Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main objective of this numerical investigation was to analyze the entropy generation and natural convection flow under magnetic field in a square enclosure filled with Cu–Al2O3/water hybrid nanofluid. The enclosure is equipped with a conducting hollow cylinder. The free convective flow in the enclosure is created by a horizontal temperature difference between the vertical left hot wall and the right cold wall under the Boussinesq approximation. The dimensionless equations of steady laminar natural convection flow for Newtonian and incompressible mixture are discretized using the finite volume method. The effective thermal conductivity and viscosity of the hybrid nanofluid are calculated using Corcione correlations taking into consideration the Brownian motion of nanoparticles. Numerical solutions were performed for different values of the nanoparticles volumic concentration, Hartmann number, Rayleigh number, radius ratio, and solid–fluid thermal conductivity ratio. The analyzed results show that inserting a hollow conducting cylinder plays an important role in controlling flow characteristic and heat transfer rate as well as irreversibilities within the cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

B0 :

Magnetic field (N/A m2)

Be:

Bejan number

C p :

Heat capacitance (J kg−1 K−1)

g :

Gravity (m s−2)

H:

Enclosure height (m)

Ha:

Hartmann number

k b :

Boltzmann’s constant, 1.380648 × 10−23 (J K−1)

N:

Undulation number

Nu:

Nusselt number

p :

Pressure (Nm−2)

P :

Dimensionless pressure

Pr:

Prandtl number

r :

Base circular radius of the block (m)

Ra:

Rayleigh number

S :

Dimensionless entropy

s :

Dimensional entropy (J K−1)

T :

Dimension temperature (K)

T fr :

Freezing point of the base liquid (K)

u, v :

Dimensional velocity components along x and y directions (m s−1)

U, V :

Non-dimensional velocity components along with x and y directions

x, y :

Cartesian coordinates (m)

X, Y :

Non-dimensional coordinates

α :

Thermal diffusivity (m2 s−1)

β :

Thermal expansion coefficient (K−1)

λ r :

Thermal conductivity ratio (λs/λf)

λ :

Thermal conductivity (W m−1K−1)

μ :

Dynamic viscosity, kg m−1 s

υ :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

ϕ :

Volume fraction of the nanoparticles

θ :

Non-dimensional temperature

ψ :

Non-dimensional stream function

σ :

Electrical conductivity (1 Ω−1 m)

c:

Cold

h:

Hot

hnf:

Hybrid nanofluid

f:

Fluid

p:

Solid particles

s:

Solid block

hp:

Hybrid solid particles

avg:

Average

References

  1. Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side walls. Int J Therm Sci. 2010;49:1856–65.

    Article  CAS  Google Scholar 

  2. Chamkha AJ. Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int J Eng Sci. 2004;42:217–30.

    Article  Google Scholar 

  3. Yan WM, Teng HY, Li CH, Ghalambaz M. Electromagnetic field analysis and cooling system design for high power switched reluctance motor. Int J Numer Meth Heat Fluid Flow. 2019;29(5):1756–85.

    Article  Google Scholar 

  4. Revnic C, Ghalambaz M, Groşan T, Sheremet M, Pop I. Impacts of non-uniform border temperature variations on time-dependent nanofluid free convection within a trapezium: Buongiorno’s nanofluid model. Energies. 2019;12(8):1461.

    Article  CAS  Google Scholar 

  5. Tahmasebi A, Mahdavi M, Ghalambaz M. Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer Heat Transf Part A Appl. 2018;73(4):254–76.

    Article  CAS  Google Scholar 

  6. Zargartalebi H, Ghalambaz M, Sheremet MA, Pop I. Unsteady free convection in a square porous cavity saturated with nanofluid: the case of local thermal nonequilibrium and Buongiorno’s mathematical models. J Porous Media. 2017;20(11):999–1016.

    Article  Google Scholar 

  7. Sabour M, Ghalambaz M. Natural convection in a triangular cavity filled with a nanofluid-saturated porous medium using three heat equation model. Can J Phys. 2016;94(6):604–15.

    Article  CAS  Google Scholar 

  8. Ghalambaz M, Sabour M, Pop I. Free convection in a square cavity filled by a porous medium saturated by a nanofluid: viscous dissipation and radiation effects. Eng Sci Technol Int J. 2016;19(3):1244–53.

    Article  Google Scholar 

  9. Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D. Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol. 2015;26(3):935–46.

    Article  CAS  Google Scholar 

  10. Ghalambaz M, Sheremet MA, Pop I. Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. PLoS ONE. 2015;10(5):e0126486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Tayebi T, Chamkha AJ. Free convection enhancement in an annulus between horizontal confocal elliptical cylinders using hybrid nanofluids. Numer Heat Transf Part A. 2016;70(10):1141–56.

    Article  CAS  Google Scholar 

  12. Tayebi T, Chamkha AJ. Buoyancy-driven heat transfer enhancement in a sinusoidally heated enclosure utilizing hybrid nanofluid. Comput Therm Sci Int J. 2017;9:405–21.

    Article  Google Scholar 

  13. Tayebi T, Chamkha AJ. Natural convection enhancement in an eccentric horizontal cylindrical annulus using hybrid nanofluids. Numer Heat Transf Part A Appl. 2017;71:1159–73.

    Article  CAS  Google Scholar 

  14. Ghalambaz M, Sheremet MA, Mehryan SAM, Kashkooli FM, Pop I. Local thermal non-equilibrium analysis of conjugate free convection within a porous enclosure occupied with Ag–MgO hybrid nanofluid. J Therm Anal Calorim. 2019;135(2):1381–98.

    Article  CAS  Google Scholar 

  15. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.

    Article  Google Scholar 

  16. Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz M. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.

    Article  CAS  Google Scholar 

  17. Ismael MA, Mansour MA, Chamkha AJ, Rashad AM. Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field. J Magn Magn Mater. 2016;416:25–36.

    Article  CAS  Google Scholar 

  18. Rashad AM, Ismael MA, Chamkha AJ, Mansour MA. MHD mixed convection of localized heat source/sink in a nanofluid-filled lid-driven square cavity with partial slip. J Taiwan Inst Chem Eng. 2016;68:173–86.

    Article  CAS  Google Scholar 

  19. Sivasankaran S, Mansour MA, Rashad AM, Bhuvaneswari M. MHD mixed convection of Cu–water nanofluid in a two-sided lid-driven porous cavity with a partial slip. Numer Heat Transf Part A Appl. 2016;70(12):1356–70.

    Article  CAS  Google Scholar 

  20. Gorla RSR, Siddiqa S, Mansour MA, Rashad AM, Salah T. Heat source/sink effects on a hybrid nanofluid-filled porous cavity. J Thermophys Heat Transf. 2017;31(4):847–57.

    Article  CAS  Google Scholar 

  21. Rashad AM, Gorla RSR, Mansour MA, Ahmed SE. Magnetohydrodynamic effect on natural convection in a cavity filled with a porous medium saturated with nanofluid. J Porous Media. 2017;20(4):363–79.

    Article  Google Scholar 

  22. Dogonchi AS, Tayebi T, Chamkha AJ, Ganji DD. Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08408-0.

    Article  Google Scholar 

  23. Rashad AM, Chamkha AJ, Ismael MA, Salah T. Magnetohydrodynamics natural convection in a triangular cavity filled with a Cu–Al2O3/water hybrid nanofluid with localized heating from below and internal heat generation. J Heat Transf. 2018;140(7):072502.

    Article  CAS  Google Scholar 

  24. Izadi M, Maleki NM, Pop I, Mehryan SAM. Natural convection of a hybrid nanofluid subjected to non-uniform magnetic field within porous medium including circular heater. Int J Numer Methods Heat Fluid Flow. 2019;29:1211–31.

    Article  Google Scholar 

  25. Zhao FY, Liu D, Tang GF. Conjugate heat transfer in square enclosures. Heat Mass Transf. 2007;43:907–22.

    Article  Google Scholar 

  26. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al2O3-water nanofluid in adouble lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939–61.

    Article  CAS  Google Scholar 

  27. Mahapatra PS, De S, Ghosh K, Manna NK, Mukhopadhyay A. Heat transfer enhancement and entropy generation in a square enclosure in the presence of adiabatic and isothermal blocks. Numer Heat Transf Part A Appl. 2013;64:577–96.

    Article  CAS  Google Scholar 

  28. Sivaraj C, Sheremet M. MHD natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351–60.

    Article  CAS  Google Scholar 

  29. Alsabery AI, Tayebi T, Chamkha AJ, Hashim I. Effect of rotating solid cylinder on entropy generation and convective heat transfer in a wavy porous cavity heated from below. Int Commun Heat Mass Transfer. 2018;95:197–209.

    Article  Google Scholar 

  30. Oztop HF, Zhao Z, Yu B. Fluid flow due to combined convection in lid-driven enclosure having a circular body. Int J Heat Fluid Flow. 2009;30:886–901.

    Article  Google Scholar 

  31. Alsabery A, Tayebi T, Chamkha A, Hashim I. Effects of non-homogeneous nanofluid model on natural convection in a square cavity in the presence of conducting solid block and corner heater. Energies. 2018;11(10):2507.

    Article  CAS  Google Scholar 

  32. Garoosi F, Rashidi MM. Two phase flow simulation of conjugate natural convection of the nanofluid in a partitioned heat exchanger containing several conducting obstacles. Int J Mech Sci. 2017;130:282–306.

    Article  Google Scholar 

  33. Alsabery AI, Tayebi T, Chamkha AJ, Hashim I. Effects of two-phase nanofluid model on natural convection in a square cavity in the presence of an adiabatic inner block and magnetic field. Int J Numer Meth Heat Fluid Flow. 2018;28(7):1613–47.

    Article  Google Scholar 

  34. Bejan A. Second-law analysis in heat and thermal design. Adv Heat Transf. 1982;15:1–58.

    Article  CAS  Google Scholar 

  35. Mansour MA, Ahmed SE, Aly AM, Rashad AM. MHD effects on entropy generation and heat transfer of nanofluid flows in enclosures. J Nanofluids. 2016;5(4):595–605.

    Article  Google Scholar 

  36. Mejri I, Mahmoudi A, Abbassi MA, Omri A. Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technol. 2014;266:340–53.

    Article  CAS  Google Scholar 

  37. Selimefendigil F, Öztop H, Abu-Hamdeh N. Natural convection and entropy generation in nanofluid filled entrapped trapezoidal cavities under the influence of magnetic field. Entropy. 2016;18(2):43.

    Article  CAS  Google Scholar 

  38. Abbassi MA, Orfi J. Effects of magnetohydrodynamics on natural convection and entropy generation with nanofluids. J Thermophys Heat Transf. 2018;32(4):1059–71.

    Article  CAS  Google Scholar 

  39. Hussain S, Ahmed SE, Akbar T. Entropy generation analysis in MHD mixed convection of hybrid nanofluid in an open cavity with a horizontal channel containing an adiabatic obstacle. Int J Heat Mass Transf. 2017;114:1054–66.

    Article  CAS  Google Scholar 

  40. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    Article  CAS  Google Scholar 

  41. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132(2):1291–306.

    Article  CAS  Google Scholar 

  42. Mansour MA, Ahmed SE, Chamkha AJ. Entropy generation optimization for MHD natural convection of a nanofluid in porous media-filled enclosure with active parts and viscous dissipation. Int J Numer Methods Heat Fluid Flow. 2017;27(2):379–99.

    Article  Google Scholar 

  43. Chamkha AJ, Rashad AM, Mansour MA, Armaghani T, Ghalambaz M. Effects of heat sink and source and entropy generation on MHD mixed convection of a Cu-water nanofluid in a lid-driven square porous enclosure with partial slip. Phys Fluids. 2017;29(5):052001.

    Article  CAS  Google Scholar 

  44. Rashad AM, Armaghani T, Chamkha AJ, Mansour MA. Entropy generation and MHD natural convection of a nanofluid in an inclined square porous cavity: effects of a heat sink and source size and location. Chin J Phys. 2018;56(1):193–211.

    Article  CAS  Google Scholar 

  45. Mansour MA, Ahmed SE, Rashad AM. MHD natural convection in a square enclosure using nanofluid with the influence of thermal boundary conditions. J Appl Fluid Mech. 2016;9(5):2215–525.

    Google Scholar 

  46. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    Article  CAS  Google Scholar 

  47. Maxwell JC. A treatise on electricity and magnetism. Oxford: Clarendon Press; 1881.

    Google Scholar 

  48. Patankar SV. Numerical heat transfer and fluid flow. New York: McGraw-Hill; 1980.

    Google Scholar 

  49. House JM, Beckermann C, Smith TF. Effect of a centered conducting body on natural convection heat transfer in an enclosure. Numer Heat Transf. 1990;18(2):213–25.

    Article  Google Scholar 

  50. Costa V, Raimundo A. Steady mixed convection in a differentially heated square enclosure with an active rotating circular cylinder. Int J Heat Mass Transf. 2010;53:1208–19.

    Article  CAS  Google Scholar 

  51. Ilis GG, Mobedi M, Sunden B. Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int Commun Heat Mass Transf. 2008;35(6):696–703.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahar Tayebi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebi, T., Chamkha, A.J. Entropy generation analysis due to MHD natural convection flow in a cavity occupied with hybrid nanofluid and equipped with a conducting hollow cylinder. J Therm Anal Calorim 139, 2165–2179 (2020). https://doi.org/10.1007/s10973-019-08651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08651-5

Keywords

Navigation