Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment
<p>Temporal changes over the period of the experiment in (<b>a</b>) pH, which was calculated from measurements of (<b>b</b>) <span class="html-italic">p</span>CO<sub>2</sub> in µatmospheres; (<b>c</b>) nitrate concentration, µmol·N·L<sup>−1</sup>; (<b>d</b>) phosphate concentration µmol·P·L<sup>−1</sup>; (<b>e</b>) chlorophyll concentration µg·L<sup>−1</sup>; and (<b>f</b>) depth-integrated primary production as mg·C·m<sup>−2</sup>·d<sup>−1</sup>. Enclosures M1 (<span style="color:red">▲</span>), M2 (<span style="color:#C45911">■</span>), M3 (<span style="color:#F7CAAC">●</span>), M4 (<span style="color:#323E4F">■</span>), M5 (<span style="color:blue">●</span>), M6 (<span style="color:#ACB9CA">▲</span>).</p> "> Figure 2
<p>Total coccolithophore numbers assessed by flow cytometry. Enclosures M1 (<span style="color:red">▲</span>), M2 (<span style="color:#C45911">■</span>), M3 (<span style="color:#F7CAAC">●</span>), M4 (<span style="color:#323E4F">■</span>), M5 (<span style="color:blue">●</span>), M6 (<span style="color:#ACB9CA">▲</span>).</p> "> Figure 3
<p>TEM images of identical <span class="html-italic">Emiliania huxleyi</span> morphologies (typical type A) present in both pCO<sub>2</sub> treatments throughout the experiment.</p> "> Figure 4
<p>DGGE gels of EhV <span class="html-italic">mcp</span>-PCR products during the experiment from (<b>a</b>) high <span class="html-italic">p</span>CO<sub>2</sub>-treatment mesocosms, 1, 2, and 3 and (<b>b</b>) ambient <span class="html-italic">p</span>CO<sub>2</sub>-treatment mesocosms 4, 5, and 6. Bands that migrated at the same position when run on the same gel are indicated with the same symbol.</p> "> Figure 5
<p>Bray–Curtis multidimensional plots based on the DGGE profiles (<a href="#viruses-09-00041-f004" class="html-fig">Figure 4</a>) for EhV from (<b>a</b>) the high <span class="html-italic">p</span>CO<sub>2</sub>-treatment mesocosms 1, 2, and 3 and (<b>b</b>) ambient <span class="html-italic">p</span>CO<sub>2</sub>-treatment mesocosms 4, 5, and 6. “Early stage” corresponds to 7–9 May when coccolithophore numbers were <1000 cells mL<sup>−1</sup> in ambient enclosures and “mid/late stage” corresponds to 12–14 May when coccolithophore numbers exceeded 1500 cells mL<sup>−1</sup> in ambient enclosures. Contours indicate the percentage similarity, as indicated.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Set-Up and Sampling
2.2. Water Sampling
2.3. Nutrient and Phytoplankton Analysis
2.4. Extraction of DNA
2.5. Polymerase Chain Reaction (PCR) and Denaturing Gradient Gel Electrophoresis (DGGE) of E. huxleyi and EhV Populations
2.6. Statistical Analysis
3. Results
3.1. Bloom Evolution—pH, Nutrients and Primary Production
3.2. E. huxleyi Genetic Composition during the Mesocosm Experiment
3.3. EhV Population Analysis
4. Discussion
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balch, W.M. Re-evaluation of the physiological ecology of the coccolithophores. In Coccolithophores: From Molecular Processes to Global Impact; Thierstein, H.R., Young, J.R., Eds.; Springer: New York, NY, USA, 2004; pp. 165–190. [Google Scholar]
- Iglesias-Rodriguez, M.D.; Halloran, P.R.; Rickaby, R.E.M.; Hall, I.R.; Colmenero-Hidalgo, E.; Gittins, J.R.; Green, D.R.H.; Tyrrell, T.; Gibbs, S.J.; von Dassow, P.; et al. Phytoplankton calcification in a high-CO2 world. Science 2008, 320, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Langer, G.; Nehrke, G.; Probert, I.; Ly, J.; Ziveri, P. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 2009, 6, 2637–2646. [Google Scholar] [CrossRef]
- Lohbeck, K.T.; Riebesell, U.; Reusch, T.B.H. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Proc. R. Soc. B 2014, 281. [Google Scholar] [CrossRef] [PubMed]
- Engel, A.; Zondervan, I.; Aerts, K.; Beaufort, L.; Benthien, A.; Chou, L.; Delille, B.; Gattuso, J.-P.; Harlay, J.; Heemann, C.; et al. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 2005, 50, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Meyer, J.; Riebesell, U. Reviews and Syntheses: Responses of coccolithophores to ocean acidification: A meta-analysis. Biogeosciences 2015, 12, 1671–1682. [Google Scholar] [CrossRef]
- Rivero-Calle, S.; Gnanadesikan, A.; Del Castillo, C.E.; Balch, W.M.; Guikema, S.D. Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2. Science 2015, 350, 1533–1537. [Google Scholar] [CrossRef] [PubMed]
- Highfield, A.; Evans, C.; Walne, A.; Miller, P.I.; Schroeder, D.C. How many Coccolithovirus genotypes does it take to terminate an Emiliania huxleyi bloom? Virology 2014, 466, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Rowe, J.M.; Fabre, M.F.; Gobena, D.; Wilson, W.H.; Wilhelm, S.W. Application of the major capsid protein as a marker of the phylogenetic diversity of Emiliania huxleyi viruses. FEMS Microbiol. Ecol. 2011, 76, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Bratbak, G.; Wilson, W.; Heldal, M. Viral control of Emiliania huxleyi blooms? J. Mar. Syst. 1996, 9, 75–81. [Google Scholar] [CrossRef]
- Martínez Martínez, J.M.; Schroeder, D.C.; Larsen, A.; Bratbak, G.; Wilson, W.H. Molecular dynamics of Emiliania huxleyi and co-occurring viruses during two separate mesocosm studies. Appl. Environ. Microbiol. 2007, 73, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, D.C.; Oke, J.; Hall, M.; Malin, G.; Wilson, W.H. Virus succession observed during an Emiliania huxleyi bloom. Appl. Environ. Microbiol. 2003, 69, 2484–2490. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, G.; Baker, A.C.; Hall, M.J.; Munn, C.B.; Schroeder, D.C. Novel virus dynamics in an Emiliania huxleyi bloom. J. Plankton Res. 2009, 31, 787–791. [Google Scholar] [CrossRef] [PubMed]
- Gobler, C.J.; Hutchins, D.A.; Fisher, N.S.; Cosper, E.M.; Sanudo-Wilhelmy, S.A. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte. Limnol. Oceanogr. 1997, 42, 1492–1504. [Google Scholar] [CrossRef]
- Wilhelm, S.W.; Suttle, C.A. Viruses and nutrient cycles in the sea—Viruses play critical roles in the structure and function of aquatic food webs. Bioscience 1999, 49, 781–788. [Google Scholar] [CrossRef]
- Krueger-Hadfield, S.A.; Balestreri, C.; Schroeder, J.; Highfield, A.; Helaouet, P.; Allum, J.; Moate, R.; Lohbeck, K.T.; Miller, P.I.; Riebesell, U.; et al. Genotyping an Emiliania huxleyi (Prymnesiophyceae) bloom event in the North Sea reveals evidence of asexual reproduction. Biosciences 2014, 11, 5215–5234. [Google Scholar]
- Hopkins, F.E.; Turner, S.M.; Nightingale, P.D.; Steinke, M.; Bakker, D.; Liss, P.S. Ocean acidification and marine trace gas emissions. Proc. Natl. Acad. Sci. USA 2010, 107, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Brewer, P.G.; Riley, J.P. The automatic determination of nitrate in seawater. Deep Sea Res. 1965, 12, 765–772. [Google Scholar]
- Grasshoff, K. Methods of Seawater Analysis; Verlag Chemie: Weinheim, Germany, 1976. [Google Scholar]
- Kirkwood, D.S. Simultaneous determination of selected nutrients in seawater. In ICES; National Marine Biological Library: Plymouth, UK, 1989. [Google Scholar]
- Holm-Hansen, O.; Lorenzen, C.J.; Holmes, R.W.; Strickland, J.D.H. Fluorometric determination of chlorophyll. ICES J. Mar. Sci. 1965, 30, 3–15. [Google Scholar] [CrossRef]
- Joint, I.; Pomroy, A. Phytoplankton biomass and production in the southern North Sea. Mar. Ecol. Prog. Ser. 1993, 99, 169–182. [Google Scholar] [CrossRef]
- IOC; Paris, France. Protocols for the Joint Global Ocean Flux Study (JGOFS) core measurements. In IOC Manuals and Guides No. 29; JGOFS International Project Office: Bergen, Norway, 1994; p. 126. [Google Scholar]
- Schroeder, D.C.; Biggi, G.F.; Hall, M.; Davy, J.; Matinez Martinez, J.; Richardson, A.J.; Malin, G.; Wilson, W.H. A genetic marker to separate Emiliania huxleyi (Prynesiophyceae) morphotypes. J. Phycol. 2005, 41, 874–879. [Google Scholar] [CrossRef]
- Clarke, K.R.; Gorley, R.N. PRIMER V6: User Manual/Tutorial; PRIMER-E Ltd.: Plymouth, UK, 2006. [Google Scholar]
- Marzorati, M.; Wittebolle, L.; Boon, N.; Daffonchio, D.; Verstraete, W. How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environ. Microbiol. 2008, 10, 1571–1581. [Google Scholar] [CrossRef] [PubMed]
- Riebesell, U.; Schulz, K.G.; Bellerby, R.G.J.; Botros, M.; Fritsche, P.; Meyerhöfer, M.; Neill, C.; Nondal, G.; Oschlies, A.; Wohlers, J.; et al. Enhanced biological carbon consumption in a high CO2 ocean. Nature 2007, 450, 545–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacquet, S.; Heldal, M.; Iglesias-Rodriguez, D.; Larsen, L.; Wilson, W.H.; Bratbak, G. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat. Microb. Ecol. 2002, 27, 111–124. [Google Scholar] [CrossRef]
- Riebesell, U.; Zondervan, I.; Rost, B.; Tortell, P.D.; Zeebe, R.E.; Morel, F.M. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 2000, 407, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Zondervan, I.; Rost, B.; Riebesell, U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different day lengths. J. Exp. Mar. Biol. Ecol. 2002, 272, 55–70. [Google Scholar] [CrossRef]
- Richier, S.; Fiorini, S.; Kerros, M.E.; von Dassow, P.; Gattuso, J.P. Response of the calcifying coccolithophore Emiliania huxleyi to low pH/high pCO2: From physiology to molecular level. Mar. Biol. 2011, 158, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Sciandra, A.; Harlay, J.; Lefèvre, D.; Lemée, R.; Rimmelin, P.; Denis, M.; Gattuso, J.P. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. Mar. Ecol. Prog. Ser. 2003, 261, 111–122. [Google Scholar] [CrossRef]
- Paulino, A.I.; Egge, J.K.; Larsen, A. Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 2008, 5, 739–748. [Google Scholar] [CrossRef]
- Martínez, J.M. Molecular ecology of marine algal viruses. Ph.D. Thesis, University of Plymouth, Plymouth, UK, 2006. [Google Scholar]
- Larsen, J.B.; Larsen, A.; Thyrhaug, G.; Bratbak, G.; Sandaa, R.A. Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences 2008, 5, 523–533. [Google Scholar] [CrossRef]
- Carreira, C.; Heldal, M.; Bratbak, G. Effect of increased pCO2 on phytoplankton-virus interactions. Biogeochemistry 2013, 114, 391–397. [Google Scholar] [CrossRef]
- Chen, S.; Gao, K. Viral attack exacerbates the susceptibility of a bloom-forming alga to ocean acidification. Glob. Chang. Biol. 2015, 21, 629–636. [Google Scholar] [CrossRef] [PubMed]
- Traving, S.J.; Clokie, M.R.J.; Middelboe, M. Increased acidification has a profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses. FEMS Microb. Ecol. 2013, 87, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Coolen, M.J.L. 7000 years of Emiliania huxleyi viruses in the Black Sea. Science 2011, 333, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Nissimov, J.I.; Napier, J.A.; Allen, M.J.; Kimmance, S.A. Intragenus competition between coccolithoviruses: And insight on how a select few can come to dominate many. Environ. Microbiol. 2015, 18, 133–145. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Highfield, A.; Joint, I.; Gilbert, J.A.; Crawfurd, K.J.; Schroeder, D.C. Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment. Viruses 2017, 9, 41. https://doi.org/10.3390/v9030041
Highfield A, Joint I, Gilbert JA, Crawfurd KJ, Schroeder DC. Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment. Viruses. 2017; 9(3):41. https://doi.org/10.3390/v9030041
Chicago/Turabian StyleHighfield, Andrea, Ian Joint, Jack A. Gilbert, Katharine J. Crawfurd, and Declan C. Schroeder. 2017. "Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment" Viruses 9, no. 3: 41. https://doi.org/10.3390/v9030041
APA StyleHighfield, A., Joint, I., Gilbert, J. A., Crawfurd, K. J., & Schroeder, D. C. (2017). Change in Emiliania huxleyi Virus Assemblage Diversity but Not in Host Genetic Composition during an Ocean Acidification Mesocosm Experiment. Viruses, 9(3), 41. https://doi.org/10.3390/v9030041