Nothing Special   »   [go: up one dir, main page]

Skip to main content

Advertisement

Log in

Complex of shikonin and β-cyclodextrins by using supercritical carbon dioxide

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, the complex of shikonin-methyl-β-cyclodextrin and shikonin-2-hydroxypropyl-β-cyclodextrin were studied in supercritical carbon dioxide (sc CO2) at moderate pressure and temperature much lower than the melting point of shikonin. For comparing, the complex was also prepared by sealed heating method. Complex efficiency between shikonin and 2-hydroxypropyl-β-cyclodextrin (HPBCD) was quite low. Partly formation of shikonin—methyl-β-cyclodextrin (MBCD) was obtained by sealed heating method. Complete formation of shikonin—MBCD was obtained in sc CO2 media in short reaction time. This complexation was accelerated and enhanced by the rise in both the reaction temperature and carbon dioxide pressure up to 100 °C 100 bar. The physical state of cyclodextrins in complex reaction has remarkable influence on the complex. The aqueous solubility of shikonin could be enhanced about 75 times by complexing with MBCD.

Graphical abstract

In this work, the complex of shikonin-methyl-β-cyclodextrin and shikonin-2-hydroxypropyl-β-cyclodextrin were studied in supercritical carbon dioxide (sc CO2) at moderate pressure and temperature much lower than the melting point of shikonin (SK). For comparing, the complex was also prepared by sealed heating method. Complex efficiency between SK and 2-hydroxypropyl-β-cyclodextrin (HPBCD) was quite low. Partly formation of SK—methyl-β-cyclodextrin (MBCD) complex was obtained by sealed heating method. Complete formation of SK—MBCD was obtained in sc CO2 media in short reaction time. This complexation was accelerated and enhanced by the rise in both the reaction temperature and carbon dioxide pressure. The physical state of cyclodextrins in sc CO2 has remarkable influence on the complex. The aqueous solubility of SK could be enhanced about 75 times by complexing with MBCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, X., Oppenheim, J., Zack Howard, O.M.: Shikonin, a component of anti-inflammatory Chinese herbal medicine, selectively blocks chemokine binding to cc chemokine receptor-1. Int. Immunopharmacol 1, 229–236 (2001). doi:10.1016/S1567-5769(00)00033-3

    Article  CAS  Google Scholar 

  2. Shen, C.C., Syu, W., Li, S.Y., Lin, C.H., Lee, G.H., Sun, C.M.: Antimicrobial activities of naphthazarins from arnebia euchroma. J. Nat. Prod 65, 1857–1862 (2002). doi:10.1021/np010599w

    Article  CAS  Google Scholar 

  3. Ruan, M., Ji, T., Yang, W.J., Duan, W.H., Zhou, X.J., He, J.C., Zhou, J., Chen, W.T., Zhang, C.P.: Growth inhibition and induction of apoptosis in human oral squamous cell carcinoma Tca-8113 cell lines by shikonin was partly through the inactivation of NF-кB pathway. Phytother. Res 22, 407–415 (2008). doi:10.1002/ptr.2340

    Article  CAS  Google Scholar 

  4. Singh, F., Gao, D.Y., Lebwohl, M.G., Wei, H.C.: Shikonin modulates cell proliferation by inhibiting epidermal growth factor receptor signaling in human epidermoid carcinoma cells. Cancer Lett 200, 115–121 (2003). doi:10.1016/S0304-3835(03)00239-8

    Article  CAS  Google Scholar 

  5. Xu, R.L., Ouyang, H., Deng, H.L.: Optimization of inclusion methods for shikonin and β-cyclodextrin. Acta Acad. Med. Jiangxi 144, 81 (2004)

    Google Scholar 

  6. Assimopoulau, A.N., Papageargiou, V.P.: Encapsulation of isohexenylnaphthazarins in cyclodextrin. Biomed. Chromatogr 18, 240–247 (2004). doi:10.1002/bmc.310

    Article  Google Scholar 

  7. Hees, T.V., Piel, G., Evrared, B., Otte, X., Thunnus, L., Delattre, L.: Application of supercritical carbon dioxide for the preparation of a piroxicam-β-cyclodextrin inclusion compound. Pharm. Res 16, 1864–1870 (1999). doi:10.1023/A:1018955410414

    Article  Google Scholar 

  8. Charoenchaitrakool, M., Dehghani, F., Foster, N.R.: Utilization of supercritical carbon dioxide for complex formation of ibuprofen and methyl-cyclodextrin. Int. J. Pharm 239, 103–112 (2002). doi:10.1016/S0378-5173(02)00078-9

    Article  CAS  Google Scholar 

  9. Junco, S., Casimiro, T., Ribeiro, N., Ponte, M.N., Marques, H.C.: A comparative study of naproxen-beta cyclodextrin complexes prepared by conventional methods and using supercritical carbon dioxide. J. Incl. Phenom. Macrocycl. Chem 44, 117–121 (2002). doi:10.1023/A:1023022008337

    Article  CAS  Google Scholar 

  10. Lai, S., Locci, E., Piras, A., Porcedda, S., Lai, A., Marongiu, B.: Imazalil-cyclomaltoheptaose (β-cyclodextrin) inclusion complex: preparation by supercritical carbon dioxide and 13C CPMAS and 1H NMR characterization. Carbohydr. Res 338, 2227–2232 (2003). doi:10.1016/S0008-6215(03)00358-6

    Article  CAS  Google Scholar 

  11. Locci, E., Lai, S., Piras, A., Marongiu, B., Lai, A.: 13C-CPMAS and 1H-NMR study of the inclusion complexes of β-cyclodextrin with carvacrol, thymol, and eugenol prepared in supercritical carbon dioxide. Chem. Biodivers 1, 1354 (2004). doi:10.1002/cbdv.200490098

    Article  CAS  Google Scholar 

  12. Bandia, N., Weib, W., Robertsc, C.B., Kotrac, L.P., Kompellaa, U.B.: Preparation of budesonide and indomethacin-hydroxypropyl-cyclodextrin (HPBCD) complexes using a single-step, organic-solvent-free supercritical fluid process. Eur. J. Pharm. Sci 23, 159–168 (2004). doi:10.1016/j.ejps.2004.06.007

    Article  Google Scholar 

  13. Rodier, E., Lochard, H., Sauceau, M., Letourneau, J., Freiss, B., Fages, J.: A three step supercritical process to improve the dissolution rate of eflucimibe. Eur. J. Pharm. Sci 26, 184–193 (2005). doi:10.1016/j.ejps.2005.05.011

    Article  CAS  Google Scholar 

  14. Ibrahim, S., Ali, H., Al, M., Babomcarr, J., Ali, D.: Enhancement of aqueous solubility of itraconazole by complexation with cyclodextrins using supercritical carbon dioxide. Can. J. Chem 83, 1833–1838 (2005). doi:10.1139/v05-181

    Article  Google Scholar 

  15. AL-Marzouqi, A.H., Shehatta, I., Jobe, B., Dowaidar, A.: Phase solubility and inclusion complex of itraconazole with β-cyclodextrin using supercritical carbon dioxide. J. Pharm. Sci 95, 292–304 (2006). doi:10.1002/jps.20535

    Article  CAS  Google Scholar 

  16. Wang, B., He, J., Sun, D.H., Zhang, R., Han, B.X.: Utilization of supercritical carbon dioxide for preparation of 3-hydroxyflavone and β-cyclodextrin complex. J. Incl. Phenom. Macrocycl. Chem 55, 37–40 (2006). doi:10.1007/s10847-005-9015-8

    Article  CAS  Google Scholar 

  17. Ali, H., Al, M., Baboucarr, J., Ali, D., Francesca, M., Paola, M.: Evaluation of supercritical fluid technology as preparative technique of benzocaine-cyclodextrin complex comparison with conventional methods. J. Pharm. Biomed 43, 566–574 (2007). doi:10.1016/j.jpba.2006.08.019

    Article  Google Scholar 

  18. Arezki, B., Elisabeth, R., Jacques, F.: Maturation of ketoprofen/β-cyclodextrin mixture with supercritical carbon dioxide. J. Supercrit. Fluid 41, 429–439 (2007). doi:10.1016/j.supflu.2006.11.004

    Article  Google Scholar 

  19. Khaled, H., Michael, T., Martin, A.W.: Comparative evaluation of ibuprofen/β-cyclodextrin complexes obtained by supercritical carbon dioxide and other conventional methods. Pharm. Res 24, 585–592 (2007). doi:10.1007/s11095-006-9177-0

    Article  Google Scholar 

  20. Al-Marzouqi, A.H., Jobe, B., Corti, G., Cirri, M., Mura, P.: Physicochemical characterization of drug-cyclodextrin complexes prepared by supercritical carbon dioxide and by conventional techniques. J. Incl. Phenom. Macrocycl. Chem 57, 223–231 (2007). doi:10.1007/s10847-006-9192-0

    Article  CAS  Google Scholar 

  21. Moribe, K., Fujito, T., Tozuka, Y., Yamamoto, K.: Solubility-dependent complexation of active pharmaceutical ingredients with trimethyl-β-cyclodextrin under supercritical fluid condition. J. Incl. Phenom. Macrocycl. Chem 57, 289–295 (2007). doi:10.1007/s10847-006-9175-1

    Article  CAS  Google Scholar 

  22. Lee, S.Y., Jung, I.L., Kim, J.K., Lim, G.B., Ryu, J.H.: Preparation of itraconazole/HP-B-CD inclusion complexes using supercritical aerosol solvent extraction system and their dissolution characteristics. J. Supercrit. Fluid 44, 400–408 (2008). doi:10.1016/j.supflu.2007.09.006

    Article  CAS  Google Scholar 

  23. Al-Marzouqi, A.H., Solieman, A., Shehadi, I., Adem, A.: Influence of the preparation method on the physicochemical properties of econazole-β-cyclodextrin complexes. J. Incl. Phenom. Macrocycl. Chem 60, 85–93 (2008). doi:10.1007/s10847-007-9356-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by Molecular Science Center of Institute of Chemistry, The Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J. Complex of shikonin and β-cyclodextrins by using supercritical carbon dioxide. J Incl Phenom Macrocycl Chem 63, 249–255 (2009). https://doi.org/10.1007/s10847-008-9514-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-008-9514-5

Keywords

Navigation