Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Effect of increased pCO2 on phytoplankton–virus interactions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Atmospheric carbon dioxide (CO2) has increased since the pre-industrial period and is predicted to continue to increase throughout the twenty-first century. The ocean is a sink for atmospheric CO2 and increased CO2 concentration will change the carbonate equilibrium of seawater and result in lower carbonate ion concentration and lower pH. This may affect the entire marine biota but in particular calcifying organisms. In this study we investigated the effect of increased CO2 on the virus host interaction of Emiliania huxleyi as a calcifying organism and of Phaeocystis poucheti as a non- calcifying organism. Both algae were grown in laboratory controlled conditions under past (280 ppmv), present (350 ppmv) and future (700 ppmv) CO2 concentrations with and without added virus. Increased CO2 had a negative effect on the growth rate of P. pouchetii, but not of E. huxleyi. No impact was found on viral lysis of P. pouchetii while increased burst size and slightly delayed lysis was observed for E. huxleyi with increased CO2. We conclude that this short time study could not confirm earlier reports and our hypothesis of a negative effect of high CO2 on E. huxleyi growth and E. huxleyi virus production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bergh Ø, Børsheim KY, Bratbak G, Heldal M (1989) High abundance of viruses found in aquatic environments. Nature 340:467–468

    Article  Google Scholar 

  • Bratbak G, Egge JK, Heldal M (1993) Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser 93:39–48

    Article  Google Scholar 

  • Brussaard CPD (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70(3):1506–1513

    Article  Google Scholar 

  • Brussaard CPD, Thyrhaug R, Marie D, Bratbak G (1999) Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Primnesiophyceae). J Phycol 35:941–948

    Article  Google Scholar 

  • Brussaard CPD, Short SM, Frederickson CM, Suttle CA (2004) Isolation and phylogenetic analysis of novel viruses infecting the phytoplankton Phaeocystis globosa (Prymnesiophyceae). Appl Environ Microbiol 70(6):3700–3705

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Warren SG (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326:361–655

    Article  Google Scholar 

  • Delille B, Harlay J, Zondervan I, Jacquet S, Chou L, Wollast R, Bellerby RGJ, Frankignoulle M, Borges AV, Riebesell U, Gattuso J-P (2005) Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Glob Biogeochem Cycles 19: GB2023

  • Engel A, Zondervan I, Aerts K, Beaufort L, Chou L, Delille B, Gattuso J-P, Harlay J, Heemann C, Hoffmann L, Jacquet S, Nejstgaard J, Pizay M-D, Rochelle-Newall E, Schneider U, Terbrueggen A, Riebesell U (2005) Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol Oceanogr 50(2):493–507

    Article  Google Scholar 

  • Fernández E, Boyd P, Holligan PM, Harbour DS (1993) Production of organic and inorganic carbon within a large-scale coccolithophore bloom in the northeast Atlantic Ocean. Mar Ecol Prog Ser 97:271–285

    Article  Google Scholar 

  • Frada M, Probert I, Allen MJ, Wilson WH, Cd Vargas (2008) The “Cheshire Cat” escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. PNAS USA 105(41):15944–15949

    Article  Google Scholar 

  • Guinotte JM, Farby VJ (2008) Ocean acidification and its potential effects on marine ecosystems. Ann N Y Acad Sci 1134:320–342

    Article  Google Scholar 

  • Honjo S (1976) Coccoliths: production, transportation and sedimentation. Mar Micropaleontol 1:65–79

    Article  Google Scholar 

  • Hurd CL, Hepburn CD, Currie KI, Raven JA, Hunter KA (2009) Testing the effect of ocean acidification on algal metabolism: considerations for experimental designs. J Phycol 45:1236–1251

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrrell T, Gibbs SJ, Dassow Pv, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320:336–340

    Article  Google Scholar 

  • I.P.C.C. (2007) Fourth Assessment Report: Climate Change 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. 996

  • Lancelot C, Mathot S (1987) Dynamics of a Phaeocystis-dominated spring bloom in Belgian coastal waters. I. Phytoplankton activities and related parameters. Mar Ecol Prog Ser 37:239–248

    Article  Google Scholar 

  • Larsen A, Flaten GAF, Sandaa R-A, Castberg T, Thyrhaug R, Erga SR, Jacquet S, Bratbak G (2004) Spring phytoplankton bloom dynamics in Norwegian coastal waters: Microbial community succession and diversity. Limnol Oceanogr 49(1):180–190

    Article  Google Scholar 

  • Larsen JB, Larsen A, Thyrhaug R, Bratback G, Sandaa R-A (2008) Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 levels. Biogeosciences 5:523–533

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and tis impact on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Paulino AI, Egge JK, Larsen A (2008) Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5:739–748

    Article  Google Scholar 

  • Riebesell U, Zonrvan I, Rost B, Tortell OD, Zeebe RE, Morel FMM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Riebesell U, Schulz KG, Bellerby RG, Botros M, Fritsche P, Meyehöfer M, Neill C, Nondal G, Oschlies A, Wohlers J, Zöllner E (2007) Enhanced biological carbon consumption in a high CO2 ocean. Nature 450:545–549

    Article  Google Scholar 

  • Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C (2005) Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res 53:43–66

    Article  Google Scholar 

  • Westbroek P, Young JR, Linchooten KJ (1989) Coccolith production (biomineralization) in the marine algae Emiliania huxleyi. J Protozool 36:368–373

    Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49(10):781–788

    Article  Google Scholar 

  • Zondervan I, Zeebe RE, Rost B, Riebesell U (2001) Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Glob Biogeochem Cycles 15(2):507–516

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Craig Neil for all the technical help and Egil S. Erichsen, Laboratory for Electron microscopy, University in Bergen, for help using TEM. CC was supported by “The Research Council of Norway”, and the project was supported by the 7th Framework Programme Theme (EPOCA—European Project on Ocean Acidification; FP7-211384).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cátia Carreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carreira, C., Heldal, M. & Bratbak, G. Effect of increased pCO2 on phytoplankton–virus interactions. Biogeochemistry 114, 391–397 (2013). https://doi.org/10.1007/s10533-011-9692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-011-9692-x

Keywords

Navigation