of area and number of patches with different landscape expansion patterns. (<b>a</b>) Percentage of the number of different patches. (<b>b</b>) Percentage of area of different patches.</p> "> Figure 6
<p>Spatial distribution of landscape expansion patterns in Urumqi from 1990 to 2015. (<b>a</b>–<b>e</b>) denote the spatial distribution of landscape expansion patterns for each of the five 5-year intervals from 1990–2015.</p> "> Figure 7
<p>Eight-directional map of the urban expansion area of Urumqi from 1990 to 2015.</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Effective Identification of Landscape Expansion Patterns
2.2. Comparison Verification
2.3. Calculation of the Landscape Scale Compactness
3. Application over Urumqi
3.1. Study Area and Data
3.2. Landscape Expansion Pattern
3.3. Landscape Scale Compactness
3.4. Urban Historical Transformation Trajectories and Expansion Direction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Zuo, R.; Dong, Y. Analysis of temporal and spatial characteristics of urban expansion in Xiaonan District from 1990 to 2020 using time series Landsat imagery. Remote Sens. 2021, 13, 4299. [Google Scholar] [CrossRef]
- Yang, C.; Li, Q.; Zhao, T.; Liu, H.; Gao, W.; Shi, T.; Guan, M.; Wu, G. Detecting spatiotemporal features and rationalities of urban expansions within the Guangdong–Hong Kong–Macau Greater Bay area of China from 1987 to 2017 using time-series Landsat images and socioeconomic data. Remote Sens. 2019, 11, 2215. [Google Scholar] [CrossRef] [Green Version]
- United Nations. World Urbanization Prospects 2018: Highlights (ST/ESA/SER.A/421); United Nations: New York, NY, USA, 2019. Available online: http://esa.un.org/unpd/wup/index.htm2018 (accessed on 1 August 2022).
- United Nations. The World’s Cities in 2018; United Nations: New York, NY, USA, 2018. Available online: https://population.un.org/wup/Publications/ (accessed on 1 August 2022).
- National Development and Reform Commission (NDRE). Key Tasks of New Urbanization and Urban-Rural Integration Development in 2022; NDRE: Beijing, China, 2022. Available online: http://www.gov.cn/zhengce/zhengceku/2022-03/22/content_5680416.htm (accessed on 1 July 2022).
- National Bureau of Statistics of China. Statistical Bulletin on National Economic and Social Development of the People’s Republic of China in 2021. 2022. Available online: http://www.gov.cn/shuju/2022-02/28/content_5676015.htm (accessed on 1 July 2022).
- Rifat, S.A.A.; Liu, W. Quantifying spatiotemporal patterns and major explanatory factors of urban expansion in Miami metropolitan area during 1992–2016. Remote Sens. 2019, 11, 2493. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Chaolin, G.; Liya, W.U.; Cook, I. Progress in research on Chinese urbanization. Front. Arch. Res. 2012, 1, 101–149. [Google Scholar] [CrossRef] [Green Version]
- Burgi, M.; Hersperger, A.M.; Schneeberger, N. Driving forces of landscape change—Current and new directions. Landsc. Ecol. 2005, 19, 857–868. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Gustafson, E.J. Minireview: Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- McGarigal, K.; Marks, B.J. FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure; Gerneral Technical Report PNW-GTR-351; U.S. Department of Agriculture, Forest Service: Washington, DC, USA; Pacific Northwest Research Station: Oregon, Porland, 1995; 122p. [Google Scholar] [CrossRef]
- Civco, D.L.; Hurd, J.D.; Wilson, E.H.; Arnold, C.; Prisloe, M.P. Quantifying and describing urbanizing landscapes in the northeast United States. Photogramm. Eng. Remote Sens. 2002, 68, 1083–1090. [Google Scholar]
- Herold, M.; Scepan, J.; Clarke, K.C. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environ. Plan. A Econ. Space 2016, 34, 1443–1458. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Blaschke, T.; Haase, D.; Herzog, F.; Syrbe, R.-U.; Tischendorf, L.; Walz, U. Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 2015, 295, 31–41. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Chen, Y.; Tan, Z.; Li, S.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Angel, S.; Sheppard, S.C.; Civco, D.L.; Buckley, R.; Chabaeva, A.; Gitlin, L.; Kraley, A.; Parent, J.; Perlin, M. The Dynamics of Global Urban Expansion; The World Bank: Washington, DC, USA, 2005. [Google Scholar]
- Hoffhine Wilson, E.; Hurd, J.D.; Civco, D.L.; Prisloe, M.P.; Arnold, C. Development of a geospatial model to quantify, describe and map urban growth. Remote Sens. Environ. 2003, 86, 275–285. [Google Scholar] [CrossRef]
- Forman, R. Land Mosaics: The ecology of landscapes and regions (1995). In The Ecological Design and Planning Reader; Island Press: Washington, DC, USA, 2014; pp. 217–234. [Google Scholar]
- Ghani, N.L.A.; Abidin, S.Z.Z. A modified landscape expansion index algorithm for urban growth classification using satellite remote sensing image. Adv. Sci. Lett. 2018, 24, 1843–1846. [Google Scholar] [CrossRef]
- Qian, M.; Pu, L.; Zhang, J. Urban spatial morphology evolution in Suzhou-Wuxi-Changzhou region based on improved landscape expansion index. Sci. Geogr. Sin. 2015, 35, 314–321. [Google Scholar]
- Alonso, W. Location and land use. In Location and Land Use; Harvard University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Liu, X.; Xia, L.i.; Yimin, C.; Yan, Q.I.N.; Shaoying, L.I.; Minghui, C. Landscape expansion index and its applications to quantitative analysis of urban expansion. Acta Geogr. Sin. 2009, 64, 1430–1438. [Google Scholar]
- Jiao, L.; Liu, J.; Xu, G.; Dong, T.; Gu, Y.; Zhang, B.; Liu, Y.; Liu, X. Proximity expansion index: An improved approach to characterize evolution process of urban expansion. Comput. Environ. Urban Syst. 2018, 70, 102–112. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, A.; Yeh, A.G.-O. Shape-weighted landscape evolution index: An improved approach for simultaneously analyzing urban land expansion and redevelopment. J. Clean. Prod. 2020, 244, 118836. [Google Scholar] [CrossRef]
- Wu, P.; Zhou, D.; Gong, H. A new landscape expansion index: Definition and quantification. Acta Ecol. Sin. 2012, 32, 4270–4277. [Google Scholar]
- Lin, M.; Lin, T.; Jones, L.; Liu, X.; Xing, L.; Sui, J.; Zhang, J.; Ye, H.; Liu, Y.; Zhang, G.; et al. Quantitatively assessing ecological stress of urbanization on natural ecosystems by using a landscape-adjacency index. Remote Sens. 2021, 13, 1352. [Google Scholar] [CrossRef]
- Li, W.; Goodchild, M.F.; Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 2013, 27, 1227–1250. [Google Scholar] [CrossRef]
- Montero, R.S.; Bribiesca, E. State of the art of compactness and circularity measures. Proc. Int. Math. Forum 2009, 4, 1305–1335. [Google Scholar]
- Jiang, H.; Sun, Z.; Guo, H.; Xing, Q.; Du, W.; Cai, G. A standardized dataset of built-up areas of China’s cities with populations over 300,000 for the period 1990–2015. Big Earth Data 2021, 6, 103–126. [Google Scholar] [CrossRef]
- Solano, F.; Praticò, S.; Piovesan, G.; Chiarucci, A.; Argentieri, A.; Modica, G. Characterizing historical transformation trajectories of the forest landscape in Rome’s metropolitan area (Italy) for effective planning of sustainability goals. Land Degrad. Dev. 2021, 32, 4708–4726. [Google Scholar] [CrossRef]
- Lavorel, S.; Grigulis, K.; Leitinger, G.; Kohler, M.; Schirpke, U.; Tappeiner, U. Historical trajectories in land use pattern and grassland ecosystem services in two European alpine landscapes. Reg. Environ. Chang. 2019, 17, 2251–2264. [Google Scholar] [CrossRef]
- Modica, G.; Praticò, S.; Di Fazio, S. Abandonment of traditional terraced landscape: A change detection approach (a case study in Costa Viola, Calabria, Italy). Land Degrad. Dev. 2017, 28, 2608–2622. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D.; O’Neill, R.V.; Jones, K.B.; Smith, E.R.; Coulston, J.W.; Wade, T.G.; Smith, J.H. Fragmentation of continental United States forests. Ecosystems 2002, 5, 0815–0822. [Google Scholar] [CrossRef]
- Riitters, K.; Wickham, J.; O’Neill, R.; Jones, B.; Smith, E. Global-scale patterns of forest fragmentation. Conserv. Ecol. 2000, 4, art3. [Google Scholar] [CrossRef]
- Dietzel, C.; Herold, M.; Hemphill, J.J.; Clarke, K.C. Spatio-temporal dynamics in California’s Central Valley: Empirical links to urban theory. Int. J. Geogr. Inf. Sci. 2005, 19, 175–195. [Google Scholar] [CrossRef]
- Xu, C.; Liu, M.; Zhang, C.; An, S.; Yu, W.; Chen, J.M. The spatiotemporal dynamics of rapid urban growth in the Nanjing metropolitan region of China. Landsc. Ecol. 2007, 22, 925–937. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q.; Tan, R.; Liu, Y.; Yin, C. Modeling different urban growth patterns based on the evolution of urban form: A case study from Huangpi, Central China. Appl. Geogr. 2016, 66, 109–118. [Google Scholar] [CrossRef]
- Yu, T.; Liang, X.; Shen, G.Q.; Shi, Q.; Wang, G. An optimization model for managing stakeholder conflicts in urban redevelopment projects in China. J. Clean. Prod. 2019, 212, 537–547. [Google Scholar] [CrossRef]
- Jianguo, W.; Wei-Ning, X.; Jingzhu, Z. Urban ecology in China: Historical developments and future directions. Landsc. Urban Plan. 2014, 125, 222–233. [Google Scholar] [CrossRef]
LEIbox | LEIbuffer | LEIw | |
---|---|---|---|
Formula | |||
Parameter | AE is the envelope box area of the new patch, AN is the area of the new patch, AO is the area of the old patch inside the new patch envelope box, ALE is the expanded envelope box area of the new patch, ALO is the area of the old patch inside the new patch expanded envelope box. | AC is the overlap area between the new patch buffer and the old patch, Ad is the difference between the buffer area and AC. | An is the area of new patches, and Ao is the area of patches that are adjacent to the new patches. |
Rationale | Envelope box based on new patch | Buffer based on new patch | Based on the adjacency of the new patch to the old patch |
Value range | [0, 100] | [0, 100] | (−1, 1] |
Influence factors | New patch shape, envelope box expanded multiples | New patch shape, buffer distance | Nothing |
Expansion pattern | (50, 100], infilling [2, 50], edge-expansion [0, 2), outlying | (50, 100], infilling (0, 50], edge-expansion 0, outlying | (−1, 1), adjacency expansion 1, external expansion |
Case | Envelope Area (AE) | New Patch Area (AN) | Old Patch in Envelope (AO) | LEI |
---|---|---|---|---|
(a) | 151.60 | 128.91 | 22.69 | 100 |
(b) | 1989.34 | 459.30 | 420.05 | 27.45 |
Case | Overlap Area between Buffer and Old Patch (AC) | Overlap Area between Buffer and Blank Area (Ad) | LEI |
---|---|---|---|
(c) | 47.33 | 178.80 | 20.93 |
(d) | 0 | 455.49 | 0 |
Years | Number of New Patches | Area of New Patches (km2) | ||||||
---|---|---|---|---|---|---|---|---|
Infilling | Edge-Expansion | Outlying | Total Number | Infilling | Edge-Expansion | Outlying | Total Area | |
1990–1995 | 34 | 1155 | 127 | 1316 | 0.68 | 43.71 | 7.22 | 51.61 |
1995–2000 | 92 | 1263 | 222 | 1577 | 5.63 | 28.36 | 18.58 | 52.57 |
2000–2005 | 118 | 1382 | 199 | 1699 | 6.41 | 27.99 | 2.70 | 37.1 |
2005–2010 | 86 | 1890 | 257 | 2233 | 4.24 | 59.05 | 9.83 | 73.12 |
2010–2015 | 21 | 1308 | 156 | 1485 | 2.07 | 64.28 | 19.08 | 85.44 |
1990 | 1995 | 2000 | 2005 | 2010 | 2015 | |
---|---|---|---|---|---|---|
MCI | 52.39 | 52.29 | 51.63 | 52.72 | 53.77 | 55.39 |
AWCI | 50.85 | 39.19 | 49.69 | 54.47 | 52.46 | 52.08 |
MAX-CM | 52.98 | 32.15 | 49.84 | 55.92 | 52.63 | 52.17 |
MAX-Area (km2) | 23.07 | 62.70 | 95.97 | 138.79 | 220.54 | 261.17 |
LPI | 44.69 | 60.75 | 61.61 | 71.96 | 83.08 | 76.72 |
Built-Up/Non-Built-Up Land Cover | 2015 | ||
---|---|---|---|
Non-Built-Up | Built-Up | Total | |
1990 | |||
Non-built-up | 4548.47 | 289.16 | 4837.63 |
Built-up | 0.52 | 51.09 | 51.61 |
Total | 4549.00 | 340.25 | 4889.25 |
1990–1995 | 1995–2000 | 2000–2005 | 2005–2010 | 2010–2015 | |
---|---|---|---|---|---|
West | 4.62 | 3.46 | 2.56 | 14.68 | 25.10 |
Southwest | 2.39 | 4.73 | 1.37 | 3.22 | 5.19 |
South | 5.51 | 4.28 | 3.23 | 4.37 | 7.80 |
Southeast | 6.75 | 5.88 | 7.57 | 1.64 | 3.67 |
East | 2.09 | 3.74 | 3.19 | 0.55 | 2.84 |
Northwest | 8.82 | 7.28 | 8.63 | 9.95 | 5.99 |
Northeast | 7.78 | 10.19 | 3.77 | 16.89 | 23.44 |
North | 13.65 | 13.00 | 6.77 | 21.81 | 11.42 |
Sum | 51.61 | 52.56 | 37.09 | 73.11 | 85.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Shuai, Y.; Ma, X.; Shao, C.; Liu, T.; Tuerhanjiang, L. Improved Landscape Expansion Index and Its Application to Urban Growth in Urumqi. Remote Sens. 2022, 14, 5255. https://doi.org/10.3390/rs14205255
Tian Y, Shuai Y, Ma X, Shao C, Liu T, Tuerhanjiang L. Improved Landscape Expansion Index and Its Application to Urban Growth in Urumqi. Remote Sensing. 2022; 14(20):5255. https://doi.org/10.3390/rs14205255
Chicago/Turabian StyleTian, Yuhang, Yanmin Shuai, Xianwei Ma, Congying Shao, Tao Liu, and Latipa Tuerhanjiang. 2022. "Improved Landscape Expansion Index and Its Application to Urban Growth in Urumqi" Remote Sensing 14, no. 20: 5255. https://doi.org/10.3390/rs14205255
APA StyleTian, Y., Shuai, Y., Ma, X., Shao, C., Liu, T., & Tuerhanjiang, L. (2022). Improved Landscape Expansion Index and Its Application to Urban Growth in Urumqi. Remote Sensing, 14(20), 5255. https://doi.org/10.3390/rs14205255