Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling
<p>The feedforward neural network (FFNN).</p> "> Figure 2
<p>An unrolled recurrent neural network.</p> "> Figure 3
<p>The long short-term memory (LSTM) network memory block.</p> "> Figure 4
<p>Soil moisture data transformation and decomposition prior to modelling. (<b>A</b>) Observed data. (<b>B</b>) Box–cox transformed data. (<b>C</b>) Seasonal component. (<b>D</b>) Trend component. (<b>E</b>) Residual component.</p> "> Figure 5
<p>Block diagram of the predictive irrigation scheduling system. t is the time in days, m, n, and j are past time steps.</p> "> Figure 6
<p>Measured soil moisture content and soil moisture content predicted by the FFNN and the LSTM using the evaluation dataset for the three training sites, (<b>A</b>) Baluderry, (<b>B</b>) Stoughton, and (<b>C</b>) Waddeston.</p> "> Figure 7
<p>The predictive and rule-based irrigation scheduling systems for AQUACROP simulations of the potato-growing season on the three model training sites. (<b>A</b>) Baluderry, (<b>B</b>) Stoughton, and (<b>C</b>) Waddeston.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Neural Network Preliminaries
2.2. The Feedforward Neural Network
2.3. Long Short-Term Memory Network
3. Methodology
3.1. Study Sites and Data Source
3.2. Data Cleaning and Pre-Processing
3.3. The Proposed Model Framework
3.3.1. The Feedforward Neural Network Structure
3.3.2. The Long Short-Term Memory Network Structure
3.4. Irrigation Scheduling
3.4.1. Predictive Irrigation Scheduling System
3.5. Model Evaluation Criteria
4. Results and Discussion
4.1. Model Structure
4.2. Soil Moisture Content Prediction
4.3. Prediction Performance in the Independent Sites
4.4. Application in Predictive Irrigation Scheduling
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Hedley, C.B.; Knox, J.W.; Raine, S.R.; Smith, R. Water: Advanced Irrigation Technologies. Encycl. Agric. Food Syst. 2014, 5, 378–406. [Google Scholar]
- Ali, M.H.; Talukder, M.S.U. Methods or Approaches of Irrigation Scheduling—An Overview. J. Inst. Eng. 2001, 28, 11–23. [Google Scholar]
- Smith, R.J.; Baillie, J.N.; Futures, I. Defining precision irrigation: A new approach to irrigation management. In Proceedings of the Irrigation and Drainage Conference 2009, Victoria, Australia, 18–21 October 2009; pp. 18–21. [Google Scholar]
- Ro-Hellín, H.; Torres-Sánchez, R.; Soto-Valles, F.; Albaladejo-Pérez, C.; López-Riquelme, J.A.; Domingo-Miguel, R.N. A wireless sensors architecture for efficient irrigation water management. Agric. Water Manag. 2015, 151, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Hedley, C.; Yule, I. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric. 2009, 10, 342–355. [Google Scholar] [CrossRef]
- Monaghan, J.M.; Daccache, A.; Vickers, L.H.; Hess, T.M.; Weatherhead, E.K.; Grove, I.G.; Knox, J.W. More “crop per drop”: Constraints and opportunities for precision irrigation in European agriculture. J. Sci. Food Agric. 2013, 93, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Morillo, J.G.; Martín, M.; Camacho, E.; Díaz, J.A.R.; Montesinos, P. Toward precision irrigation for intensive strawberry cultivation. Agric. Water Manag. 2015, 151, 43–51. [Google Scholar] [CrossRef]
- Nesa Sudha, M.; Valarmathi, M.L.; Babu, A.S. Energy efficient data transmission in automatic irrigation system using wireless sensor networks. Comput. Electron. Agric. 2011, 78, 215–221. [Google Scholar] [CrossRef]
- Parra, L.; Rocher, J.; García, L.; Lloret, J.; Tomás, J.; Romero, O.; Rodilla, M.; Falco, S.; Sebastiá, M.T.; Mengual, J.; et al. Design of a WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving algorithms. Netw. Protoc. Algorithms 2018, 10, 95–115. [Google Scholar] [CrossRef]
- Marin, J.; Parra, L.; Rocher, J.; Sendra, S.; Lloret, J.; Mauri, P.V.; Masaguer, A. Urban Lawn Monitoring in Smart City Environments. J. Sens. 2018, 2018, 16. [Google Scholar] [CrossRef]
- Alvino, A.; Marino, S. Remote Sensing for Irrigation of Horticultural Crops. Horticulturae 2017, 3, 40. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [Google Scholar] [CrossRef]
- Evans, R.G.; LaRue, J.; Stone, K.C.; King, B.A. Adoption of site-specific variable rate sprinkler irrigation systems. Irrig. Sci. 2013, 31, 871–887. [Google Scholar] [CrossRef]
- Stone, K.C.; Bauer, P.J.; Busscher, W.J.; Millen, J.A.; Evans, D.E.; Strickland, E.E. Variable-rate irrigation management using an expert system in the eastern coastal plain. Irrig. Sci. 2015, 33, 167–175. [Google Scholar] [CrossRef]
- Romano, N.; D’Urso, G.; Severino, G.; Chirico, G.B.; Palladino, M.; Majone, B.; Viani, F.; Filippi, E.; Bellin, A.; Massa, A.; et al. Wireless Sensor Network Deployment for Monitoring Soil Moisture Dynamics at the Field Scale. Procedia Environ. Sci. 2013, 19, 426–435. [Google Scholar]
- Pardossi, A.; Incrocci, L. Traditional and New Approaches to Irrigation Scheduling in Vegetable Crops. Horttechnology 2011, 21, 309–313. [Google Scholar]
- McCarthy, A.C.; Hancock, N.H.; Raine, S.R. Advanced process control of irrigation: The current state and an analysis to aid future development. Irrig. Sci. 2013, 31, 183–192. [Google Scholar] [CrossRef]
- Raine, S.R.; Meyer, W.S.; Rassam, D.W.; Hutson, J.L.; Cook, F.J. Soil-water and solute movement under precision irrigation: Knowledge gaps for managing sustainable root zones. Irrig. Sci. 2007, 26, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Shamma, J.S.; Harmon, T.C. A Receding Horizon Control algorithm for adaptive management of soil moisture and chemical levels during irrigation. Environ. Model. Softw. 2009, 24, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, A.C.; Hancock, N.H.; Raine, S.R. Simulation of irrigation control strategies for cotton using Model Predictive Control within the VARIwise simulation framework. Comput. Electron. Agric. 2014, 101, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Hellín, H.; Martínez-del-Rincon, J.; Domingo-Miguel, R.; Soto-Valles, F.; Torres-Sánchez, R. A decision support system for managing irrigation in agriculture. Comput. Electron. Agric. 2016, 124, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Giusti, E.; Marsili-Libelli, S. A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environ. Model. Softw. 2015, 63, 73–86. [Google Scholar] [CrossRef]
- King, B.A.; Shellie, K.C. Evaluation of neural network modeling to predict non-water-stressed leaf temperature in wine grape for calculation of crop water stress index. Agric. Water Manag. 2016, 167, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Delgoda, D.; Saleem, S.K.; Malano, H.; Halgamuge, M.N. Root zone soil moisture prediction models based on system identification: Formulation of the theory and validation using field and AQUACROP data. Agric. Water Manag. 2014, 163, 344–353. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. A comparison of numerical and machine-learning modeling of soil water content with limited input data. J. Hydrol. 2016, 543, 892–909. [Google Scholar] [CrossRef] [Green Version]
- Payero, J.O.; Irmak, S. Variable upper and lower crop water stress index baselines for corn and soybean. Irrig. Sci. 2006, 25, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Young, P.C. The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annu. Rev. Control 2006, 30, 169–182. [Google Scholar] [CrossRef]
- Mashayekhi, P.; Ghorbani-Dashtaki, S.; Mosaddeghi, M.R.; Shirani, H.; Nodoushan, A.R.M. Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D. Int. Agrophys. 2016, 30, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Lozoya, C.; Mendoza, C.; Aguilar, A.; Román, A.; Castelló, R. Sensor-Based Model Driven Control Strategy for Precision Irrigation. J. Sens. 2016, 2016, 12. [Google Scholar] [CrossRef]
- Saleem, S.K.; Delgoda, D.; Ooi, S.K.; Dassanayake, K.B.; Yue, L.; Halmamuge, M.; Malano, H. Model Predictive Control for Real-Time Irrigation Scheduling. IFAC Proc. Vol. 2013, 46, 299–304. [Google Scholar] [CrossRef]
- Deng, J.; Chen, X.; Du, Z.; Zhang, Y. Soil Water Simulation and Predication Using Stochastic Models Based on LS-SVM for Red Soil Region of China. Water Resour. Manag. 2011, 25, 2823–2836. [Google Scholar] [CrossRef]
- Liu, D.; Yu, Z.; Lü, H. Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction. Water Sci. Eng. 2010, 3, 361–377. [Google Scholar]
- Hong, Z.; Kalbarczyk, Z.; Iyer, R.K. Using a wireless sensor network and machine learning techniques. In Proceedings of the 2016 IEEE International Conference on Smart Computing (SMARTCOMP), St. Louis, MO, USA, 18–20 May 2016. [Google Scholar]
- Capraro, F.; Patiño, D.; Tosetti, S.; Schugurensky, C. Neural network-based irrigation control for precision agriculture. In Proceedings of the 2008 IEEE International Conference on Networking, Sensing and Control (ICNSC), Sanya, China, 6–8 April 2008; pp. 357–362. [Google Scholar]
- Tsang, S.W.; Jim, C.Y. Applying artificial intelligence modeling to optimize green roof irrigation. Energy Build. 2016, 127, 360–369. [Google Scholar] [CrossRef]
- Guo, W.W.; Xue, H. Crop yield forecasting using artificial neural networks: A comparison between spatial and temporal models. Math. Probl. Eng. 2014, 2014, 7. [Google Scholar] [CrossRef]
- Gandhi, N.; Petkar, O.; Armstrong, L.J. Rice crop yield prediction using Artificial Neural Networks. In Proceedings of the IEEE International Conference on Technological Innovations in ICT for Agriculture and Rural Development, Chennai, India, 15–16 July 2016; pp. 105–110. [Google Scholar]
- Pulido-Calvo, I.; Roldan, J.; Lopez-Luque, R.; Gutierrez-Estrada, J.C. Demand Forecasting for Irrigation Water Distribution Systems. Irrig. Drain. Eng. 2003, 129, 270–277. [Google Scholar] [CrossRef]
- Pulido-Calvo, I.; Gutiérrez-Estrada, J.C. Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosyst. Eng. 2009, 102, 202–218. [Google Scholar] [CrossRef]
- Sarkar, A.; Kumar, R. Artificial Neural Networks for Event Based Rainfall-Runoff Modeling. J. Water Resour. Prot. 2012, 4, 891–897. [Google Scholar] [CrossRef]
- Khan, M.S.; Coulibaly, P. Bayesian neural network for rainfall-runoff modeling. Water Resour. Res. 2006, 42, 1–18. [Google Scholar] [CrossRef]
- Joorabchi, A.; Zhang, H.; Blumenstein, M. Application of artificial neural networks to groundwater dynamics in coastal aquifers. J. Coast. Res. 2009, 2009, 966–970. [Google Scholar]
- Sun, Y.; Wendi, D.; Kim, D.E.; Liong, S.-Y. Technical note: Application of artificial neural networks in groundwater table forecasting—A case study in a Singapore swamp forest. Hydrol. Earth Syst. Sci. 2016, 20, 1405–1412. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Brezak, D.; Bacek, T.; Majetic, D.; Kasac, J.; Novakovic, B. A comparison of feed-forward and recurrent neural networks in time series forecasting. In Proceedings of the 2012 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), New York, NY, USA, 29–30 March 2012; pp. 1–6. [Google Scholar]
- Gu, J.; Yin, G.; Huang, P.; Guo, J.; Chen, L. An improved back propagation neural network prediction model for subsurface drip irrigation system. Comput. Electr. Eng. 2017, 60, 58–65. [Google Scholar] [CrossRef]
- Funahashi, K.; Nakamura, Y. Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw. 1993, 6, 801–806. [Google Scholar] [CrossRef]
- Wang, Y.; Kirubakaran, V.; Biao, H. A Long-Short Term Memory Recurrent Neural Network Based Reinforcement Learning Controller for Office Heating Ventilation and Air Conditioning Systems. Processes 2017, 5, 1–18. [Google Scholar]
- Wang, Y. A new concept using LSTM Neural Networks for dynamic system identification. In Proceedings of the 2017 American Control Conference, Seattle, WA, USA, 24–26 May 2017; pp. 5324–5329. [Google Scholar]
- Chauhan, S.; Vig, L. Anomaly detection in ECG time signals via deep long short-term memory networks. In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics, Paris, France, 19–21 October 2015. [Google Scholar]
- Mikolov, T.; Kombrink, S.; Burget, L.; Černocký, J.; Khudanpur, S. Extensions of recurrent neural network language model. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 5528–5531. [Google Scholar]
- Ordóñez, J.F.; Roggen, D. Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition. Sensors 2016, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Graves, A.; Mohamed, A.R.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6645–6649. [Google Scholar]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Werbos, P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550–1560. [Google Scholar] [CrossRef]
- Hochreiter, S. The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions. Int. J. Uncertain. Fuzziness Know. Based Syst. 1998, 6, 107–116. [Google Scholar] [CrossRef]
- Pascanu, R.; Mikolov, T.; Bengio, Y. On the difficulty of training Recurrent Neural Networks. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Shuttleworth, W.J.; Zreda, M.; Zeng, X.; Zweck, C.; Ferré, T.P.A. The COsmic-ray Soil Moisture Observing System (COSMOS): A non-invasive, intermediate scale soil moisture measurement network. In Proceedings of the British Hydrological Society Third International Symposium, Managing Consequences of a Changing Global Environment, Newcastle, UK, 19–23 July 2010; pp. 19–23. [Google Scholar]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The cosmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef] [Green Version]
- Desilets, D.; Zreda, M.; Ferré, T.P.A. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 2010, 46, 1–7. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Rosolem, R.; Ferre, T.P.A. A universal calibration function for determination of soil moisture with cosmic-ray neutrons. Hydrol. Earth Syst. Sci. 2013, 17, 453–460. [Google Scholar] [CrossRef]
- Delgoda, D.; Malano, H.; Saleem, S.K.; Halgamuge, M.N. Irrigation control based on model predictive control (MPC): Formulation of theory and validation using weather forecast data and AQUACROP model. Environ. Model. Softw. 2016, 78, 40–53. [Google Scholar] [CrossRef]
- Box, G.E.P.; Cox, D.R. An Analysis of Transformations. J. R. Stat. Soc. 1964, 26, 211–252. [Google Scholar]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Ben Taieb, S.; Bontempi, G.; Atiya, A.F.; Sorjamaa, A. A review and comparison of strategies for multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Syst. Appl. 2012, 39, 7067–7083. [Google Scholar] [CrossRef] [Green Version]
- Crone, S.F.; Hibon, M.; Nikolopoulos, K. Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction. Int. J. Forecast. 2011, 27, 635–660. [Google Scholar] [CrossRef]
- Chollet, F. Keras. Available online: https://keras.io/ (accessed on 11 October 2018).
- Dahl, G.E.; Sainath, T.N.; Hinton, G.E. Improving deep neural networks for LVCSR using rectified linear units and dropout. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. Aquacrop-the FAO crop model to simulate yield response to water: I. concepts and underlying principles. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. Aquacrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Hsiao, T.C.; Heng, L.; Steduto, P.; Rojas-Lara, B.; Raes, D.; Fereres, E. Aquacrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron. J. 2009, 101, 448–459. [Google Scholar] [CrossRef]
- Linker, R.; Ioslovich, I.; Sylaios, G.; Plauborg, F.; Battilani, A. Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato. Agric. Water Manag. 2016, 163, 236–243. [Google Scholar] [CrossRef]
- Perez‑Ortola, M.; Daccache, A.; Hess, T.M.; Knox, J.W. Simulating impacts of irrigation heterogeneity on onion (Allium cepa L.) yield in a humid climate. Irrig. Sci. 2015, 33, 1–14. [Google Scholar] [CrossRef]
- Kim, D.; Kaluarachchi, J. Validating FAO AquaCrop using Landsat images and regional crop information. Agric. Water Manag. 2015, 149, 143–155. [Google Scholar] [CrossRef]
- Akumaga, U.; Tarhule, A.; Yusuf, A.A. Validation and testing of the FAO AquaCrop model under different levels of nitrogen fertilizer on rainfed maize in Nigeria, West Africa. Agric. For. Meteorol. 2017, 232, 225–234. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Géron, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow, 1st ed.; Tache, N., Ed.; O’Reilly Media: Sebastopol, CA, USA, 2017. [Google Scholar]
- Qin, J.; Badgwell, T. A survey of industrial model predictive control technology. Control Eng. Pract. 2003, 11, 733–764. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Shirayama, S. Time Series Forecasting with Multiple Deep Learners: Selection from a Bayesian Network. J. Data Anal. Inf. Process. 2017, 5, 115–130. [Google Scholar] [CrossRef]
Site Name | Soil Type | Land Cover | Date Range |
---|---|---|---|
Baluderry | Sandy loam | Farmland | May 2014–September 2017 |
Stoughton | Loam | Arable | August 2015–September 2017 |
Waddeston | Clay | Grassland | December 2013–September 2017 |
Training Site | Independent Site 1 | Independent Site 2 | ||||
---|---|---|---|---|---|---|
Name | Land Cover | Soil Type | Name | Land Cover | Soil Type | |
Baluderry | Bunny Park | Arable | Sandy loam | Bickley Hall | Grassland | Sandy loam |
Stoughton | Morley | Arable | Loam | Cockle Park | Grassland | Loam |
Waddeston | Hollin Hill | Grassland | Clay | Chimney Meadows | Grassland | Clay |
Site | Profile | ||
---|---|---|---|
Baluderry | 0.22 | 0.10 | Sandy loam |
Stoughton | 0.31 | 0.15 | Deep uniform loam |
Waddeston | 0.33 | 0.138 | Clay |
Site | Model | FFNN | LSTM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | M | J | Neurons | Layers | N | M | J | Blocks | Layers | |||
Baluderry | 1 | 1 | 1 | 40 | 1 | 0.95 | 1 | 1 | 1 | 20 | 1 | 0.95 |
Stoughton | 1 | 1 | 1 | 20 | 1 | 0.97 | 1 | 1 | 1 | 20 | 1 | 0.97 |
Waddeston | 1 | 2 | 2 | 20 | 1 | 0.99 | 1 | 2 | 2 | 40 | 1 | 0.99 |
Site | FFNN | LSTM |
---|---|---|
Baluderry | 0.93 | 0.91 |
Stoughton | 0.92 | 0.95 |
Waddeston | 0.95 | 0.97 |
Site | Model | Naive | FFNN | LSTM | |||||
---|---|---|---|---|---|---|---|---|---|
Baluderry | 0.89 | 0.02 | 0.03 | 0.94 | 0.01 | 0.01 | 0.95 | 0.01 | 0.01 |
Stoughton | 0.88 | 0.02 | 0.03 | 0.97 | 0.01 | 0.01 | 0.97 | 0.01 | 0.01 |
Waddeston | 0.92 | 0.01 | 0.02 | 0.99 | 0.01 | 0.01 | 0.99 | 0.01 | 0.01 |
Independent Site 1 | Independent Site 2 | ||||||
---|---|---|---|---|---|---|---|
Models | Training Site | ||||||
FFNN | Baluderry | 0.74 | 0.04 | 0.07 | 0.93 | 0.01 | 0.01 |
Stoughton | 0.94 | 0.01 | 0.01 | 0.96 | 0.01 | 0.01 | |
Waddeston | 0.95 | 0.01 | 0.01 | 0.94 | 0.01 | 0.01 | |
LSTM | Baluderry | 0.92 | 0.01 | 0.01 | 0.98 | 0.01 | 0.01 |
Stoughton | 0.96 | 0.01 | 0.01 | 0.98 | 0.01 | 0.01 | |
Waddeston | 0.98 | 0.01 | 0.01 | 0.97 | 0.01 | 0.01 |
Site | ||||||
---|---|---|---|---|---|---|
Predictive system | Rule-based system | Predictive system | Rule-based system | Predictive system | Rule-based system | |
Baluderry | 69.50 | 129.80 | 12.64 | 12.64 | 4.08 | 3.93 |
Stoughton | 141 | 177.20 | 12.64 | 12.64 | 3.68 | 3.68 |
Waddeston | 55 | 79.90 | 12.64 | 12.64 | 3.82 | 3.85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors 2018, 18, 3408. https://doi.org/10.3390/s18103408
Adeyemi O, Grove I, Peets S, Domun Y, Norton T. Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors. 2018; 18(10):3408. https://doi.org/10.3390/s18103408
Chicago/Turabian StyleAdeyemi, Olutobi, Ivan Grove, Sven Peets, Yuvraj Domun, and Tomas Norton. 2018. "Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling" Sensors 18, no. 10: 3408. https://doi.org/10.3390/s18103408
APA StyleAdeyemi, O., Grove, I., Peets, S., Domun, Y., & Norton, T. (2018). Dynamic Neural Network Modelling of Soil Moisture Content for Predictive Irrigation Scheduling. Sensors, 18(10), 3408. https://doi.org/10.3390/s18103408