Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Application of Supercritical Carbon Dioxide for the Preparation of a Piroxicam-β-Cyclodextrin Inclusion Compound

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Piroxicam is a poorly soluble NSAID, whose solubility is enhanced when included into β-cyclodextrin. The preparation of a piroxicam-β-cyclodextrin inclusion compound using supercritical CO2 was investigated.

Methods. The solubility and the stability of piroxicam in supercritical CO2 were determined. Then, the influence of the temperature, the pressure and the time of exposure on the inclusion rate was studied.

Results. The solubility of piroxicam varied over a wide range depending on the temperature and pressure (from 0.006 to 1.500 mg/g of CO2). The temperature and the time of exposure had a great influence on the inclusion yield, while pressure did not and a complete inclusion was achieved by keeping a physical mixture of piroxicam and β-cyclodextrin (1:2.5 mol/mol) for 6 hours at 150°C and 15 MPa of CO2. This complex was characterized by Differential Scanning Calorimetry, differential solubility and Fourier Transform Infrared Spectrometry.

Conclusions. Supercritical carbon dioxide may prove to be a novel useful complexation method of drugs into β-cyclodextrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. Lasagna. Macrocyclic molecules and their pharmacological applications. Eur. J. Rheumatol. Inflamm. 12:3-5 (1993).

    Google Scholar 

  2. K-H Frömming and J. Szejtli. Cyclodextrin in Pharmacy, Kluwers Academic Publishers, Dordrecht, 1994.

    Google Scholar 

  3. R. Gallagher, C. Ball, D. Gatehouse, P. Gates, M. Lobell, and P. Derrick. Cyclodextrin-piroxicam inclusion complexes: analyses by mass spectrometry and molecular modelling. Int. J. Mass Spectro. Ion Proc. 165/166:523-531 (1997).

    Google Scholar 

  4. X. Deroubaix, A. Stockis, A. M. Allemon, E. Lebacq, D. Acerbi, and P. Ventura. Oral bioavailability of CHF1194, an inclusion complex of piroxicam and β-cyclodextrin, in healthy subjects under single dose and steady-state conditions. Eur. J. Clin. Pharmacol. 47:531-536 (1995).

    Google Scholar 

  5. B. Woodcock, D. Acerbi, P. Merz, S. Rietbrock, and N. Rietbrock N. Supermolecular inclusion of piroxicam with β-cyclodextrin: pharmacokinetic properties in man. Eur. J. Rheumatol. Inflamm. 12:12-28 (1993).

    Google Scholar 

  6. S-Y Lin and Y-H Kao. Solid particulates of drug-β-cyclodextrin inclusion complexes directly prepared by a spray-drying technique. Int. J. Pharm. 56:249-259 (1989).

    Google Scholar 

  7. M. Kurozumi, N. Nambu, and T. Nagai. Inclusion compounds of non-steroidal anti-inflammatory and other slightly water soluble drugs with α-and β-cyclodextrins in powdered form. Chem. Pharm. Bull. 23:3062-3068 (1975).

    Google Scholar 

  8. J-H Kim, T. Paxton, and D. Tomasko. Microencapsulation of naproxen using rapid expansion of supercritical solutions. Biotechnol. Prog. 12:650-661 (1996).

    Google Scholar 

  9. M. Kamihira, T. Asai, Y. Yamagata, M. Taniguchi, and T. Kobayashi. Formation of inclusion complexes between cyclodextrins and aromatic compounds under pressurized carbon dioxide. J. Ferment. Bioeng. 69:350-353 (1990).

    Google Scholar 

  10. F. Giordano, M. Rillosi, G. P. Bettinetti, A. Gazzaniga, M. Majewski, and M. Perrut. Interaction of supercritical fluids with drug/cyclodextrin inclusion compounds and physical mixtures. Proc. 8th Int. Symposium on Cyclodextrins, 193-196 (1996).

  11. D. Acerbi, G. Bovis, F. Carli, M. Pasini, L. Pavesi, and T. Peveri. Biopharmaceutical optimisation of β-cyclodextrin inclusion compounds. Drug Invest. 2(suppl. 4):29-36 (1990).

    Google Scholar 

  12. J. Bleich, P. Kleinebudde, and B. W. Müller. Influence of gas density and pressure on microparticles produced with the ASES process. Int. J. Pharm. 106:77-84 (1994).

    Google Scholar 

  13. D. Miller and S. Hawthorne. Determination of solubilities of organic solutes in supercritical CO2 by on-line flame ionization detection. Anal. Chem. 67:273-279 (1995).

    Google Scholar 

  14. K. Bartle, A. Clifford, S. Jafar, and G. Shilstone. Solubilities of solids and liquids of low volatility in supercritical carbon dioxide. J. Phys. Ref. Data 20(4):713-756 (1991).

    Google Scholar 

  15. S. Mitra and N. Wilson. An empirical method to predict solubility in supercritical fluids. J. Chromatogr. Sci. 29:305-309 (1991).

    Google Scholar 

  16. S. Macnaughton, I. Kikic, N. Foster, P. Alessi, A. Cortesi, and I. Colombo. Solubility of anti-inflammatory drugs in supercritical carbon dioxide. J. Chem. Eng. Data 41:1083-1086 (1996)

    Google Scholar 

  17. M. McHugh and V. Krukonis. Supercritical fluid extraction: principles and practice, Butterworths, London, 1986.

    Google Scholar 

  18. Pharmeuropa 9:387-391 (1997).

  19. E. Redenti, T. Peveri, M. Zanol, P. Ventura, G. Gnappi, and A. Montenero. A study on the differentiation between amorphous piroxicam:β-cyclodextrin complex and a mixture of the two amorphous components. Int. J. Pharm. 129:289-294 (1996).

    Google Scholar 

  20. Handbook of Chemistry and Physics, 67th Edition, CRCPress, Boca Raton, 1986–1987.

  21. S. Takenouchi and G. C. Kennedy. The binary system H2O-CO2 at high temperatures and pressures. Am. J. Sci. 262:1055-1074 (1964).

    Google Scholar 

  22. P. Debenedetti, J. Tom, S-D Y, and G-B Lim. Application of supercritical fluids for the production of sustained delivery devices. J. Contr. Rel. 24:27-44 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Hees, T., Piel, G., Evrard, B. et al. Application of Supercritical Carbon Dioxide for the Preparation of a Piroxicam-β-Cyclodextrin Inclusion Compound. Pharm Res 16, 1864–1870 (1999). https://doi.org/10.1023/A:1018955410414

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018955410414

Navigation