Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery
<p>Overview of the Bonaerense Valley of Colorado River study site with test fields for the winter wheat campaign of the year 2020. True colour S2 image (R = B4, G = B3, B = B2) of 27 December 2020. Reference system: WGS84 (EPSG 4326).</p> "> Figure 2
<p>Layout of measurement design for the 2020 campaign at the BVCR study site: three ESUs were defined per wheat paddock and sampling approach for each elementary sampling unit, partly adapted from [<a href="#B69-remotesensing-14-04531" class="html-bibr">69</a>]. Reference system: WGS84 (EPSG 4326).</p> "> Figure 3
<p>Photographic documentation of wheat crop growing period from August to November 2020, BVCR campaign, corresponding to LAI, FVC, C<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msub> </semantics></math>, and AGFB sampling dates. With (<b>a</b>) seedling stage at 10 August 2020; (<b>b</b>) tillering stage at 4 September 2020; (<b>c</b>) tillering stage at 17 September 2020; (<b>d</b>) tillering stage at 2 Ocotber 2020; (<b>e</b>) ear emergence from boot at 19 October 2020; (<b>f</b>) anthesis stage at 2 November 2020; (<b>g</b>) dough development at 30 November 2020, first appearance of senescence; (<b>h</b>) ripening stage at 16 December 2020, complete senescence.</p> "> Figure 4
<p>Illustration of the hybrid retrieval workflow using the coupled PROSAIL-PRO models to establish a training database for the GPR, partly adapted from [<a href="#B82-remotesensing-14-04531" class="html-bibr">82</a>]. The output maps show our vegetation traits modeling over the BVCR area in Argentina.</p> "> Figure 5
<p>Goodness-of-fit results (RMSE, R<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>) using AL (EBD) against validation data. (<b>a</b>) LAI model; (<b>b</b>) CCC model; (<b>c</b>) VWC model.</p> "> Figure 6
<p>Measuredvs. estimated wheat traits along 1:1-line including uncertainty intervals, using the EBD-optimised training data set. (<b>a</b>) LAI model estimates; (<b>b</b>) CCC model estimates; (<b>c</b>) VWC model estimates.</p> "> Figure 7
<p>LAI [m<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math> m<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math>] of different crops in the study site, retrieved by the GPR model using simulated vegetation reflectance spectra, in-situ traits measurements and S2 surface multi-spectral reflectance data. Data obtained from BVCR wheat campaign 2020. (<b>a</b>) wheat tillering stage at 29 August 2020; (<b>b</b>) wheat booting stage at 28 September 2020; (<b>c</b>) wheat anthesis-flowering stage at 2 November 2020; (<b>d</b>) wheat dough development stage at 27 November 2020; (<b>e</b>) wheat ripening stage at 7 December 2020; (<b>f</b>) harvested wheat at 21 January 2021.</p> "> Figure 8
<p>CCC [g m<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math>] of different crops in the study site, retrieved by the GPR model using simulated vegetation reflectance spectra, in-situ biophysical/biochemical measurements and S2 surface multi-spectral reflectance data. Data obtained from BVCR wheat campaign 2020. (<b>a</b>) wheat tillering stage at 29 August 2020; (<b>b</b>) wheat booting stage at 28 September 2020; (<b>c</b>) wheat anthesis-flowering stage at 2 November 2020; (<b>d</b>) wheat dough development stage at 27 November 2020; (<b>e</b>) wheat ripening stage at 7 December 2020; (<b>f</b>) harvested wheat at 21 January 2021.</p> "> Figure 9
<p>VWC [g m<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>2</mn> </mrow> </msup> </semantics></math>] of different crops in the study site, retrieved by the GPR model using simulated vegetation reflectance spectra, in-situ biophysical/biochemical measurements and S2 surface multi-spectral reflectance data. Data obtained from BVCR wheat campaign 2020. (<b>a</b>) wheat tillering stage at 29 August 2020; (<b>b</b>) wheat booting stage at 28 September 2020; (<b>c</b>) wheat anthesis-flowering stage at 2 November 2020; (<b>d</b>) wheat dough development stage at 27 November 2020; (<b>e</b>) wheat ripening stage at 7 December 2020; (<b>f</b>) harvested wheat at 21 January 2021.</p> "> Figure 10
<p>Seasonal evolution of wheat cropland over the three paddocks at the BVCR study sites described by LAI, CCC, and VWC mean values of nice ESUs within the crop limits and the associated uncertainty, plotted as vertical bars. (<b>a</b>) LAI estimates; (<b>b</b>) LAI uncertainty (SD); (<b>c</b>) CCC estimates; (<b>d</b>) CCC uncertainty (SD); (<b>e</b>) VWC estimates; (<b>f</b>) VWC uncertainty (SD).</p> "> Figure 11
<p>Temporal evolution of wheat crop over the three paddocks at the BVCR study sites described by FVC mean measured values of nine ESUs within the crop limits and the associated SD, which is plotted as shadowed areas.</p> "> Figure 12
<p>Temporal evolution of wheat cropland over the three paddocks at the BVCR study sites described by LAI, CCC and VWC mean values of nine ESUs within the crop limits and the associated SD, which is plotted as vertical bars. (<b>a</b>) LAI vs. CCC temporal estimates; (<b>b</b>) LAI temporal estimates vs. FVC in-situ measured values; (<b>c</b>) LAI vs. VWC temporal estimates.</p> "> Figure A1
<p>Statistics(mean, standard deviation, min–max) of EBD-reduced final training dataset (blue) vs. validation dataset (red). Training data base was simulated with PROSAIL-PRO.).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of Training Data Sets
2.2. Gaussian Processes Regression
2.3. Active Learning Principles
2.4. Study Site
2.5. Wheat Crop Experimental Design
Wheat Crop Management and Field Data Collection
2.6. Sentinel-2 Image Acquisitions
2.7. Delineation of the Hybrid Retrieval Workflow
- 1.
- generation of the training database, i.e., simulated TOC reflectance with corresponding traits using the PROSAIL-PRO model;
- 2.
- building the in-situ database containing multitemporal field measurements from the BVCR site and S2 spectra;
- 3.
- optimizing the training database with AL-EBD and GPR, applying retrieval models to obtain wheat LAI, CCC, and VWC; and
- 4.
- seasonal mapping of the three crop traits over irrigated wheat fields and corresponding uncertainties using S2 scenes.
3. Results
3.1. Optimized Sample Selection for LAI, CCC and VWC Modeling
3.2. Lai, CCC, and VWC Mapping
3.3. Wheat Phenology Based on Multi-Temporal LAI Maps
3.4. Seasonal Analysis of Retrieved Traits
3.4.1. In-Situ Measured FVC Time Series Analysis of Irrigated Winter Wheat Crops
3.4.2. Seasonal Analysis of S2-Retrieved CCC and LAI
3.4.3. Seasonal Analysis of S2-Retrieved VWC and LAI
4. Discussion
4.1. Advantages and Limitations of Coupled RTMs
4.2. Performance of Hybrid GPR Models
4.3. Potential of Seasonal Traits Mapping for Wheat Agronomic Management
4.4. Study Limitations
4.5. Opportunities for Operational Monitoring
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. EBD-Reduced Final Training Dataset versus Validation Dataset
References
- Shiferaw, B.; Smale, M.; Braun, H.J.; Duveiller, E.; Reynolds, M.; Muricho, G. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Secur. 2013, 5, 291–317. [Google Scholar] [CrossRef]
- Han, D.; Liu, S.; Du, Y.; Xie, X.; Fan, L.; Lei, L.; Li, Z.; Yang, H.; Yang, G. Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery. Sensors 2019, 19, 4013. [Google Scholar] [CrossRef]
- Zhang, J.; Han, W.; Huang, L.; Zhang, Z.; Ma, Y.; Hu, Y. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors. Sensors 2016, 16, 437. [Google Scholar] [CrossRef]
- Caballero, G.R.; Platzeck, G.; Pezzola, A.; Casella, A.; Winschel, C.; Silva, S.S.; Ludueña, E.; Pasqualotto, N.; Delegido, J. Assessment of Multi-Date Sentinel-1 Polarizations and GLCM Texture Features Capacity for Onion and Sunflower Classification in an Irrigated Valley: An Object Level Approach. Agronomy 2020, 10, 845. [Google Scholar] [CrossRef]
- Fernández-Cirelli, A.; Arumí, J.L.; Rivera, D.; Boochs, P.W. Environmental effects of irrigation in arid and semi-arid regions. Chil. J. Agric. Res. 2009, 69 (Suppl. S1), 27–40. [Google Scholar] [CrossRef]
- Hanes, J. Biophysical Applications of Satellite Remote Sensing; Springer: Berlin, Germany, 2013. [Google Scholar]
- Dong, Q.; Chen, X.; Chen, J.; Zhang, C.; Liu, L.; Cao, X.; Zang, Y.; Zhu, X.; Cui, X. Mapping Winter Wheat in North China Using Sentinel 2A/B Data: A Method Based on Phenology-Time Weighted Dynamic Time Warping. Remote Sens. 2020, 12, 1274. [Google Scholar] [CrossRef]
- Ingram, J.S.I.; Gregory, P.J.; Izac, A.M. The role of agronomic research in climate change and food security policy. Agric. Ecosyst. Environ. 2008, 126, 4–12. [Google Scholar] [CrossRef]
- Hank, T.B.; Bach, H.; Mauser, W. Using a Remote Sensing-Supported Hydro-Agroecological Model for Field-Scale Simulation of Heterogeneous Crop Growth and Yield: Application for Wheat in Central Europe. Remote Sens. 2015, 7, 3934–3965. [Google Scholar] [CrossRef]
- Weiss, M.; Frederic, B.; Smith, G.; Jonckheere, I.; Coppin, P. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol. 2004, 121, 37–53. [Google Scholar] [CrossRef]
- Leblanc, S.G.; Chen, J.M.; Fernandes, R.; Deering, D.W.; Conley, A. Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests. Agric. For. Meteorol. 2005, 129, 187–207. [Google Scholar] [CrossRef] [Green Version]
- Duveiller, G.; Weiss, M.; Baret, F.; Defourny, P. Retrieving wheat Green Area Index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 2011, 115, 887–896. [Google Scholar] [CrossRef]
- Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring. Remote Sens. Environ. 2021, 255, 112168. [Google Scholar] [CrossRef] [PubMed]
- Schlemmer, M.; Gitelson, A.; Schepers, J.; Ferguson, R.; Peng, Y.; Shanahan, J.; Rundquist, D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 47–54. [Google Scholar] [CrossRef]
- Baret, F.; Houles, V.; Guérif, M. Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. J. Exp. Bot. 2007, 58, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Delloye, C.; Weiss, M.; Defourny, P. Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sens. Environ. 2018, 216, 245–261. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.B.; Wang, Z.; Wocher, M.; Strathmann, M.; Danner, M.; Mauser, W.; Hank, T. Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sens. Environ. 2020, 242, 111758. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Savé, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 119–125. [Google Scholar] [CrossRef]
- Zhang, C.; Pattey, E.; Liu, J.; Cai, H.; Shang, J.; Dong, T. Retrieving Leaf and Canopy Water Content of Winter Wheat Using Vegetation Water Indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 112–126. [Google Scholar] [CrossRef]
- Fensholt, R.; Sandholt, I. Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sens. Environ. 2003, 87, 111–121. [Google Scholar] [CrossRef]
- Raj, R.; Walker, J.P.; Vinod, V.; Pingale, R.; Naik, B.; Jagarlapudi, A. Leaf water content estimation using top-of-canopy airborne hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102393. [Google Scholar] [CrossRef]
- Rud, R.; Cohen, Y.; Alchanatis, V.; Levi, A.; Brikman, R.; Shenderey, C.; Heuer, B.; Markovitch, T.; Dar, Z.; Rosen, C.; et al. Crop water stress index derived from multi-year ground and aerial thermal images as an indicator of potato water status. Precis. Agric. 2014, 15, 273–289. [Google Scholar] [CrossRef]
- Schott, J.W. Remote Sensing Of The Earth: A Synoptic View. Phys. Today 1989, 42, 72. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Berger, K.; Verrelst, J.; Féret, J.B.; Hank, T.; Wocher, M.; Mauser, W.; Camps-Valls, G. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102174. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Efficient RTM-based training of machine learning regression algorithms to quantify biophysical & biochemical traits of agricultural crops. ISPRS J. Photogramm. Remote Sens. 2021, 173, 278–296. [Google Scholar]
- Verrelst, J.; Rivera, J.; Camps-Valls, G.; Moreno, J. Recent advances in biophysical parameter retrieval methods—Opportunites for Sentinel-2. In Proceedings of the ESA Living Planet Symposium 2013, Edinbrugh, UK, 9–13 September 2013. [Google Scholar]
- Verrelst, J.; Rivera, J.; Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [Google Scholar] [CrossRef]
- Verrelst, J.; Malenovskỳ, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.P.; Lewis, P.; North, P.; Moreno, J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef]
- Verrelst, J.; Camps-Valls, G.; Muñoz Marí, J.; Rivera, J.; Veroustraete, F.; Clevers, J.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Gitelson, A.; Zur, Y.; Chivkunova, O.; Merzlyak, M. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010, 73, 165–173. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Verger, A.; Baret, F.; Camacho, F. Optimal modalities for radiative transfer-neural network estimation of canopy biophysical characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations. Remote Sens. Environ. 2011, 115, 415–426. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Andrieu, B.; Danson, F.M.; Jaggard, K. Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens. Environ. 1995, 52, 163–172. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.; Asner, G.; François, C.; Ustin, S. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66. [Google Scholar] [CrossRef]
- Kimes, D.S.; Nelson, R.F.; Manry, M.T.; Fung, A.K. Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int. J. Remote Sens. 1998, 19, 2639–2662. [Google Scholar] [CrossRef]
- Houborg, R.; Boegh, E. Mapping leaf chlorophyll and leaf area index using inverse and forward canopy reflectance modeling and SPOT reflectance data. Remote Sens. Environ. 2008, 112, 186–202. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.; van der Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity Analysis of the A-SCOPE model in support of future FLEX fluorescence retrievals. In Proceedings of the 5th International Workshop on Remote Sensing of Vegetation Fluorescence, Paris, France, 22–24 April 2014. [Google Scholar]
- Jacquemoud, S. PROSPECT + SAIL models: A review of use for vegetation characterization. Remote Sens. Environ 2009, 113, 56–66. [Google Scholar] [CrossRef]
- Feret, J.B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.R.; Ustin, S.L.; le Maire, G.; Jacquemoud, S. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Féret, J.B.; Berger, K.; de Boissieu, F.; Malenovskỳ, Z. PROSPECT-PRO for estimating content of nitrogen-containing leaf proteins and other carbon-based constituents. Remote Sens. Environ. 2021, 252, 112173. [Google Scholar] [CrossRef]
- Verhoef, W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sens. Environ. 1984, 16, 125–141. [Google Scholar] [CrossRef]
- Verhoef, W.; Bach, H. Coupled soil–leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data. Remote Sens. Environ. 2007, 109, 166–182. [Google Scholar] [CrossRef]
- Brede, B.; Verrelst, J.; Gastellu-Etchegorry, J.P.; Clevers, J.G.; Goudzwaard, L.; den Ouden, J.; Verbesselt, J.; Herold, M. Assessment of workflow feature selection on forest LAI prediction with sentinel-2A MSI, landsat 7 ETM+ and Landsat 8 OLI. Remote Sens. 2020, 12, 915. [Google Scholar] [CrossRef]
- Abdelbaki, A.; Udelhoven, T. A Review of Hybrid Approaches for Quantitative Assessment of Crop Traits Using Optical Remote Sensing: Research Trends and Future Directions. Remote Sens. 2022, 14, 3515. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: New York, NY, USA, 2006. [Google Scholar]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and-3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.; Veroustraete, F.; Muñoz Marí, J.; Clevers, J.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods—A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Sinha, S.K.; Padalia, H.; Dasgupta, A.; Verrelst, J.; Rivera, J.P. Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. Int. J. Appl. Earth Obs. Geoinf. 2020, 86, 102027. [Google Scholar] [CrossRef]
- Verrelst, J.; Alonso, L.; Camps-Valls, G.; Delegido, J.; Moreno, J. Retrieval of Vegetation Biophysical Parameters Using Gaussian Process Techniques. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1832–1843. [Google Scholar] [CrossRef]
- Van Wittenberghe, S.; Verrelst, J.; Rivera, J.P.; Alonso, L.; Moreno, J.; Samson, R. Gaussian processes retrieval of leaf parameters from a multi-species reflectance, absorbance and fluorescence dataset. J. Photochem. Photobiol. B Biol. 2014, 134, 37–48. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; Gitelson, A.; Delegido, J.; Moreno, J.; Camps-Valls, G. Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 554–567. [Google Scholar] [CrossRef]
- Xie, R.; Darvishzadeh, R.; Skidmore, A.K.; Heurich, M.; Holzwarth, S.; Gara, T.W.; Reusen, I. Mapping leaf area index in a mixed temperate forest using Fenix airborne hyperspectral data and Gaussian processes regression. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102242. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Verrelst, J.; Munoz-Mari, J.; Laparra, V.; Mateo-Jimenez, F.; Gomez-Dans, J. A survey on Gaussian processes for earth-observation data analysis: A comprehensive investigation. IEEE Geosci. Remote Sens. Mag. 2016, 4, 58–78. [Google Scholar] [CrossRef]
- Pascual-Venteo, A.B.; Portalés, E.; Berger, K.; Tagliabue, G.; Garcia, J.L.; Pérez-Suay, A.; Rivera-Caicedo, J.P.; Verrelst, J. Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data. Remote Sens. 2022, 14, 2448. [Google Scholar] [CrossRef]
- Estévez, J.; Berger, K.; Vicent, J.; Rivera-Caicedo, J.P.; Wocher, M.; Verrelst, J. Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow. Remote Sens. 2021, 13, 1589. [Google Scholar] [CrossRef]
- Salinero-Delgado, M.; Estévez, J.; Pipia, L.; Belda, S.; Berger, K.; Paredes Gómez, V.; Verrelst, J. Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression. Remote Sens. 2021, 14, 146. [Google Scholar] [CrossRef]
- Reyes-Muñoz, P.; Pipia, L.; Salinero-Delgado, M.; Belda, S.; Berger, K.; Estévez, J.; Morata, M.; Rivera-Caicedo, J.P.; Verrelst, J. Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine. Remote Sens. 2022, 14, 1347. [Google Scholar] [CrossRef]
- Estévez, J.; Salinero-Delgado, M.; Berger, K.; Pipia, L.; Rivera-Caicedo, J.P.; Wocher, M.; Reyes-Muñoz, P.; Tagliabue, G.; Boschetti, M.; Verrelst, J. Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data. Remote Sens. Environ. 2022, 273, 112958. [Google Scholar] [CrossRef]
- Adeluyi, O.; Harris, A.; Verrelst, J.; Foster, T.; Clay, G.D. Estimating the phenological dynamics of irrigated rice leaf area index using the combination of PROSAIL and Gaussian Process Regression. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102454. [Google Scholar] [CrossRef]
- Perich, G.; Aasen, H.; Verrelst, J.; Argento, F.; Walter, A.; Liebisch, F. Crop Nitrogen Retrieval Methods for Simulated Sentinel-2 Data Using In-Field Spectrometer Data. Remote Sens. 2021, 13, 2404. [Google Scholar] [CrossRef]
- Settles, B. Active Learning Literature Survey; University of Wisconsin-Madison Department of Computer Sciences: Madison, WI, USA, 2009. [Google Scholar]
- Verrelst, J.; Dethier, S.; Rivera, J.P.; Munoz-Mari, J.; Camps-Valls, G.; Moreno, J. Active learning methods for efficient hybrid biophysical variable retrieval. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1012–1016. [Google Scholar] [CrossRef]
- Berger, K.; Rivera Caicedo, J.P.; Martino, L.; Wocher, M.; Hank, T.; Verrelst, J. A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data. Remote Sens. 2021, 13, 287. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Rivera, J.P.; Ruiz-Verdú, A.; Moreno, J. Brown and green LAI mapping through spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 350–358. [Google Scholar] [CrossRef]
- Pasqualotto, N.; D’Urso, G.; Bolognesi, S.F.; Belfiore, O.R.; Van Wittenberghe, S.; Delegido, J.; Pezzola, A.; Winschel, C.; Moreno, J. Retrieval of Evapotranspiration from Sentinel-2: Comparison of Vegetation Indices, Semi-Empirical Models and SNAP Biophysical Processor Approach. Agronomy 2019, 9, 663. [Google Scholar] [CrossRef]
- Locherer, M.; Hank, T.; Danner, M.; Mauser, W. Retrieval of Seasonal Leaf Area Index from Simulated EnMAP Data through Optimized LUT-Based Inversion of the PROSAIL Model. Remote Sens. 2015, 7, 10321–10346. [Google Scholar] [CrossRef]
- Upreti, D.; Huang, W.; Kong, W.; Pascucci, S.; Pignatti, S.; Zhou, X.; Ye, H.; Casa, R. A comparison of hybrid machine learning algorithms for the retrieval of wheat biophysical variables from sentinel-2. Remote Sens. 2019, 11, 481. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera-Caicedo, J.P.; Reyes-Muñoz, P.; Morata, M.; Amin, E.; Tagliabue, G.; Panigada, C.; Hank, T.; Berger, K. Mapping landscape canopy nitrogen content from space using PRISMA data. ISPRS J. Photogramm. Remote Sens. 2021, 178, 382–395. [Google Scholar] [CrossRef]
- Liang, L.; Geng, D.; Yan, J.; Qiu, S.; Di, L.; Wang, S.; Xu, L.; Wang, L.; Kang, J.; Li, L. Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method. Remote Sens. 2020, 12, 3534. [Google Scholar] [CrossRef]
- Verrelst, J.; Berger, K.; Rivera-Caicedo, J.P. Intelligent sampling for vegetation nitrogen mapping based on hybrid machine learning algorithms. IEEE Geosci. Remote Sens. Lett. 2020, 18, 2038–2042. [Google Scholar] [CrossRef]
- Douak, F.; Melgani, F.; Benoudjit, N. Kernel ridge regression with active learning for wind speed prediction. Appl. Energy 2013, 103, 328–340. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Confalonieri, R.; Foi, M.; Casa, R.; Aquaro, S.; Tona, E.; Peterle, M.; Boldini, A.; De Carli, G.; Ferrari, A.; Finotto, G.; et al. Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Comput. Electron. Agric. 2013, 96, 67–74. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Gamiely, S.; Randle, W.M.; Mills, H.A.; Smittle, D.A. A Rapid and Nondestructive Method for Estimating Leaf Area of Onions. HortScience 1991, 26, 206. [Google Scholar] [CrossRef]
- Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-spectral resolution data for determining leaf water content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. SENTINEL-2 SEN2COR: L2A Processor for Users. In Proceedings of the ESA Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; Ouwehand, L., Ed.; Spacebooks Online; ESA Special Publications (on CD). Volume SP-740, pp. 1–8. [Google Scholar]
- Berger, K.; Atzberger, C.; Danner, M.; Wocher, M.; Mauser, W.; Hank, T. Model-Based Optimization of Spectral Sampling for the Retrieval of Crop Variables with the PROSAIL Model. Remote Sens. 2018, 10, 2063. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.; Alonso, L.; Moreno, J. ARTMO: An Automated Radiative Transfer Models Operator toolbox for automated retrieval of biophysical parameters through model inversion. In Proceedings of the EARSeL 7th SIG-Imaging Spectroscopy Workshop, Edinburgh, UK, 11–13 April 2011. [Google Scholar]
- Verrelst, J.; Romijn, E.; Kooistra, L. Mapping Vegetation Density in a Heterogeneous River Floodplain Ecosystem Using Pointable CHRIS/PROBA Data. Remote Sens. 2012, 4, 2866–2889. [Google Scholar] [CrossRef]
- Caicedo, J.; Verrelst, J.; Munoz-Mari, J.; Moreno, J.; Camps-Valls, G. Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1249–1259. [Google Scholar] [CrossRef]
- Smit, M.A.; Singels, A. The response of sugarcane canopy development to water stress. Field Crops Res. 2006, 98, 91–97. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Ustin, S.L.; Verdebout, J.; Schmuck, G.; Andreoli, G.; Hosgood, B. Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sens. Environ. 1996, 56, 194–202. [Google Scholar] [CrossRef]
- Féret, J.B.; Gitelson, A.A.; Noble, S.D.; Jacquemoud, S. PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 2017, 193, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Lu, L.; Ding, J.; Zhang, F.; He, B. Estimating Fractional Vegetation Cover of Row Crops from High Spatial Resolution Image. Remote Sens. 2021, 13, 3874. [Google Scholar] [CrossRef]
- Danner, M.; Berger, K.; Wocher, M.; Mauser, W.; Hank, T. Fitted PROSAIL parameterization of leaf inclinations, water content and brown pigment content for winter wheat and maize canopies. Remote Sens. 2019, 11, 1150. [Google Scholar] [CrossRef]
- Wocher, M.; Berger, K.; Danner, M.; Mauser, W.; Hank, T. Physically-based retrieval of canopy equivalent water thickness using hyperspectral data. Remote Sens. 2018, 10, 1924. [Google Scholar] [CrossRef]
- Povey, A.C.; Grainger, R.G. Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech. 2015, 8, 4699–4718. [Google Scholar] [CrossRef]
- Ali, Z.; Merrium, S.; Habib-ur Rahman, M.; Hakeem, S.; Saddique, M.A.B.; Sher, M.A. Wetting mechanism and morphological adaptation; leaf rolling enhancing atmospheric water acquisition in wheat crop—A review. Environ. Sci. Pollut. Res. 2022, 29, 30967–30985. [Google Scholar] [CrossRef] [PubMed]
- Gil, H.M.; Salort, J.B.; Llompart, J.C.; Sans, J.F.; Carbó, M.R.; León, J.G. Eficiencia en el uso del agua por las plantas. Investig. Geográficas 2007, 63–84. [Google Scholar] [CrossRef]
- Sánchez, R.; Pezzola, N.; Cepeda, J. Caracterización edafoclimátia del área de influencia del INTA E.E.A Hilario Ascasubi. Boletín Divulgación 1998, 18, 72. [Google Scholar]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Salisbury, F.B.; Ross, C.W. Fisiología Vegetal; Grupo Editorial Iberoamérica: Mexico City, Mexico, 1994. [Google Scholar]
- Delegido, J.; Alonso, L.; González, G.; Moreno, J. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 165–174. [Google Scholar] [CrossRef]
- Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; McKee, M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar] [CrossRef]
- Cammarano, D.; Fitzgerald, G.; Basso, B.; O’Leary, G.; Chen, D.; Grace, P.; Fiorentino, C. Use of the Canopy Chlorophyl Content Index (CCCI) for Remote Estimation of Wheat Nitrogen Content in Rainfed Environments. Agron. J. 2011, 103, 1597–1603. [Google Scholar] [CrossRef]
- Irmak, S. Evapotranspiration. In Encyclopedia of Ecology; Academic Press: Cambridge, MA, USA, 2008; pp. 1432–1438. [Google Scholar] [CrossRef]
- Zeleke, K.T.; Wade, L.J. Evapotranspiration Estimation Using Soil Water Balance, Weather and Crop Data. In Evapotranspiration-Remote Sensing and Modeling; INTECH: Rijeka, Croatia, 2012; pp. 41–58. [Google Scholar]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.; Moreno, J.; Camps-Valls, G. Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J. Photogramm. Remote Sens. 2013, 86, 157–167. [Google Scholar] [CrossRef]
- Machwitz, M.; Pieruschka, R.; Berger, K.; Schlerf, M.; Aasen, H.; Fahrner, S.; Jiménez-Berni, J.; Baret, F.; Rascher, U. Bridging the Gap Between Remote Sensing and Plant Phenotyping—Challenges and Opportunities for the Next, Generation of Sustainable Agriculture. Front. Plant Sci. 2021, 2334. [Google Scholar] [CrossRef] [PubMed]
- Pipia, L.; Amin, E.; Belda, S.; Salinero-Delgado, M.; Verrelst, J. Green LAI Mapping and Cloud Gap-Filling Using Gaussian Process Regression in Google Earth Engine. Remote Sens. 2021, 13, 403. [Google Scholar] [CrossRef] [PubMed]
Leaf Optical Properties | Canopy Reflectance Model | ||||
---|---|---|---|---|---|
PROSPECT-PRO Parameters | Notation [Unit] | Range | 4SAIL Parameters | Notation [Unit] | Range |
Leaf chlorophyll a+b content | Cab [µg cm] | 5–75 | Leaf area index | LAI [m m] | 0.1–7.0 |
Leaf structure parameter | Nstruct, no dim. | 1.0–2.0 | Average leaf inclination angle | ALIA [] | 30–70 |
Leaf carotenoid content | Cxc [µg cm] | 0–15 | Soil brightness | soil, no dim. | 0–1 |
Leaf equivalent water thickness | EWT [cm] | 0.0002–0.05 | Sun zenith angle | SZA [] | 20–40 |
Carbon-based constituents | CBC [g cm] | 0.001–0.01 | Hot spot effect | Hot [m m] | 0.01 |
Leaf anthocyanin content | Canth [µg cm] | 0–2 | Observer zenith angle | OZA [] | 0 |
Leaf protein content | Cp [µg cm] | 0.001–0.0025 | Diffuse/direct radiation | DDR [%] | 80 |
Leaf mass per area | Cm [µg cm] | 0.0001–0.03 | Relative azimuth angle | rAA [] | 0 |
Brown pigment content | Cbrown, no dim. | 0 |
Wheat Variable | Date | Range | Mean | SD |
---|---|---|---|---|
LAI (m m) | 03-09-2020 | 0.16–0.30 | 0.23 | 0.05 |
17-09-2020 | 0.56–1.54 | 0.94 | 0.29 | |
02-10-2020 | 1.59–3.81 | 2.57 | 0.66 | |
19-10-2020 | 1.53–3.27 | 2.62 | 0.51 | |
02-11-2020 | 2.78–5.05 | 4.12 | 0.63 | |
16-11-2020 | 3.31–5.39 | 4.02 | 0.80 | |
30-11-2020 | 3.29–4.75 | 4.08 | 0.50 | |
16-12-2020 | 3.97–5.64 | 4.68 | 0.43 | |
FVC (%) | 10-08-2020 | 6.2–9.1 | 7.63 | 1.00 |
03-09-2020 | 23.0–48.0 | 34.94 | 8.32 | |
17-09-2020 | 22.1–80.2 | 44.21 | 22.73 | |
02-10-2020 | 32.7–69.2 | 48.30 | 13.28 | |
19-10-2020 | 23.6–69.5 | 46.15 | 12.97 | |
02-11-2020 | 11.1–29.3 | 20.92 | 5.07 | |
16-11-2020 | 74.4–92.0 | 87.44 | 4.83 | |
30-11-2020 | 80.0–90.8 | 88.22 | 3.06 | |
C (µg cm) | 03-09-2020 | 38.23–44.82 | 41.96 | 2.23 |
17-09-2020 | 36.49–52.61 | 42.21 | 4.91 | |
02-10-2020 | 38.12–52.02 | 45.33 | 4.46 | |
19-10-2020 | 39.64–45.12 | 43.08 | 1.84 | |
02-11-2020 | 33.63–42.44 | 38.29 | 2.89 | |
16-11-2020 | 35.72–44.92 | 39.41 | 2.85 | |
30-11-2020 | 13.93–48.31 | 35.32 | 9.59 | |
AGFB (g) | 03-09-2020 | 15–25 | 19.67 | 3.59 |
17-09-2020 | 31–54 | 42.00 | 6.83 | |
02-10-2020 | 76–175 | 112.67 | 27.23 | |
19-10-2020 | 47–94 | 66.00 | 13.61 | |
02-11-2020 | 131–296 | 213.67 | 42.41 | |
16-11-2020 | 57–101 | 81.78 | 15.84 | |
30-11-2020 | 73–184 | 121.60 | 38.45 | |
AGDB (g) | 03-09-2020 | 2.00–6.00 | 3.56 | 1.17 |
17-09-2020 | 9.00–15.00 | 11.67 | 2.00 | |
02-10-2020 | 23.00–48.00 | 33.22 | 8.23 | |
19-10-2020 | 8.00–15.00 | 12.11 | 2.42 | |
02-11-2020 | 38–62 | 45.67 | 7.86 | |
16-11-2020 | 17–32 | 26.00 | 4.22 | |
30-11-2020 | 23–70 | 46.67 | 14.04 |
Wheat Variable | Date | Range | Mean | SD |
---|---|---|---|---|
CCC (g m) | 03-09-2020 | 0.06–0.12 | 0.10 | 0.02 |
17-09-2020 | 0.22–0.71 | 0.41 | 0.16 | |
02-10-2020 | 0.74–1.61 | 1.16 | 0.29 | |
19-10-2020 | 0.60–1.44 | 1.13 | 0.23 | |
02-11-2020 | 1.18–1.74 | 1.56 | 0.17 | |
16-11-2020 | 1.22–2.10 | 1.59 | 0.34 | |
30-11-2020 | 0.64–1.70 | 1.40 | 0.29 | |
VWC (g m) | 03-09-2020 | 207–455 | 284 | 70 |
17-09-2020 | 315–1554 | 666 | 360 | |
02-10-2020 | 868–3021 | 1996 | 693 | |
19-10-2020 | 494–2240 | 1315 | 554 | |
02-11-2020 | 944–3083 | 1777 | 629 | |
16-11-2020 | 1481–3275 | 2399 | 589 | |
30-11-2020 | 2016–5079 | 3287 | 1113 |
In-Situ Measurements Date | Wheat Growth Stage | Field Observations |
---|---|---|
10-08-2020 | Seedling growth Z1.3—Three leaves emerged | Plant density: 248 plants m (on average), previous crop: sunflower for seed |
03-09-2020 | Tillering, 2–3 tillers, Z2.3—Main stem and three tillers | Leaves per tiller 2 + 1 flag leaf |
17-09-2020 | Tillering, 4 tillers Z2.4—Main stem and four tillers | Leaves per tiller: 3 Irrigation date: 17/09/2020 Fertilization date: 16/09/2020 |
02-10-2020 | Tillering, 5 tillers 4—Booting Z4.3—Boots just visible swollen | Plants height 22 cm from the base to the second node Leaves per tiller: 4 |
19-10-2020 | Ear emergence from boot Z5.5—Ear half emerged | Plants height 71 cm (on average) Plants stem nodes: 5 |
02-11-2020 | Anthesis (flowering) Z6.1—Beginning of anthesis (few anthers at the middle of ear) | Plants height 80 cm (on average) |
16-11-2020 | Milk development Z7.5—Medium milk | Plants height 80 cm (on average) Start of the senescence |
30-11-2020 | Dough development Z8.7—Hard dough | Senescence process |
16-12-2020 | Ripening Z9.7—Seed not dormant | Complete senescence Distance between rows: 19 cm Number of ears at 0.50 cm: 72 on average |
In-Situ Measurements Date | S2 Acquisition | ± Days |
---|---|---|
10-08-2020 | NA | NA |
03-09-2020 | 29-08-2020 | −5 |
17-09-2020 | 18-09-2020 | +1 |
02-10-2020 | 28-09-2020 | −4 |
19-10-2020 | 13-10-2020 | −6 |
02-11-2020 | 02-11-2020 | 0 |
16-11-2020 | 17-11-2020 | +1 |
30-11-2020 | NA | NA |
16-12-2020 | 22-12-2020 | +6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero, G.; Pezzola, A.; Winschel, C.; Casella, A.; Sanchez Angonova, P.; Rivera-Caicedo, J.P.; Berger, K.; Verrelst, J.; Delegido, J. Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery. Remote Sens. 2022, 14, 4531. https://doi.org/10.3390/rs14184531
Caballero G, Pezzola A, Winschel C, Casella A, Sanchez Angonova P, Rivera-Caicedo JP, Berger K, Verrelst J, Delegido J. Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery. Remote Sensing. 2022; 14(18):4531. https://doi.org/10.3390/rs14184531
Chicago/Turabian StyleCaballero, Gabriel, Alejandro Pezzola, Cristina Winschel, Alejandra Casella, Paolo Sanchez Angonova, Juan Pablo Rivera-Caicedo, Katja Berger, Jochem Verrelst, and Jesus Delegido. 2022. "Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery" Remote Sensing 14, no. 18: 4531. https://doi.org/10.3390/rs14184531
APA StyleCaballero, G., Pezzola, A., Winschel, C., Casella, A., Sanchez Angonova, P., Rivera-Caicedo, J. P., Berger, K., Verrelst, J., & Delegido, J. (2022). Seasonal Mapping of Irrigated Winter Wheat Traits in Argentina with a Hybrid Retrieval Workflow Using Sentinel-2 Imagery. Remote Sensing, 14(18), 4531. https://doi.org/10.3390/rs14184531