Supercritical Carbon Dioxide as a Green Alternative to Achieve Drug Complexation with Cyclodextrins
<p>The toroidal shape and dimensions of natural cyclodextrins.</p> "> Figure 2
<p>The SSI technique: (<b>a</b>) Simplified scheme of the general batch process; (<b>b</b>) Details of the three different configuration modes for the impregnation vessel that are available in the literature.</p> "> Figure 3
<p>The GAS technique: (<b>a</b>) Simplified scheme of the process; (<b>b</b>) Schematic of the different process steps in the precipitation vessel.</p> "> Figure 4
<p>(<b>a</b>) Simplified scheme of the ASES/PCA process; (<b>b</b>) Simplified scheme of the SEDS process.</p> "> Figure 5
<p>The ARISE technique: (<b>a</b>) Simplified scheme of the process; (<b>b</b>) Schematic of the different process steps in the precipitation vessel.</p> "> Figure 6
<p>Simplified scheme of the SAA/SASD process.</p> ">
Abstract
:1. Introduction
2. Cyclodextrins Employed in SFC Studies
3. A Brief Overview of the Techniques Employed to Characterize the scCO2-Obtained Formulations
4. Complexation Through Supercritical Solvent Impregnation
4.1. ScCO2-Insoluble Cyclodextrins: Hypotheses about the Complexation Mechanism
4.2. ScCO2-Insoluble Cyclodextrins: Role of Temperature and Pressure on Complexation Efficiency
4.3. ScCO2-Insoluble Cyclodextrins: Role of the Auxiliary Agents and Cosolvents on Complexation Efficiency
4.4. ScCO2-Soluble Cyclodextrins: Hypotheses about the Complexation Mechanism
5. Complexation Through Particle-Formation Techniques
5.1. Particle-Formation by Using scCO2 as an Antisolvent
5.2. Particle-Formation by Using scCO2 as a Co-Solute
6. Complexation Results Obtained with Different Classes of Drugs
6.1. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs)
6.1.1. Flurbiprofen
6.1.2. Ibuprofen
6.1.3. Ketoprofen
6.1.4. Piroxicam
6.1.5. Other NSAIDs
6.2. Antifungal Drugs
6.2.1. Miconazole and Miconazole Nitrate
6.2.2. Itraconazole, Econazole and Fluconazole
6.3. Essential Oils and Other Natural Compounds
6.3.1. Essential Oils
6.3.2. Non-Volatile Natural Compounds
6.4. Other Drugs Processed with SFC Technologies
6.4.1. Albendazole
6.4.2. Benznidazole
6.4.3. Benzocaine, Bupivacaine, Mepivacaine
6.4.4. Budesonide
6.4.5. Carbamazepine
6.4.6. Captopril, Molsidomine, Omeprazole
6.4.7. Cetirizine Hydrochloride
6.4.8. Dutasteride
6.4.9. Eflucimibe
6.4.10. Ibersartan
6.4.11. Lopinavir
6.4.12. Olanzepine
6.4.13. Simvastatin
6.4.14. Tosufloxacin Tosylate
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ARISE | Atomized rapid injection solvent extraction |
ASES | Aerosol solvent extraction system |
DCM | Dichloromethane |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
DMβCD | Dimethyl-β-cyclodextrin |
DSC | Differential scanning calorimetry |
FAγCD | Perfluorobutanoyl-γ-cyclodextrin |
FTIR | Fourier transform infrared |
GAS | Gas antisolvent |
HPMC | Hydroxypropylmethyl cellulose |
HPV | Hydroxypropyl cellulose |
HPβCD | Hydroxypropyl-β-cyclodextrin |
HPγCD | Hydroxypropyl-γ-cyclodextrin |
MβCD | Methyl-β-cyclodextrin |
NMR | Nuclear magnetic resonance |
NSAID | Non-steroidal anti-inflammatory drug |
PAβCD | Peracetylated-β-cyclodextrin |
PCA | Precipitation with compressed antisolvent |
PEG | Polyethylene glycol |
PMMA | Ppoly methyl methacrylate |
PVP | Polyvinyl pyrrolidone |
PVP-VA | Polyvinyl pyrrolidone-vinyl acetate |
RESS | Rapid expansion of supercritical solutions |
SAA | Supercritical-assisted atomization |
SAS | Supercritical antisolvent |
SASD | Supercritical-assisted spray drying |
scCO2 | Supercritical carbon dioxide |
SEDS | Solution-enhanced dispersion by supercritical fluids |
SEM | Scanning electron microscopy |
SFC | Supercritical fluid complexation |
SSI | Supercritical solvent impregnation |
TAβCD | Triacetyl-β-cyclodextrin |
TMβCD | Trimethyl-β-cyclodextrin |
αCD | α-Cyclodextrin |
βCD | β-Cyclodextrin |
γCD | γ-Cyclodextrin |
References
- Adeoye, O.; Cabral-Marques, H. Cyclodextrin nanosystems in oral drug delivery: A mini review. Int. J. Pharm. 2017, 531, 521–531. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Costa Duarte, F.Í.; Heimfarth, L.; Siqueira Quintans, J.D.; Quintans-Júnior, L.J.; Veiga Júnior, V.F.; Neves de Lima, Á.A. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knez, Ž.; Markočič, E.; Leitgeb, M.; Primožič, M.; Knez Hrnčič, M.; Škerget, M. Industrial applications of supercritical fluids: A review. Energy 2014, 77, 235–243. [Google Scholar] [CrossRef]
- Manjare, S.D.; Dhingra, K. Supercritical fluids in separation and purification: A review. Mater. Sci. Energy Technol. 2019, 2, 463–484. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Deng, S. Applications of supercritical anti-solvent process in preparation of solid multicomponent systems. Pharmaceutics 2021, 13, 475. [Google Scholar] [CrossRef] [PubMed]
- Banchero, M. Recent advances in supercritical fluid dyeing. Color. Technol. 2020, 136, 317–335. [Google Scholar] [CrossRef]
- Kankala, R.K.; Zhang, Y.S.; Wang, S.-B.; Lee, C.-H.; Chen, A.-Z. Supercritical fluid technology: An emphasis on drug delivery and related biomedical applications. Adv. Healthc. Mater. 2017, 6, 1700433. [Google Scholar] [CrossRef] [Green Version]
- Padrela, L.; Rodrigues, M.A.; Duarte, A.; Dias, A.M.A.; Braga, M.E.M.; de Sousa, H.C. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals–a comprehensive review. Adv. Drug Deliver. Rev. 2018, 131, 22–78. [Google Scholar] [CrossRef] [PubMed]
- García-González, C.A.; Sosnik, A.; Kalmár, J.; De Marco, I.; Erkey, C.; Concheiro, A.; Alvarez-Lorenzo, C. Aerogels in drug delivery: From design to application. J. Controll. Release 2021, 332, 40–63. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Jung, I.-I.; Kim, J.-K.; Lim, G.-B.; Ryu, J.-H. Preparation of itraconazole/HP-β-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluid. 2008, 44, 400–408. [Google Scholar] [CrossRef]
- Kamihira, M.; Asai, T.; Yamagata, Y.; Taniguchi, M.; Kobayashi, T. Formation of inclusion complexes between cyclodextrins and aromatic compounds under pressurized carbon dioxide. J. Ferment. Bioeng. 1990, 69, 350–353. [Google Scholar] [CrossRef]
- Mammucari, R.; Foster, N.R. Dense gas technology and cyclodextrins: State of the art and potential. Curr. Org. Chem. 2008, 12, 476–491. [Google Scholar] [CrossRef]
- Shehatta, I.; Al-Marzouqi, A.H.; Jobe, B.; Dowaidar, A. Enhancement of aqueous solubility of itraconazole by complexation with cyclodextrins using supercritical carbon dioxide. Can. J. Chem. 2005, 83, 1833–1838. [Google Scholar] [CrossRef]
- Van Hees, T.; Evrard, B.; Piel, G.; Delattre, L. A Comparative study of the dissolution properties of piroxicam-β-cyclodextrin inclusion complexes prepared by different methods. In Proceedings of the 9th Symposium on Cyclodextrins, Santiago de Compostela, Spain, 31 May–3 June 1998; pp. 211–214. [Google Scholar] [CrossRef]
- Van Hees, T.; Piel, G.; Evrard, B.; Otte, X.; Thunus, L.; Delattre, L. Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm. Res. 1999, 16, 1864–1870. [Google Scholar] [CrossRef] [PubMed]
- Junco, S.; Casimiro, T.; Ribeiro, N.; Da Ponte, M.N.; Cabral Marques, H.M. Optimisation of supercritical carbon dioxide systems for complexation of naproxen: Beta-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 69–73. [Google Scholar] [CrossRef]
- Junco, S.; Casimiro, T.; Ribeiro, N.; Ponte, M.N.D.; Marques, H.C. A comparative study of naproxen–beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 117–121. [Google Scholar] [CrossRef]
- Van Hees, T.; Barillaro, V.; Piel, G.; Bertholet, P.; De Hassonville, S.; Evrard, B.; Delattre, L. Application of supercritical carbon dioxide for the preparation of drug-cyclodextrin inclusion compounds. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 271–274. [Google Scholar] [CrossRef]
- Locci, E.; Lai, S.; Piras, A.; Marongiu, B.; Lai, A. 13 C-CPMAS and 1 H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers. 2004, 1, 1354–1366. [Google Scholar] [CrossRef]
- Moneghini, M.; Kikic, I.; Perissutti, B.; Franceschinis, E.; Cortesi, A. Characterisation of nimesulide–betacyclodextrins systems prepared by supercritical fluid impregnation. Eur. J. Pharm. Biopharm. 2004, 58, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Barillaro, V.; Bertholet, P.; de Hassonville, S.H. Effect of acidic ternary compounds on the formation of miconazole/cyclodextrin inclusion complexes by means of supercritical carbon dioxide. J. Pharm. Pharm. Sci. 2004, 7, 378–388. [Google Scholar] [PubMed]
- Barillaro, V.; Dive, G.; Bertholet, P.; Evrard, B.; Delattre, L.; Eric, Z.; Piel, G. Theoretical and experimental investigations on miconazole/cyclodextrin/acid complexes: Molecular modeling studies. Int. J. Pharm. 2007, 342, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Al-Marzouqi, A.H.; Shehatta, I.; Jobe, B.; Dowaidar, A. Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci. 2006, 95, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.A.; Al-Marzouqi, A.H.; Jobe, B.; Hamza, A.A.; Ramadan, G.A. Enhancement of dissolution amount and in vivo bioavailability of itraconazole by complexation with β-cyclodextrin using supercritical carbon dioxide. J. Pharmaceut. Biomed. 2007, 45, 243–250. [Google Scholar] [CrossRef]
- Tozuka, Y.; Fujito, T.; Moribe, K.; Yamamoto, K. Ibuprofen-cyclodextrin inclusion complex formation using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 2006, 56, 33–37. [Google Scholar] [CrossRef]
- Hussein, K.; Türk, M.; Wahl, M.A. Comparative evaluation of ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods. Pharm. Res. 2007, 24, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Türk, M.; Upper, G.; Steurenthaler, M.; Hussein, K.; Wahl, M.A. Complex formation of ibuprofen and β-cyclodextrin by controlled particle deposition (CPD) using SC-CO2. J. Supercrit. Fluid. 2007, 39, 435–443. [Google Scholar] [CrossRef]
- Hussein, K.; Türk, M.; Wahl, M.A. Drug loading into β-cyclodextrin granules using a supercritical fluid process for improved drug dissolution. Eur. J. Pharm. Sci. 2008, 33, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Al-Marzouqi, A.H.; Jobe, B.; Dowaidar, A.; Maestrelli, F.; Mura, P. Evaluation of supercritical fluid technology as preparative technique of benzocaine–cyclodextrin complexes—Comparison with conventional methods. J. Pharmaceut. Biomed. 2007, 43, 566–574. [Google Scholar] [CrossRef]
- Al-Marzouqi, A.; Jobe, B.; Corti, G.; Cirri, M.; Mura, P. Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 223–231. [Google Scholar] [CrossRef]
- Bounaceur, A.; Rodier, E.; Fages, J. Maturation of a ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluid. 2007, 41, 429–439. [Google Scholar] [CrossRef]
- Al-Marzouqi, A.H.; Solieman, A.; Shehadi, I.; Adem, A. Influence of the preparation method on the physicochemical properties of econazole-β-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem. 2008, 60, 85–93. [Google Scholar] [CrossRef]
- Sauceau, M.; Rodier, E.; Fages, J. Preparation of inclusion complex of piroxicam with cyclodextrin by using supercritical carbon dioxide. J. Supercrit. Fluid. 2008, 47, 326–332. [Google Scholar] [CrossRef] [Green Version]
- Barillaro, V.; Dive, G.; Bertholet, P.; Evrard, B.; Delattre, L.; Frederich, M.; Ziémons, E.; Piel, G. Theoretical and experimental investigations of organic acids/cyclodextrin complexes and their consequences upon the formation of miconazole/cyclodextrin/acid ternary inclusion complexes. Int. J. Pharm. 2008, 347, 62–70. [Google Scholar] [CrossRef]
- Al-Marzouqi, A.H.; Elwy, H.M.; Shehadi, I.; Adem, A. Physicochemical properties of antifungal drug–cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Pharmaceut. Biomed. 2009, 49, 227–233. [Google Scholar] [CrossRef]
- Grandelli, H.E.; Hassler, J.C.; Whittington, A.; Kiran, E. Melting point depression of piroxicam in carbon dioxide+co-solvent mixtures and inclusion complex formation with β-cyclodextrin. J. Supercrit. Fluid. 2012, 71, 19–25. [Google Scholar] [CrossRef]
- Banchero, M.; Manna, L. The use of lysine to enhance the SFC of ketoprofen and cyclodextrins. J. Supercrit. Fluid. 2012, 67, 76–83. [Google Scholar] [CrossRef]
- Sumarno; Rahim, R.; Trisanti, P.N. Ketoprofen-β−cyclodextrin inclusion complexes formation by supercritical process. AIP Conf. Proc. 2017, 1840, 080010. [Google Scholar] [CrossRef]
- Valarini Junior, O.; Dantas, J.H.; Barão, C.E.; Zanoelo, E.F.; Cardozo-Filho, L.; de Moraes, F.F. Formation of inclusion compounds of (+)catechin with β-cyclodextrin in different complexation media: Spectral, thermal and antioxidant properties. J. Supercrit. Fluid. 2017, 121, 10–18. [Google Scholar] [CrossRef]
- Abbaszadegan, S.; Al-Marzouqi, A.H.; Salem, A.A.; Amin, A. Physicochemical characterizations of safranal-β-cyclodextrin inclusion complexes prepared by supercritical carbon dioxide and conventional methods. J. Incl. Phenom. Macrocycl. Chem. 2015, 83, 215–226. [Google Scholar] [CrossRef]
- Goenawan, J.; Trisanti, P.N. Sumarno the influence of dissolved H2 O content in supercritical carbon dioxide to the inclusion complexes formation of ketoprofen/β-cyclodextrin. AIP Conf. Proc. 2015, 1699, 040012. [Google Scholar] [CrossRef]
- Trisanti, P.N. Sumarno the effect of water addition in inclusion formation of ketoprofen/β-cyclodextrin using supercritical CO2. AIP Conf. Proc. 2019, 2086, 020052. [Google Scholar] [CrossRef]
- Lei, H.P.; Zhang, H.; Ge, F.H.; Ye, Z.W.; Li, C.H. Preparation of a menthol/β-cyclodextrin inclusion complex using supercritical CO2. Indian J. Pharm. Sci. 2018, 80, 766–771. [Google Scholar] [CrossRef]
- Al-Shar’i, N.A.; Obaidat, R.M. Experimental and computational comparative study of the supercritical fluid technology (SFT) and kneading method in preparing β-cyclodextrin complexes with two essential oils (Linalool and Carvacrol). AAPS PharmSciTech 2018, 19, 1037–1047. [Google Scholar] [CrossRef]
- Lee, C.-W.; Kim, S.-J.; Youn, Y.-S.; Widjojokusumo, E.; Lee, Y.-H.; Kim, J.; Lee, Y.-W.; Tjandrawinata, R.R. Preparation of bitter taste masked cetirizine dihydrochloride/β-cyclodextrin inclusion complex by supercritical antisolvent (SAS) process. J. Supercrit. Fluid. 2010, 55, 348–357. [Google Scholar] [CrossRef]
- Nerome, H.; Machmudah, S.; Fukuzato, R.; Higashiura, T.; Youn, Y.-S.; Lee, Y.-W.; Goto, M. Nanoparticle formation of lycopene/β-cyclodextrin inclusion complex using supercritical antisolvent precipitation. J. Supercrit. Fluid. 2013, 83, 97–103. [Google Scholar] [CrossRef]
- Lei, H.P.; Zhang, K.R.; Wang, J.; Zhang, H.; Shi, Q.L.; Ge, F.H.; Han, Q.B. Nanoparticle formation of puerarin-beta-cyclodextrin inclusion complex using SEDS: Dissolution enhancement. Indian J. Pharm. Sci. 2019, 81, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Zhang, K.; Zhou, X.; Zhou, D.; Ge, F. Precise dissolution control and bioavailability evaluation for insoluble drug berberine via a polymeric particle prepared using supercritical CO2. Polymers 2018, 10, 1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franco, P.; De Marco, I. Preparation of non-steroidal anti-inflammatory drug/β-cyclodextrin inclusion complexes by supercritical antisolvent process. J. CO2 Util. 2021, 44, 101397. [Google Scholar] [CrossRef]
- Rosas, M.D.; Piqueras, C.M.; Piva, G.K.; Ramírez-Rigo, M.V.; Filho, L.C.; Bucalá, V. Simultaneous formation of inclusion complex and microparticles containing albendazole and β-cyclodextrin by supercritical antisolvent co-precipitation. J. CO2 Util. 2021, 47, 101505. [Google Scholar] [CrossRef]
- Rodier, E.; Lochard, H.; Sauceau, M.; Letourneau, J.-J.; Freiss, B.; Fages, J. A three step supercritical process to improve the dissolution rate of eflucimibe. Eur. J. Pharm. Sci. 2005, 26, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Ndayishimiye, J.; Popat, A.; Kumeria, T.; Blaskovich, M.A.T.; Robert Falconer, J. Supercritical carbon dioxide assisted complexation of benznidazole: γ-cyclodextrin for improved dissolution. Int. J. Pharm. 2021, 596, 120240. [Google Scholar] [CrossRef]
- Toropainen, T.; Velaga, S.; Heikkilä, T.; Matilainen, L.; Jarho, P.; Carlfors, J.; Lehto, V.; Järvinen, T.; Järvinen, K. Preparation of budesonide/γ-cyclodextrin complexes in supercritical fluids with a novel SEDS method. J. Pharm. Sci. 2006, 95, 2235–2245. [Google Scholar] [CrossRef] [PubMed]
- Toropainen, T.; Heikkilä, T.; Leppänen, J.; Matilainen, L.; Velaga, S.; Jarho, P.; Carlfors, J.; Lehto, V.-P.; Järvinen, T.; Järvinen, K. Crystal structure changes of γ-cyclodextrin after the SEDS process in supercritical carbon dioxide affect the dissolution rate of complexed budesonide. Pharm. Res. 2007, 24, 1058–1066. [Google Scholar] [CrossRef]
- Shikhar, A.; Bommana, M.M.; Gupta, S.S.; Squillante, E. Formulation development of carbamazepine–nicotinamide co-crystals complexed with γ-cyclodextrin using supercritical fluid process. J. Supercrit. Fluid. 2011, 55, 1070–1078. [Google Scholar] [CrossRef]
- Adeoye, O.; Conceição, J.; Serra, P.A.; Bento da Silva, A.; Duarte, N.; Guedes, R.C.; Corvo, M.C.; Aguiar-Ricardo, A.; Jicsinszky, L.; Casimiro, T.; et al. Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; effects of derivatization, molar ratio and preparation method. Carbohyd. Polym. 2020, 227, 115287. [Google Scholar] [CrossRef] [PubMed]
- Bandi, N.; Wei, W.; Roberts, C.B.; Kotra, L.P.; Kompella, U.B. Preparation of budesonide– and indomethacin–hydroxypropyl-β-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur. J. Pharm. Sci. 2004, 23, 159–168. [Google Scholar] [CrossRef] [PubMed]
- He, J. Complex of Shikonin and β-cyclodextrins by using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 249–255. [Google Scholar] [CrossRef]
- Temtem, M.; Pompeu, D.; Jaraquemada, G.; Cabrita, E.J.; Casimiro, T.; Aguiar-Ricardo, A. Development of PMMA membranes functionalized with hydroxypropyl-β-cyclodextrins for controlled drug delivery using a supercritical CO2-assisted technology. Int. J. Pharm. 2009, 376, 110–115. [Google Scholar] [CrossRef]
- He, J.; Li, W. Preparation of borneol–methyl-β-cyclodextrin inclusion complex by supercritical carbon dioxide processing. J. Incl. Phenom. Macrocycl. Chem. 2009, 65, 249–256. [Google Scholar] [CrossRef]
- He, J. Complex between modified β-cyclodextrins and three components of traditional Chinese medicine in supercritical carbon dioxide medium. J. Incl. Phenom. Macrocycl. Chem. 2010, 68, 399–410. [Google Scholar] [CrossRef]
- Banchero, M.; Manna, L. Investigation of the piroxicam/hydroxypropyl-β-cyclodextrin inclusion complexation by means of a supercritical solvent in the presence of auxiliary agents. J. Supercrit. Fluid. 2011, 57, 259–266. [Google Scholar] [CrossRef]
- Pan, H.; Wang, H.-B.; Yu, Y.-B.; Cheng, B.-C.; Wang, X.-Y.; Li, Y. A superior preparation method for daidzein-hydroxypropyl-β-cyclodextrin complexes with improved solubility and dissolution: Supercritical fluid process. Acta Pharm. 2017, 67, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-B.; Yang, F.-F.; Gai, X.-M.; Cheng, B.-C.; Li, J.-Y.; Pan, H.; Yang, X.-G.; Pan, W.-S. A PH-independent instantaneous release of flurbiprofen: A study of the preparation of complexes, their characterization and in vitro/in vivo evaluation. Drug Dev. Ind. Pharm. 2017, 43, 1460–1471. [Google Scholar] [CrossRef]
- Li, Y.; He, Z.-D.; Zheng, Q.-E.; Hu, C.; Lai, W.-F. Hydroxypropyl-β-cyclodextrin for delivery of baicalin via inclusion complexation by supercritical fluid encapsulation. Molecules 2018, 23, 1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, F.Q.; Pinho, L.A.; Freire, D.O.; Silva, I.C.R.; Sa-Barreto, L.L.; Cardozo-Filho, L.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. Thermal analysis used to guide the production of thymol and lippia origanoides essential oil inclusion complexes with cyclodextrin. J. Therm. Anal. Calorim. 2019, 137, 543–553. [Google Scholar] [CrossRef]
- Mammucari, R.; Dehghani, F.; Foster, N.R. Dense gas processing of micron-sized drug formulations incorporating hydroxypropylated and methylated beta-cyclodextrin. Pharm. Res. 2006, 23, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Jun, S.W.; Kim, M.-S.; Kim, J.-S.; Park, H.J.; Lee, S.; Woo, J.-S.; Hwang, S.-J. Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm. 2007, 66, 413–421. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, F.; Guo, Z.; Zhao, Y.L. Peparation and characterization of resveratrol/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent technology. J. Food Process Eng. 2012, 35, 677–686. [Google Scholar] [CrossRef]
- Kim, M.S. Influence of hydrophilic additives on the supersaturation and bioavailability of dutasteride-loaded hydroxypropyl-β-cyclodextrin nanostructures. Int. J. Nanomed. 2013, 8, 2029–2039. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zu, Y.; Zhao, X.; Wu, M.; Feng, Z.; Deng, Y.; Zu, C.; Wang, L. Preparation of inclusion complex of apigenin-hydroxypropyl-β-cyclodextrin by using supercritical antisolvent process for dissolution and bioavailability enhancement. Int. J. Pharm. 2016, 511, 921–930. [Google Scholar] [CrossRef]
- Kurniawansyah, F.; Duong, H.T.T.; Luu, T.D.; Mammucari, R.; Vittorio, O.; Boyer, C.; Foster, N. Inhalable curcumin formulations: Micronization and bioassay. Chem. Eng. J. 2015, 279, 799–808. [Google Scholar] [CrossRef]
- Kurniawansyah, F.; Mammucari, R.; Foster, N.R. Inhalable curcumin formulations by supercritical technology. Powder Technol. 2015, 284, 289–298. [Google Scholar] [CrossRef]
- Bommana, M.M.; Kirthivasan, B.; Shikhar, A.; Gupta, S.S.; Squillante, E. In vivo brain microdialysis as a formulation-screening tool for a poorly soluble centrally acting drug. Drug Dev. Ind. Pharm. 2014, 40, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Zhang, Y.; Ji, M.; Wang, Z.; Yan, T. Preparation of irbesartan composite microparticles by supercritical aerosol solvent extraction system for dissolution enhancement. J. Supercrit. Fluid. 2019, 153, 104594. [Google Scholar] [CrossRef]
- Di Capua, A.; Bejarano, A.; Adami, R.; Reverchon, E. Preparation and characterization of chilean propolis coprecipitates using supercritical assisted atomization. Chem. Eng. Res. Des. 2018, 136, 776–785. [Google Scholar] [CrossRef]
- Sun, J.; Hong, H.; Zhu, N.; Han, L.; Suo, Q. Response surface methodology to optimize the preparation of tosufloxacin tosylate/hydroxypropyl-β-cyclodextrin inclusion complex by supercritical antisolvent process. J. Mol. Struct. 2019, 1198, 126939. [Google Scholar] [CrossRef]
- Sun, J.; Hong, H.; Zhu, N.; Han, L.; Suo, Q. Spectroscopic analysis and dissolution properties study of tosufloxacin tosylate/hydroxypropyl-β-cyclodextrin inclusion complex prepared by solution-enhanced dispersion with supercritical CO2. J. Pharm. Innov. 2020, 15, 603–616. [Google Scholar] [CrossRef]
- Yan, T.; Ji, M.; Sun, Y.; Yan, T.; Zhao, J.; Zhang, H.; Wang, Z. Preparation and characterization of baicalein/hydroxypropyl-β-cyclodextrin inclusion complex for enhancement of solubility, antioxidant activity and antibacterial activity using supercritical antisolvent technology. J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 285–295. [Google Scholar] [CrossRef]
- Barillaro, V.; Evrard, B.; Delattre, L.; Piel, G. Oral bioavailability in pigs of a miconazole/hydroxypropyl-γ-cyclodextrin/l-tataric acid inclusion complex produced by supercritical carbon dioxide processing. AAPS J. 2005, 7, E149–E155. [Google Scholar] [CrossRef] [Green Version]
- Barillaro, V.; Dive, G.; Ziémons, E.; Bertholet, P.; Evrard, B.; Delattre, L.; Piel, G. Theoretical and experimental vibrational study of miconazole and its dimers with organic acids: Application to the IR characterization of its inclusion complexes with cyclodextrins. Int. J. Pharm. 2008, 350, 155–165. [Google Scholar] [CrossRef]
- Adeoye, O.; Costa, C.; Casimiro, T.; Aguiar-Ricardo, A.; Cabral-Marques, H. Preparation of ibuprofen/hydroxypropyl-γ-cyclodextrin inclusion complexes using supercritical CO2-assisted spray drying. J. Supercrit. Fluid. 2018, 133, 479–485. [Google Scholar] [CrossRef]
- Charoenchaitrakool, M.; Dehghani, F.; Foster, N.R. Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-β-cyclodextrin. Int. J. Pharm. 2002, 239, 103–112. [Google Scholar] [CrossRef]
- He, J.; Li, W. Complex formation of cinnamaldehyde-methyl-β-cyclodextrin and muscone-methyl-β-cyclodextrin by supercritical carbon dioxide processing and sealed heating method. J. Incl. Phenom. Macrocycl. Chem. 2009, 63, 61–68. [Google Scholar] [CrossRef]
- Banchero, M.; Ronchetti, S.; Manna, L. characterization of ketoprofen/methyl- β -cyclodextrin complexes prepared using supercritical carbon dioxide. J. Chem. 2013, 2013, 583952. [Google Scholar] [CrossRef] [Green Version]
- Rudrangi, S.R.S.; Kaialy, W.; Ghori, M.U.; Trivedi, V.; Snowden, M.J.; Alexander, B.D. Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process. Eur. J. Pharm. Biopharm. 2016, 104, 164–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudrangi, S.R.S.; Trivedi, V.; Mitchell, J.C.; Wicks, S.R.; Alexander, B.D. Preparation of olanzapine and methyl-β-cyclodextrin complexes using a single-step, organic solvent-free supercritical fluid process: An approach to enhance the solubility and dissolution properties. Int. J. Pharm. 2015, 494, 408–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudrangi, S.R.S.; Bhomia, R.; Trivedi, V.; Vine, G.J.; Mitchell, J.C.; Alexander, B.D.; Wicks, S.R. Influence of the preparation method on the physicochemical properties of indomethacin and methyl-β-cyclodextrin complexes. Int. J. Pharm. 2015, 479, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Moribe, K.; Fujito, T.; Tozuka, Y.; Yamamoto, K. Solubility-dependent complexation of active pharmaceutical ingredients with trimethyl-β-cyclodextrin under supercritical fluid condition. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 289–295. [Google Scholar] [CrossRef]
- Ganapathy, H.S.; Lee, M.Y.; Park, C.; Lim, K.T. Sustained release applications of a fluoroalkyl ester-functionalized amphiphilic cyclodextrin by inclusion complex formation with water-soluble drugs in supercritical carbon dioxide. J. Fluor. Chem. 2008, 129, 1162–1166. [Google Scholar] [CrossRef]
- Lee, M.Y.; Ganapathy, H.S.; Lim, K.T. Controlled drug release applications of the inclusion complex of peracetylated-β-cyclodextrin and water-soluble drugs formed in supercritical carbon dioxide. J. Phys. Chem. Solids 2010, 71, 630–633. [Google Scholar] [CrossRef]
- Ganapathy, H.S.; Woo, M.H.; Gal, Y.S.; Lim, K.T. Inclusion complex formation of water- soluble drug, captopril, and peracetylated-β-cyclodextrin in supercritical co2 for controlled release applications. Key Eng. Mat. 2007, 342–343, 489–492. [Google Scholar] [CrossRef]
- Sultana, T.; Jung, J.M.; Hong, S.-S.; Lee, W.-K.; Gal, Y.-S.; Kim, H.G.; Lim, K.T. Characteristic profiles of the inclusion complex of omeprazole/peracylated-β-cyclodextrin formed in supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 207–212. [Google Scholar] [CrossRef]
- Ingrosso, F.; Altarsha, M.; Dumarçay, F.; Kevern, G.; Barth, D.; Marsura, A.; Ruiz-López, M.F. Driving forces controlling host-guest recognition in supercritical carbon dioxide solvent. Chem. Eur. J. 2016, 22, 2972–2979. [Google Scholar] [CrossRef] [PubMed]
- Maia-Obi, L.P.; Vidinha, P.; Ferraz, H.G.; Bazito, R.C. Non-inclusion complexation of peracetylated β-cyclodextrin with ibuprofen in supercritical carbon dioxide. J. Supercrit. Fluids 2021, 169, 105098. [Google Scholar] [CrossRef]
- Ivanova, G.I.; Vão, E.R.; Temtem, M.; Aguiar-Ricardo, A.; Casimiro, T.; Cabrita, E.J. High-Pressure NMR characterization of triacetyl-β-cyclodextrin in supercritical carbon dioxide: HP-NMR of triacetyl-β-cyclodextrin in ScCO2. Magn. Reson. Chem. 2009, 47, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.V.M.; Almeida, A.P.C.; Marques, S.R.; de Sousa, A.R.S.; Casimiro, T.; Duarte, C.M.M. Processing triacetyl-β-cyclodextrin in the liquid phase using supercritical CO2. J. Supercrit. Fluid. 2010, 54, 357–361. [Google Scholar] [CrossRef]
- Brewster, M.E.; Loftsson, T. Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 2007, 59, 645–666. [Google Scholar] [CrossRef]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: A review. J. Pharmaceut. Biomed. 2014, 101, 238–250. [Google Scholar] [CrossRef]
- Mura, P. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review. J. Pharmaceut. Biomed. 2015, 113, 226–238. [Google Scholar] [CrossRef]
- Altarsha, M.; Ingrosso, F.; Ruiz-López, M.F. Cavity closure dynamics of peracetylated β-cyclodextrins in supercritical carbon dioxide. J. Phys. Chem. B 2012, 116, 3982–3990. [Google Scholar] [CrossRef] [PubMed]
- Türk, M.; Kraska, T. Experimental and theoretical investigation of the phase behavior of naproxen in supercritical CO2. J. Chem. Eng. Data 2009, 54, 1592–1597. [Google Scholar] [CrossRef]
- Manna, L.; Banchero, M. Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide. J. Chem. Eng. Data 2018, 63, 1745–1751. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Nanoparticles and nanocrystals by supercritical CO2-assisted techniques for pharmaceutical applications: A review. Appl. Sci. 2021, 11, 1476. [Google Scholar] [CrossRef]
- Prosapio, V.; De Marco, I.; Reverchon, E. Supercritical antisolvent coprecipitation mechanisms. J. Supercrit. Fluids 2018, 138, 247–258. [Google Scholar] [CrossRef]
- Reverchon, E.; Antonacci, A. Cyclodextrins micrometric powders obtained by supercritical fluid processing. Biotechnol. Bioeng. 2006, 94, 753–761. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. Supercritical antisolvent process for pharmaceutical applications: A review. Processes 2020, 8, 938. [Google Scholar] [CrossRef]
- He, Y.; Hou, X.; Guo, J.; He, Z.; Guo, T.; Liu, Y.; Zhang, Y.; Zhang, J.; Feng, N. Activation of a gamma–cyclodextrin–based metal–organic framework using supercritical carbon dioxide for high–efficient delivery of honokiol. Carbohyd. Polym. 2020, 235, 115935. [Google Scholar] [CrossRef]
Cyclodextrin | Acronym | Ref. | |
---|---|---|---|
ScCO2-insoluble | α-cyclodextrin | αCD | [14] |
β-cyclodextrin | βCD | [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51] | |
γ-cyclodextrin | γCD | [14,19,22,23,52,53,54,55,56,57] | |
hydroxypropyl-β-cyclodextrin | HPβCD | [11,14,19,22,23,38,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80] | |
hydroxypropyl-γ-cyclodextrin | HPγCD | [19,22,23,57,81,82,83] | |
methyl-β-cyclodextrin | βCD | [59,61,62,68,84,85,86,87,88,89] | |
ScCO2-soluble | dimethyl-β-cyclodextrin | DMβCD | [26] |
trimethyl-β-cyclodextrin | TMβCD | [26,90] | |
perfluorobutanoyl-γ-cyclodextrin | FAγCD | [91] | |
peracetylated-β-cyclodextrin | PAβCD | [92,93,94,95,96] | |
triacetyl-β-cyclodextrin | TAβCD | [97,98] |
Drug | Cyclodextrin | Technique | Temperature and Pressure | Solvent or Cosolvent | Auxiliary Agents | Ref. |
---|---|---|---|---|---|---|
Flufenamic acid | TAβCD | SSI | 35–40 °C 20–25 MPa | [97,98] | ||
Flurbiprofen | TMβCD | SSI | 35 °C 12 MPa | [90] | ||
MβCD | SSI | 35–45 °C 10–20 MPa | [87] | |||
HPβCD | SSI | 60 °C 26 MPa | [65] | |||
Ibuprofen | βCD, DMβCD, TMβCD | SSI | 35 °C 12 MPa | [26,90] | ||
βCD | SSI | 40 °C 25–30 MPa | [27,28] | |||
MβCD | SSI | 35 °C 13–22 MPa | [84] | |||
HPγCD | SAA/SASD | 65 °C 12.8 MPa | ethanol, water | [83] | ||
PAβCD | SSI | 35 °C 25 MPa | [96] | |||
βCD granules | SSI | 40 °C 25 MPa | [29] | |||
PMMA functionalized with HPβCD | SSI | 40 °C 20 MPa | [60] | |||
Indomethacin | HPβCD | SSI | 40 °C 21 MPa | [58] | ||
MβCD | SSI | 35–45 °C 10–20 MPa | [89] | |||
Ketoprofen | βCD | SSI | 65–75 °C 15–20 MPa | water | [32] | |
βCD | SSI | 50 °C 8 MPa | water | [43] | ||
βCD | SSI | 30–50 °C 8–12 MPa | water | [39,42] | ||
βCD | SAS-ASES | 40 °C 9–12 MPa | DMSO | [50] | ||
βCD, HPβCD | SSI | 40–85° 15–30 MPa | water, L-lysine | [38] | ||
βCD | SSI | 40 °C 20 MPa | [86] | |||
Naproxen | βCD | SSI | 62 °C 16 MPa | ethanol | [17,18] | |
TMβCD | SSI | 35 °C 12 MPa | [90] | |||
MβCD, HPβCD | SAS-ASES | 25 °C 6.5–16 MPa | acetone, ethanol, DMSO | [68] | ||
Nimesulide | βCD | SSI | 40–130 °C 14–22 MPa | [21] | ||
βCD | SAS-ASES | 40 °C 9–15 MPa | DMSO | [50] | ||
Piroxicam | βCD | SSI | 50–150 °C 15–50 MPa | L-lysine, trometamol | [15,16,19] | |
βCD | SSI | 110–150 °C 15 MPa | water, L-lysine | [34] | ||
βCD | SSI | 160 °C 29 MPa | ethanol | [37] | ||
HPβCD | SSI | 100–150 °C 30 MPa | water, L-lysine, PVP | [63] |
Drug | Cyclodextrin | Technique | Temperature and Pressure | Solvent or Cosolvent | Auxiliary Agents | Ref. |
---|---|---|---|---|---|---|
Econazole | βCD | SSI | 75–130 °C 10–45 MPa | [33,36] | ||
Fluconazole | βCD | SSI | 100–130 °C 10–45 MPa | [36] | ||
Itraconazole | αCD, βCD, γCD, HPβCD | SSI | 50–130 °C 25–35 MPa | [14,24,25,36] | ||
HPβCD | SAS-ASES | 35–55 °C 8.3–14 MPa | DCM, ethanol | [11] | ||
Miconazole | βCD, HPβCD, γCD, HPγCD | SSI | 125 °C 30 MPa | citric, malic, tartaric, maleic, fumaric acid | [19,22,23,35,81,82] | |
Miconazole nitrate | βCD, HPβCD, γCD, HPγCD | SSI | 125 °C 30 MPa | citric, malic, tartaric, maleic, fumaric acid | [19,22] |
Drug | Cyclodextrin | Technique | Temperature and Pressure | Solvent or Cosolvent | Auxiliary Agents | Ref. |
---|---|---|---|---|---|---|
Anisole | MβCD, HPβCD | SSI | 50–80 °C 5–7 MPa | [62] | ||
Apigenin | HPβCD | SAS-ASES | 35–65 °C 10–25 MPa | DMF | [72] | |
Asarone | MβCD, HPβCD | SSI | 55–75 °C 5–10 MPa | [62] | ||
Baicalein | HPβCD | SAS-PCA/ASES | 35–50 °C 8–14 MPa | acetone, ethanol | [80] | |
Baicalin | HPβCD | SSI | 45–65 °C 10–30 MPa | L-lysine | [66] | |
Berberine | βCD | SAS-SEDS | 40 °C 9–15 MPa | DMSO, DCM | [49] | |
Borneol | MβCD | SSI | 90–140 °C 7–20 MPa | [61] | ||
Carvacrol | βCD | SSI | 50 °C 8 MPa | [20] | ||
βCD | SSI | 40 °C 10 MPa | [45] | |||
Catechin | βCD | SSI | 40 °C 9 MPa | [40] | ||
Cinnamaldehyde | MβCD | SSI | 50–100 °C 7–10 MPa | [85] | ||
Curcumin | MβCD, HPβCD | SSI | 100–140 °C 7–112 MPa | [62] | ||
HPβCD | SAS-ARISE | 25–45 °C 9.5 MPa | acetone, ethanol, methanol | PVP | [73,74] | |
Daidzein | HPβCD | SSI | 200 °C 20 MPa | [64] | ||
Eugenol | βCD | SSI | 50 °C 8 MPa | [20] | ||
Linalool | βCD | SSI | 40 °C 10 MPa | [45] | ||
Lycopene | βCD | SAS-SEDS | 40–50 °C 10–14 MPa | DMF, DMSO, DCM | [47] | |
Menthol | βCD | SSI | 40–70 °C 10–30 MPa | ethanol, water | [44] | |
Muscone | MβCD | SSI | 50–100 °C 7–10 MPa | [85] | ||
Propolis | HPβCD | SAA | 90 °C 9 MPa | ethanol, water | [77] | |
Puerarin | βCD | SAS-SEDS | 35–55 °C 10–20 MPa | DMSO | [48] | |
Resveratrol | HPβCD | SAS-SEDS | 40 °C 12 MPa | ethanol | [70] | |
Safranal | βCD | SSI | 35–55 °C 10–30 MPa | [41] | ||
Shikonin | MβCD, HPβCD | SSI | 80–100 °C 7–15 MPa | [59] | ||
Thymol | βCD | SSI | 50 °C 8 MPa | [20] | ||
HPβCD | SSI | 50 °C 24 MPa | [67] |
Drug | Drug Type | Cyclodextrin | Technique | Temperature and Pressure | Solvent or Cosolvent | Auxiliary Agents | Ref. |
---|---|---|---|---|---|---|---|
Albendazole | anthelmintic | βCD | SAS-SEDS | 40 °C 9–15 MPa | acetone, DMSO | [51] | |
Benznidazole | antiparasitic | γCD | SSI | 37–47 °C 25 MPa | [53] | ||
Benzocaine | anesthetic | βCD | SSI | 50–100 °C 10–45 MPa | [30,31] | ||
Budesonide | corticosteroid | HPβCD | SSI | 40 °C 21 MPa | [58] | ||
γCD | SAS-SEDS | 40–80 °C 10–20 MPa | ethanol, water | [54,55] | |||
Bupivacaine | anesthetic | βCD | SSI | 50–100 °C 10–45 MPa | [31] | ||
Captopril | ACE inhibitor | PAβCD | SSI | 45 °C 34.5 MPa | [93] | ||
TAβCD | SSI | 40 °C 20 MPa | [97] | ||||
Carbamazepine | antiepileptic | γCD | SAS-GAS | 40 °C 13.5–11 MPa | ethanol | nicotinamide | [56,75] |
Cetirizine hydrochloride | antihistaminic | βCD | SAS-ASES | 35 °C 15 MPa | DMSO | [46] | |
Dutasteride | 5α-reductase-inhibitor | HPβCD | SAS-ASES | 40 °C 15 MPa | ethanol, DCM | HPC, HPMC, PVP, PVP-VA, PEG, poloxamer, ryotoester | [71] |
Eflucimibe | Hypocholesterolemic, antiatherosclerotic | γCD | SSI | 40–100 °C 10–30 MPa | water | [52] | |
Irbesartan | angiotensin receptor blocker | HPβCD | SAS-ASES | 35–50 °C 8–16 MPa | ethanol, DMSO | [76] | |
Lopinavir | antiretroviral | γCD, HPγCD | SASD | 65*C 10 MPa | ethanol, water | [57] | |
Mepivacaine | anesthetic | βCD | SSI | 75–100 °C 10–45 MPa | [31] | ||
Molsidomine | vasodilating | FAγCD, PAβCD | SSI | 45 °C 34.5 MPa | [91,92] | ||
Olanzapine | neuroleptic | MβCD | SSI | 45–55 °C 12–20 MPa | [88] | ||
Omeprazole | proton pump inhibitor | PAβCD | SSI | 45 °C 34.5 MPa | [94] | ||
Simvastatin | lipid-lowering | HPβCD | SAS-SEDS | 40 °C 12 MPa | ethanol, DCM | [69] | |
Tosufloxacin tosylate | antibiotic | HPβCD | SAS-GAS, | 35–55 °C 8–16 MPa | DMF, DCM | [78] | |
SAS-SEDS | 35–50 °C 8–16 MPa | DMF | [79] |
Complexation Technique | Advantages | Disadvantages | |
---|---|---|---|
ScCO2-mediated techniques | SSI: drug and cyclodextrin are placed into a vessel and contacted with scCO2 at constant temperature and pressure for a fixed period. | absence of residual solvent; | no control of particle size; |
no additional dying step; | may need auxiliary agents; | ||
suitable for thermally labile drugs; | long process time; | ||
simple to design. | low productivity (batch). | ||
SAS-GAS: a batch process where drug and cyclodextrin are first dissolved in a liquid solvent and then contacted with scCO2 that acts as an antisolvent causing the precipitation of the complexes. | reduced residual solvent; | complex to design; | |
no additional dying step; | low productivity (batch). | ||
suitable for thermally labile drugs; | |||
control of particle size; | |||
no need of nozzles. | |||
SAS-ASES/PCA: a semicontinuous process where a solution containing drug and cyclodextrin is injected into a precipitation vessel through an atomization nozzle. The vessel is also fed with scCO2 that acts as an antisolvent. | reduced residual solvent; | complex to design; | |
no additional dying step; | possible nozzle blockage. | ||
suitable for thermally labile drugs; | |||
good control of particle size. | |||
SAS-SEDS: differs from ASES/PCA for the atomization device, a coaxial nozzle that provides simultaneous introduction of the solution and scCO2. | reduced residual solvent; | complex to design; | |
no additional dying step; | possible nozzle blockage. | ||
suitable for thermally labile drugs; | |||
best control of particle size. | |||
SAS-ARISE: a batch process exploiting a pressure difference to achieve mixing between a solution containing drug and cyclodextrin, and scCO2 that acts as an antisolvent. | reduced residual solvent; | complex to design; | |
no additional dying step; | low productivity (batch). | ||
suitable for thermally labile drugs; | |||
control of particle size; | |||
no need of nozzles. | |||
SAA/SASD: scCO2 is dissolved in a solution containing drug and cyclodextrin, which is spray dried at atmospheric conditions. | reduced residual solvent; | complex to design; | |
no additional dying step; | possible nozzle blockage. | ||
suitable for thermally labile drugs; | |||
good control of particle size. | |||
Conventional technologies | Co-grinding: physical mixtures of drug and cyclodextrin are co-grinded in a ball mill. | simple to design; | high mechanical stress; |
no use of organic solvents; | high thermal stress; | ||
control of particle size. | low inclusion efficiency. | ||
Kneading: drug and cyclodextrin are mixed in presence of a solvent. After drying, the residual is pulverized. | simple to design. | organic solvent residues; | |
low inclusion efficiency. | |||
Sealed heating: physical mixtures of drug and cyclodextrin are sealed in a container in the presence of small amounts of a solvent. The container is heated for a fixed period. After treatment, complex is desiccated to remove solvent traces. | solvent is generally water; | high thermal stress; | |
simple to design. | desiccation step is required; | ||
no control of particle size. | |||
Spray drying: a solution containing drug and cyclodextrin is sprayed through a nozzle in a drying chamber. | good control of particle size; | possible nozzle blockage. | |
good inclusion efficiency. | organic solvent residues; | ||
high thermal stress. | |||
Freeze drying: a solution containing drug and cyclodextrin is frozen and then lyophilized. | good inclusion efficiency. | organic solvent residues; | |
long process times; | |||
no control of particle size. | |||
Co-evaporation: a solution containing drug and cyclodextrin is heated to remove solvents. The precipitate is desiccated to remove solvent traces. | good inclusion efficiency. | high thermal stress; | |
organic solvent residues; | |||
long process times; | |||
no control of particle size; | |||
desiccation step is required. | |||
Coprecipitation: a solution containing drug and cyclodextrin is cooled to achieve complex precipitation. The precipitate is filtered, washed, and dried. | good inclusion efficiency. | organic solvent residues; | |
long process times. | |||
drying step is required; | |||
no control of particle size. | |||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banchero, M. Supercritical Carbon Dioxide as a Green Alternative to Achieve Drug Complexation with Cyclodextrins. Pharmaceuticals 2021, 14, 562. https://doi.org/10.3390/ph14060562
Banchero M. Supercritical Carbon Dioxide as a Green Alternative to Achieve Drug Complexation with Cyclodextrins. Pharmaceuticals. 2021; 14(6):562. https://doi.org/10.3390/ph14060562
Chicago/Turabian StyleBanchero, Mauro. 2021. "Supercritical Carbon Dioxide as a Green Alternative to Achieve Drug Complexation with Cyclodextrins" Pharmaceuticals 14, no. 6: 562. https://doi.org/10.3390/ph14060562
APA StyleBanchero, M. (2021). Supercritical Carbon Dioxide as a Green Alternative to Achieve Drug Complexation with Cyclodextrins. Pharmaceuticals, 14(6), 562. https://doi.org/10.3390/ph14060562