Karst Ecosystem: Moso Bamboo Intercropping Enhances Soil Fertility and Microbial Diversity in the Rhizosphere of Giant Lily (Cardiocrinum giganteum)
<p>Soil physicochemical properties in the giant lily rhizosphere under different intercropping systems: (<b>a</b>) total organic carbon (TOC), (<b>b</b>) total nitrogen (TN), (<b>c</b>) total phosphorus (TP), (<b>d</b>) available nitrogen (AN), (<b>e</b>) available phosphorus (AP), (<b>f</b>) available potassium (AK), (<b>g</b>) pH, (<b>h</b>) β-D-glucosidase (BDG), (<b>i</b>) acid phosphatase (ACP), (<b>j</b>) N-acetyl-β-D-glucosaminidase (NAG), and (<b>k</b>) leucine aminopeptidase (LAP). Error bars represent standard deviations (n = 5). Different lowercase letters indicate significant differences among systems (LSD post hoc test, <span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 2
<p>Amplicon Sequence Variant (ASV) richness of (<b>a</b>) bacteria and (<b>b</b>) fungi in the giant lily rhizosphere under different intercropping systems; blue circles indicate shared taxa across systems; grey circles indicate non-shared ASVs; black bars indicate the number of shared taxa.</p> "> Figure 3
<p>Alpha diversity indices of (<b>a</b>–<b>c</b>) bacterial and (<b>d</b>–<b>f</b>) fungal communities in the giant lily rhizosphere under different intercropping systems. Lowercase letters indicate significant differences among systems (<span class="html-italic">p</span> = 0.05).</p> "> Figure 4
<p>Principal coordinate analysis (PCoA) and analysis of similarities (ANOSIM) tests of (<b>a</b>,<b>b</b>) bacterial and (<b>c</b>,<b>d</b>) fungal communities in the giant lily rhizosphere under different intercropping systems.</p> "> Figure 5
<p>Composition and linear discriminant analysis effect size (LEfSe) analysis of bacterial and fungal communities in the giant lily rhizosphere under different intercropping systems. (<b>a</b>,<b>b</b>) Relative abundance at the phylum level; (<b>c</b>,<b>d</b>) LEfSe results (phylum to genus level).</p> "> Figure 6
<p>Redundancy analysis (RDA) of (<b>a</b>) bacterial and (<b>b</b>) fungal communities in the giant lily rhizosphere under different intercropping systems.</p> "> Figure 7
<p>Functional predictions and correlations with dominant phyla for (<b>a</b>) bacterial functional annotation of prokaryotic taxa (FAPROTAX) and (<b>b</b>) fungal functional guilds (FUNGuild) in the giant lily rhizosphere under different intercropping systems. (<b>c</b>) Correlation analysis between dominant functional groups and dominant bacterial phyla. Asterisks indicate significance levels: * (0.01< <span class="html-italic">p</span> ≤ 0.05), ** (0.001< <span class="html-italic">p</span> ≤ 0.01).</p> "> Figure 8
<p>Co-occurrence networks of bacterial and fungal communities in the giant lily rhizosphere under different intercropping systems: (<b>a</b>,<b>e</b>) bamboo–giant lily, (<b>b</b>,<b>f</b>) Chinese fir–giant lily, (<b>c</b>,<b>g</b>) Moso bamboo–giant lily, and (<b>d</b>,<b>h</b>) forest gap–giant lily intercropping.</p> "> Figure 8 Cont.
<p>Co-occurrence networks of bacterial and fungal communities in the giant lily rhizosphere under different intercropping systems: (<b>a</b>,<b>e</b>) bamboo–giant lily, (<b>b</b>,<b>f</b>) Chinese fir–giant lily, (<b>c</b>,<b>g</b>) Moso bamboo–giant lily, and (<b>d</b>,<b>h</b>) forest gap–giant lily intercropping.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Litterfall Sampling
2.3. Analyses of Soil Properties
2.4. Extraction of Soil DNA and Sequencing of Amplicon
2.5. Bioinformatics and Statistics
3. Results
3.1. Analysis of Soil Properties
3.2. Microbial Diversity
3.3. Composition of Microbial Community
3.4. Correlation Between Soil Properties and Microbial Community
3.5. Functional Analysis of Bacterial and Fungal Communities
3.6. Symbiotic Network Analysis
4. Discussion
4.1. Intercropping Effects on Soil Properties and Enzyme Activities in the Giant Lily Rhizosphere
4.2. Microbial Community Structure and Diversity Across Intercropping Systems
4.3. Functional Profiles and Environmental Drivers of Microbial Communities
4.4. Microbial Co-Occurrence Networks and Keystone Taxa in Giant Lily Rhizosphere
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, W.-Y.; Xu, M.; He, X. Plant-Microbe-Soil Interactions in a Vulnerable Ecosystem: Promising Re-Vegetation Approaches to Slow down Rocky Karst Desertification. Plant Soil 2022, 475, 1–4. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Cui, M.; Zhou, Z.; Zhang, Q.; Li, Y.; Ha, W.; Pang, D.; Luo, J.; Zhou, J. Effects of Secondary Succession on Soil Fungal and Bacterial Compositions and Diversities in a Karst Area. Plant Soil 2022, 475, 91–102. [Google Scholar] [CrossRef]
- Yan, T.; Xue, J.; Zhou, Z.; Wu, Y. Biochar-Based Fertilizer Amendments Improve the Soil Microbial Community Structure in a Karst Mountainous Area. Sci. Total Environ. 2021, 794, 148757. [Google Scholar] [CrossRef]
- Huang, H.; Tian, D.; Zhou, L.; Su, H.; Ma, S.; Feng, Y.; Tang, Z.; Zhu, J.; Ji, C.; Fang, J. Effects of Afforestation on Soil Microbial Diversity and Enzyme Activity: A Meta-Analysis. Geoderma 2022, 423, 115961. [Google Scholar] [CrossRef]
- Xue, P.; Minasny, B.; McBratney, A.B. Land-Use Affects Soil Microbial Co-Occurrence Networks and Their Putative Functions. Appl. Soil Ecol. 2022, 169, 104184. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, J.; Khashi U Rahman, M.; Gao, D.; Wei, Z.; Wu, F.; Dini-Andreote, F. Interspecific Plant Interaction via Root Exudates Structures the Disease Suppressiveness of Rhizosphere Microbiomes. Mol. Plant 2023, 16, 849–864. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; Li, S.; Tang, R.; Su, J. Microbial Network Complexity and Diversity Together Drive the Soil Ecosystem Multifunctionality of Forests during Different Woodland Use Intensity in Dry and Wet Season. For. Ecol. Manag. 2023, 542, 121086. [Google Scholar] [CrossRef]
- Wei, X.; Fu, T.; He, G.; Cen, R.; Huang, C.; Yang, M.; Zhang, W.; He, T. Plant Types Shape Soil Microbial Composition, Diversity, Function, and Co-occurrence Patterns in Cultivated Land of a Karst Area. Land Degrad. Dev. 2023, 34, 1097–1109. [Google Scholar] [CrossRef]
- Yu, P.; Tang, H.; Sun, X.; Shi, W.; Pan, J.; Liu, S.; Jia, H.; Ding, Z.; Tang, X.; Chen, M. Afforestation Alters Soil Microbial Community Composition and Reduces Microbial Network Complexity in a Karst Region of Southwest China. Land Degrad. Dev. 2024, 35, 2926–2939. [Google Scholar] [CrossRef]
- Gao, G.; Huang, X.; Xu, H.; Wang, Y.; Shen, W.; Zhang, W.; Yan, J.; Su, X.; Liao, S.; You, Y. Conversion of Pure Chinese Fir Plantation to Multi-Layered Mixed Plantation Enhances the Soil Aggregate Stability by Regulating Microbial Communities in Subtropical China. For. Ecosyst. 2022, 9, 100078. [Google Scholar] [CrossRef]
- Cheng, X.; Yun, Y.; Wang, H.; Ma, L.; Tian, W.; Man, B.; Liu, C. Contrasting Bacterial Communities and Their Assembly Processes in Karst Soils under Different Land Use. Sci. Total Environ. 2021, 751, 142263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-R.; Lin, Z.-X.; Lu, X.-Y.; Xia, X.; Jiang, R.-W.; Chen, Q.-B. CGY-1, a Biflavonoid Isolated from Cardiocrinum Giganteum Seeds, Improves Memory Deficits by Modulating the Cholinergic System in Scopolamine-Treated Mice. Biomed. Pharmacother. 2019, 111, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ling, K.-H.; Lam, H.; Shaw, P.-C.; Cheng, L.; Techen, N.; Khan, L.A.; Chang, Y.-S.; But, P.P.-H. Cardiocrinum Seeds as a Replacement for Aristolochia Fruits in Treating Cough. J. Ethnopharmacol. 2010, 130, 429–432. [Google Scholar] [CrossRef] [PubMed]
- Araki, K.; Shimatani, K.; Nishizawa, M.; Yoshizane, T.; Ohara, M. Growth and Survival Patterns of Cardiocrinum cordatum Var. Glehnii (Liliaceae) Based on a 13-Year Monitoring Study: Life History Characteristics of a Monocarpic Perennial Herb. Botany 2010, 88, 745–752. [Google Scholar] [CrossRef]
- Shou, J.-W.; Zhang, R.-R.; Wu, H.-Y.; Xia, X.; Nie, H.; Jiang, R.-W.; Shaw, P.-C. Isolation of Novel Biflavonoids from Cardiocrinum giganteum Seeds and Characterization of Their Antitussive Activities. J. Ethnopharmacol. 2018, 222, 171–176. [Google Scholar] [CrossRef]
- Xu, A.; Guo, Z.; Pan, K.; Wang, C.; Zhang, F.; Liu, J.; Pan, X. Increasing Land-Use Durations Enhance Soil Microbial Deterministic Processes and Network Complexity and Stability in an Ecotone. Appl. Soil Ecol. 2023, 181, 104630. [Google Scholar] [CrossRef]
- Yang, Y.; Chai, Y.; Xie, H.; Zhang, L.; Zhang, Z.; Yang, X.; Hao, S.; Gai, J.; Chen, Y. Responses of Soil Microbial Diversity, Network Complexity and Multifunctionality to Three Land-Use Changes. Sci. Total Environ. 2023, 859, 160255. [Google Scholar] [CrossRef]
- Xu, Y.; Li, C.; Zhu, Y.; Wang, Z.; Zhu, W.; Wu, L.; Du, A. The Shifts in Soil Microbial Community and Association Network Induced by Successive Planting of Eucalyptus Plantations. For. Ecol. Manag. 2022, 505, 119877. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, X.; Huang, S.; Liu, Y.; Kong, Z.; Wu, L.; Ge, G. Co-Occurrence Patterns of Soil Fungal and Bacterial Communities in Subtropical Forest-Transforming Areas. Curr. Microbiol. 2024, 81, 64. [Google Scholar] [CrossRef]
- Chepsergon, J.; Moleleki, L.N. Rhizosphere Bacterial Interactions and Impact on Plant Health. Curr. Opin. Microbiol. 2023, 73, 102297. [Google Scholar] [CrossRef]
- Zhang, G.; Wei, G.; Wei, F.; Chen, Z.; He, M.; Jiao, S.; Wang, Y.; Yu, Y.; Dong, L.; Chen, S. Homogeneous Selection Shapes Rare Biosphere in Rhizosphere of Medicinal Plant. Ecol. Indic. 2021, 129, 107981. [Google Scholar] [CrossRef]
- Banerjee, S.; Walder, F.; Büchi, L.; Meyer, M.; Held, A.Y.; Gattinger, A.; Keller, T.; Charles, R.; van der Heijden, M.G.A. Agricultural Intensification Reduces Microbial Network Complexity and the Abundance of Keystone Taxa in Roots. ISME J. 2019, 13, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; He, X.; Zhang, W.; Cheng, M.; Hu, P.; Wang, K. Diazotroph and Arbuscular Mycorrhizal Fungal Diversity and Community Composition Responses to Karst and Non-Karst Soils. Appl. Soil Ecol. 2022, 170, 104227. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Wu, T.; Zhang, H.; Wei, G.; Li, Z. Rhizosphere Bacterial and Fungal Spatial Distribution and Network Pattern of Astragalus Mongholicus in Representative Planting Sites Differ the Bulk Soil. Appl. Soil Ecol. 2021, 168, 104114. [Google Scholar] [CrossRef]
- Chen, B.; Jiao, S.; Luo, S.; Ma, B.; Qi, W.; Cao, C.; Zhao, Z.; Du, G.; Ma, X. High Soil PH Enhances the Network Interactions among Bacterial and Archaeal Microbiota in Alpine Grasslands of the Tibetan Plateau. Environ. Microbiol. 2021, 23, 464–477. [Google Scholar] [CrossRef]
- Gao, L.; Wang, W.; Liao, X.; Tan, X.; Yue, J.; Zhang, W.; Wu, J.; Willison, J.H.M.; Tian, Q.; Liu, Y. Soil Nutrients, Enzyme Activities, and Bacterial Communities in Varied Plant Communities in Karst Rocky Desertification Regions in Wushan County, Southwest China. Front. Microbiol. 2023, 14, 1180562. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-Bacterial Diversity and Microbiome Complexity Predict Ecosystem Functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef]
- Shen, C.; Wang, J.; Jing, Z.; Qiao, N.-H.; Xiong, C.; Ge, Y. Plant Diversity Enhances Soil Fungal Network Stability Indirectly through the Increase of Soil Carbon and Fungal Keystone Taxa Richness. Sci. Total Environ. 2022, 818, 151737. [Google Scholar] [CrossRef]
- LY/T 1228-2015; Nitrogen Determination Methods of Forest Soils. State Forestry Administration: Beijing, China, 2015.
- Bao, S.D. Soil and Agricultural Chemistry Analysis; Agricultural Press: Beijing, China, 2000; pp. 355–356. [Google Scholar]
- NY/T 889-2004; Determination of Exchangeable Potassium and Non-Exchangeable Potassium Content in Soil. Ministry of Agriculture: Beijing, China, 2004.
- Bremner, J.B.; Smith, R.J.; Tarrant, G.J. A Meisenheimer Rearrangement Approach to Bridgehead Hydroxylated Tropane Alkaloid Derivatives. Tetrahedron Lett. 1996, 37, 97–100. [Google Scholar] [CrossRef]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and Galactosidases in Soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of P-Nitrophenyl Phosphate for Assay of Soil Phosphatase Activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Deng, S.; Popova, I.E.; Dick, L.; Dick, R. Bench Scale and Microplate Format Assay of Soil Enzyme Activities Using Spectroscopic and Fluorometric Approaches. Appl. Soil Ecol. 2013, 64, 84–90. [Google Scholar] [CrossRef]
- Logue, J.B.; Stedmon, C.A.; Kellerman, A.M.; Nielsen, N.J.; Andersson, A.F.; Laudon, H.; Lindström, E.S.; Kritzberg, E.S. Experimental Insights into the Importance of Aquatic Bacterial Community Composition to the Degradation of Dissolved Organic Matter. ISME J. 2016, 10, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, I.; Friberg, H.; Steinberg, C.; Persson, P. Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere. PLoS ONE 2014, 9, e111786. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, R package version 2.6-8; CRAN, 2024. Available online: https://CRAN.R-project.org/package=vegan (accessed on 8 November 2024).
- Liu, L.; Chen, H.; Liu, M.; Yang, J.R.; Xiao, P.; Wilkinson, D.M.; Yang, J. Response of the Eukaryotic Plankton Community to the Cyanobacterial Biomass Cycle over 6 Years in Two Subtropical Reservoirs. ISME J. 2019, 13, 2196–2208. [Google Scholar] [CrossRef]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proc. Int. AAAI Conf. Web Soc. Media 2009, 3, 361–362. [Google Scholar] [CrossRef]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G.I. PICRUSt2: An improved and extensible approach for metagenome inference. BioRxiv 2019, 672295. [Google Scholar] [CrossRef]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling Function and Taxonomy in the Global Ocean Microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Song, Z.; Bates, S.T.; Branco, S.; Tedersoo, L.; Menke, J.; Schilling, J.S.; Kennedy, P.G. FUNGuild: An Open Annotation Tool for Parsing Fungal Community Datasets by Ecological Guild. Fungal Ecol. 2016, 20, 241–248. [Google Scholar] [CrossRef]
- Xu, M.; Jian, J.; Wang, J.; Zhang, Z.; Yang, G.; Han, X.; Ren, C. Response of Root Nutrient Resorption Strategies to Rhizosphere Soil Microbial Nutrient Utilization along Robinia Pseudoacacia Plantation Chronosequence. For. Ecol. Manag. 2021, 489, 119053. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, X.; Wu, Z.; Huang, Z.; Gao, G.; Zhang, J.; Zhang, X. Native Bamboo (Indosasa Shibataeoides McClure) Invasion of Broadleaved Forests Promotes Soil Organic Carbon Sequestration in South China Karst. Forests 2023, 14, 2135. [Google Scholar] [CrossRef]
- Yun, Y.; Wang, H.; Man, B.; Xiang, X.; Zhou, J.; Qiu, X.; Duan, Y.; Engel, A.S. The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification. Front. Microbiol. 2016, 7, 1955. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Long, F.; Zu, L.; Jarvie, S.; Peng, Y.; Zang, L.; Chen, D.; Zhang, G.; Sui, M.; He, Y.; et al. Stand Spatial Structure and Microbial Diversity Are Key Drivers of Soil Multifunctionality during Secondary Succession in Degraded Karst Forests. Sci. Total Environ. 2024, 937, 173504. [Google Scholar] [CrossRef]
- Xue, L.; Ren, H.; Li, S.; Leng, X.; Yao, X. Soil Bacterial Community Structure and Co-Occurrence Pattern during Vegetation Restoration in Karst Rocky Desertification Area. Front. Microbiol. 2017, 8, 2377. [Google Scholar] [CrossRef]
- Chen, M.; Qin, H.; Liang, Y.; Xiao, D.; Yan, P.; Yin, M.; Pan, F. The phoD-Harboring Microorganism Communities and Networks in Karst and Non-Karst Forests in Southwest China. Forests 2024, 15, 341. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.; Xiao, K.; Wang, K. Soil Microbial Processes and Resource Limitation in Karst and Non-karst Forests. Funct. Ecol. 2018, 32, 1400–1409. [Google Scholar] [CrossRef]
- Lu, Z.-X.; Wang, P.; Ou, H.-B.; Wei, S.-X.; Wu, L.-C.; Jiang, Y.; Wang, R.-J.; Liu, X.-S.; Wang, Z.-H.; Chen, L.-J.; et al. Effects of Different Vegetation Restoration on Soil Nutrients, Enzyme Activities, and Microbial Communities in Degraded Karst Landscapes in Southwest China. For. Ecol. Manag. 2022, 508, 120002. [Google Scholar] [CrossRef]
- Wang, Q.-K.; Wang, S.-L. Soil Microbial Properties and Nutrients in Pure and Mixed Chinese Fir Plantations. J. For. Res. 2008, 19, 131–135. [Google Scholar] [CrossRef]
- Pang, D.; Wang, G.; Liu, Y.; Cao, J.; Wan, L.; Wu, X.; Zhou, J. The Impacts of Vegetation Types and Soil Properties on Soil Microbial Activity and Metabolic Diversity in Subtropical Forests. Forests 2019, 10, 497. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, Y.; Qin, H.; Liang, C.; Shao, S.; Fuhrmann, J.J.; Chen, J.; Xu, Q. Moso bamboo Invasion Has Contrasting Effects on Soil Bacterial and Fungal Abundances, Co-Occurrence Networks and Their Associations with Enzyme Activities in Three Broadleaved Forests across Subtropical China. For. Ecol. Manag. 2021, 498, 119549. [Google Scholar] [CrossRef]
- Sterkenburg, E.; Bahr, A.; Brandström Durling, M.; Clemmensen, K.E.; Lindahl, B.D. Changes in Fungal Communities along a Boreal Forest Soil Fertility Gradient. New Phytol. 2015, 207, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Philippot, L.; Raaijmakers, J.M.; Lemanceau, P.; Van Der Putten, W.H. Going Back to the Roots: The Microbial Ecology of the Rhizosphere. Nat. Rev. Microbiol. 2013, 11, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Wen, H.; Zhou, T.; Zhang, T.; Gao, X. 454 Pyrosequencing Analysis of Bacterial Diversity Revealed by a Comparative Study of Soils from Mining Subsidence and Reclamation Areas. J. Microbiol. Biotechnol. 2014, 24, 313–323. [Google Scholar] [CrossRef]
- Purahong, W.; Schloter, M.; Pecyna, M.J.; Kapturska, D.; Däumlich, V.; Mital, S.; Buscot, F.; Hofrichter, M.; Gutknecht, J.L.M.; Krüger, D. Uncoupling of Microbial Community Structure and Function in Decomposing Litter across Beech Forest Ecosystems in Central Europe. Sci. Rep. 2014, 4, 7014. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol. Mol. Biol. Rev. 2017, 81, e00063-16. [Google Scholar] [CrossRef]
- Uroz, S.; Buée, M.; Deveau, A.; Mieszkin, S.; Martin, F. Ecology of the Forest Microbiome: Highlights of Temperate and Boreal Ecosystems. Soil Biol. Biochem. 2016, 103, 471–488. [Google Scholar] [CrossRef]
- Bai, R.; Wang, J.-T.; Deng, Y.; He, J.-Z.; Feng, K.; Zhang, L.-M. Microbial Community and Functional Structure Significantly Varied among Distinct Types of Paddy Soils But Responded Differently along Gradients of Soil Depth Layers. Front. Microbiol. 2017, 8, 945. [Google Scholar] [CrossRef]
- Kielak, A.M.; Barreto, C.C.; Kowalchuk, G.A.; Van Veen, J.A.; Kuramae, E.E. The Ecology of Acidobacteria: Moving beyond Genes and Genomes. Front. Microbiol. 2016, 7, 744. [Google Scholar] [CrossRef]
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; Van Wezel, G.P. Correction for Barka et al., Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1. [Google Scholar] [CrossRef]
- Navarrete, A.A.; Venturini, A.M.; Meyer, K.M.; Klein, A.M.; Tiedje, J.M.; Bohannan, B.J.M.; Nüsslein, K.; Tsai, S.M.; Rodrigues, J.L.M. Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon. Front. Microbiol. 2015, 6, 1443. [Google Scholar] [CrossRef] [PubMed]
- Vanwonterghem, I.; Evans, P.N.; Parks, D.H.; Jensen, P.D.; Woodcroft, B.J.; Hugenholtz, P.; Tyson, G.W. Methylotrophic Methanogenesis Discovered in the Archaeal Phylum Verstraetearchaeota. Nat. Microbiol. 2016, 1, 16170. [Google Scholar] [CrossRef] [PubMed]
- Muscolo, A.; Bagnato, S.; Sidari, M.; Mercurio, R. A Review of the Roles of Forest Canopy Gaps. J. For. Res. 2014, 25, 725–736. [Google Scholar] [CrossRef]
- Ivanova, A.A.; Zhelezova, A.D.; Chernov, T.I.; Dedysh, S.N. Linking Ecology and Systematics of Acidobacteria: Distinct Habitat Preferences of the Acidobacteriia and Blastocatellia in Tundra Soils. PLoS ONE 2020, 15, e0230157. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, S.; Kiss, E.; Kuo, A.; Drula, E.; Kohler, A.; Sánchez-García, M.; Morin, E.; Andreopoulos, B.; Barry, K.W.; Bonito, G.; et al. Large-Scale Genome Sequencing of Mycorrhizal Fungi Provides Insights into the Early Evolution of Symbiotic Traits. Nat. Commun. 2020, 11, 5125. [Google Scholar] [CrossRef]
- Treseder, K.K.; Lennon, J.T. Fungal Traits That Drive Ecosystem Dynamics on Land. Microbiol. Mol. Biol. Rev. 2015, 79, 243–262. [Google Scholar] [CrossRef]
- Baldrian, P.; Kolařík, M.; Štursová, M.; Kopecký, J.; Valášková, V.; Větrovský, T.; Žifčáková, L.; Šnajdr, J.; Rídl, J.; Vlček, Č.; et al. Active and Total Microbial Communities in Forest Soil Are Largely Different and Highly Stratified during Decomposition. ISME J. 2012, 6, 248–258. [Google Scholar] [CrossRef]
- Tan, X.; Xie, B.; Wang, J.; He, W.; Wang, X.; Wei, G. County-Scale Spatial Distribution of Soil Enzyme Activities and Enzyme Activity Indices in Agricultural Land: Implications for Soil Quality Assessment. Sci. World J. 2014, 2014, 535768. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Yu, Z.; Shi, Y.; Chu, H.; Jin, J.; Liu, X.; Wang, G. High Throughput Sequencing Analysis of Biogeographical Distribution of Bacterial Communities in the Black Soils of Northeast China. Soil Biol. Biochem. 2014, 70, 113–122. [Google Scholar] [CrossRef]
- Li, Y.; Hu, S.; Chen, J.; Müller, K.; Li, Y.; Fu, W.; Lin, Z.; Wang, H. Effects of Biochar Application in Forest Ecosystems on Soil Properties and Greenhouse Gas Emissions: A Review. J. Soils Sediments 2018, 18, 546–563. [Google Scholar] [CrossRef]
- Hu, J.; Wei, Z.; Kowalchuk, G.A.; Xu, Y.; Shen, Q.; Jousset, A. Rhizosphere Microbiome Functional Diversity and Pathogen Invasion Resistance Build up during Plant Development. Environ. Microbiol. 2020, 22, 5005–5018. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The Interconnected Rhizosphere: High Network Complexity Dominates Rhizosphere Assemblages. Ecol. Lett. 2016, 19, 926–936. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular Ecological Network Analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Yang, T.; Friman, V.-P.; Xu, Y.; Shen, Q.; Jousset, A. Trophic Network Architecture of Root-Associated Bacterial Communities Determines Pathogen Invasion and Plant Health. Nat. Commun. 2015, 6, 8413. [Google Scholar] [CrossRef]
- Banerjee, S.; Schlaeppi, K.; van der Heijden, M.G.A. Keystone Taxa as Drivers of Microbiome Structure and Functioning. Nat. Rev. Microbiol. 2018, 16, 567–576. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, C.; Wang, L.; Zhang, J.; Wang, Q.; Shao, S.; Qin, H.; Xu, Q.; Liang, C.; Chen, J. Moso bamboo Invasion Changes the Assembly Process and Interactive Relationship of Soil Microbial Communities in a Subtropical Broadleaf Forest. For. Ecol. Manag. 2023, 536, 120901. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Meng, L.; Liu, X.; Zhang, Y.; Zhao, S.; Zhao, H. Root Exudation under Maize/Soybean Intercropping System Mediates the Arbuscular Mycorrhizal Fungi Diversity and Improves the Plant Growth. Front. Plant Sci. 2024, 15, 1375194. [Google Scholar] [CrossRef]
Sample Plot | Altitude/m | Aspect and Slope | Bamboo | China Fir | ||||
---|---|---|---|---|---|---|---|---|
DBH (cm) | Height (m) | Density Stem (hm2) | DBH (cm) | Height (m) | Density Stem (hm2) | |||
BG | 830 | SE 29° | 10.43 ± 1.18 | 22.5 ± 1.5 | 2100 | - | - | - |
FG | 840 | SW 25° | - | - | - | 29.28 ± 3.12 | 17.5 ± 2.5 | 350 |
MG | 840 | S 25° | 12.43 ± 0.87 | 22.75 ± 1.5 | 933 | 31.48 ± 2.57 | 18.65 ± 3.35 | 300 |
GG | 835 | S 23° | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wu, H.; Gao, G.; Peng, Y.; Ning, Y.; Huang, Z.; Chen, Z.; Xu, X.; Wu, Z. Karst Ecosystem: Moso Bamboo Intercropping Enhances Soil Fertility and Microbial Diversity in the Rhizosphere of Giant Lily (Cardiocrinum giganteum). Forests 2024, 15, 2004. https://doi.org/10.3390/f15112004
Zhang J, Wu H, Gao G, Peng Y, Ning Y, Huang Z, Chen Z, Xu X, Wu Z. Karst Ecosystem: Moso Bamboo Intercropping Enhances Soil Fertility and Microbial Diversity in the Rhizosphere of Giant Lily (Cardiocrinum giganteum). Forests. 2024; 15(11):2004. https://doi.org/10.3390/f15112004
Chicago/Turabian StyleZhang, Jie, Haoyu Wu, Guibin Gao, Yuwen Peng, Yilin Ning, Zhiyuan Huang, Zedong Chen, Xiangyang Xu, and Zhizhuang Wu. 2024. "Karst Ecosystem: Moso Bamboo Intercropping Enhances Soil Fertility and Microbial Diversity in the Rhizosphere of Giant Lily (Cardiocrinum giganteum)" Forests 15, no. 11: 2004. https://doi.org/10.3390/f15112004