Peripheral Blood Mononuclear Cells Cytokine Profile in a Patient with Toxic Epidermal Necrolysis Triggered by Lamotrigine and COVID-19: A Case Study
<p>Toxic epidermal necrolysis clinical spectrum. (<b>A</b>–<b>D</b>): exanthematous rash. Lesions start on the face and thorax before spreading to other areas and are symmetrically distributed. Early lesions typically begin with ill-defined, coalescing, erythematous macules; (<b>E</b>–<b>H</b>): extensive, sheet-like detachment and erosions, and Nikolsky sign is present.</p> "> Figure 2
<p>Expression profile of evaluated cytokines. Figure shows the expression level of a 13-citokine panel for the patient with toxic epidermal necrolysis (TEN) and concurrent COVID-19, and for his parents, grouped by immune response in which they participate (<b>A</b>); and according with their status of overexpression and underexpression profile (<b>B</b>). Expression levels were calculated by quantitative real-time polymerase chain reaction by using GAPDH as endogenous control and RNA of peripheral blood mononuclear cell obtained from healthy controls (with negative qRT-PCR for SARS-CoV-2) as calibrator.</p> "> Figure 3
<p>Cell and immune pathophysiology of TEN. Infiltration of the epidermis by activated T lymphocytes (CD8+ epidermis; CD4+ dermis) and natural killer cells induce an immune response against the drug-reactive metabolites. TCRs recognize the molecules and produce interleukins (mainly TNFα) which cause epidermal detachment secondary to keratinocyte apoptosis induced by granzymes, perforins, and Fas/Fas ligand. MHC-II: major histocompatibility complex class II; TCR: T lymphocyte receptor; IFNγ: interferon gamma; TNFα: tumor necrosis factor alpha; IL: interleukin.</p> ">
Abstract
:1. Introduction
2. Case Report
3. Discussion
Study Limitations and Perspectives
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bastuji-Garin, S.; Rzany, B.; Stern, R.S.; Shear, N.H.; Naldi, L.; Roujeau, J.C. Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch. Dermatol. 1993, 129, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Frantz, R.; Huang, S.; Are, A.; Motaparthi, K. Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: A Review of Diagnosis and Management. Medicina 2021, 57, 895. [Google Scholar] [CrossRef] [PubMed]
- Grunwald, P.; Mockenhaupt, M.; Panzer, R.; Emmert, S. Erythema multiforme, Stevens-Johnson syndrome/toxic epidermal necrolysis–diagnosis and treatment. J. Dtsch. Dermatol. Ges. 2020, 18, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Madariaga, C.; Aviles-Ku, D.C.; Carrillo-Lugo, M.S.; Pacheco-Pino, P.A.; Bobadilla-Rosado, L.O.; Méndez-Domínguez, N. Características epidemiológicas de las hospitalizaciones secundarias a síndrome de Stevens-Johnson y necrólisis epidérmica tóxica en México. Dermatol. Rev. Mex. 2022, 66, 654–662. [Google Scholar] [CrossRef]
- Mockenhaupt, M. The current understanding of Stevens-Johnson syndrome and toxic epidermal necrolysis. Expert Rev. Clin. Immunol. 2011, 7, 803–813. [Google Scholar] [CrossRef]
- Borrelli, E.P.; Lee, E.Y.; Descoteaux, A.M.; Kogut, S.J.; Caffrey, A.R. Stevens-Johnson syndrome and toxic epidermal necrolysis with antiepileptic drugs: An analysis of the US Food and Drug Administration Adverse Event Reporting System. Epilepsia 2018, 59, 2318–2324. [Google Scholar] [CrossRef]
- Duong, T.A.; Valeyrie-Allanore, L.; Wolkenstein, P.; Chosidow, O. Severe cutaneous adverse reactions to drugs. Lancet 2017, 390, 1996–2011. [Google Scholar] [CrossRef]
- Garg, V.K.; Buttar, H.S.; Bhat, S.A.; Ainur, N.; Priya, T.; Kashyap, D.; Tuli, H.S. Stevens-johnson Syndrome and Toxic Epidermal Necrolysis: An Overview of Diagnosis, Therapy Options and Prognosis of Patients. Recent Adv. Inflamm. Allergy Drug Discov. 2023, 17, 110–120. [Google Scholar] [CrossRef]
- Varol, F.; Can, Y.Y.; Sahin, E.; Durak, C.; Kilic, A.; Sahin, C.; Gursoy, F.; Akin, T. The role of treatment with plasma exchange therapy in two pediatric toxic epidermal necrolysis cases related to COVID-19. J. Clin. Apher. 2022, 37, 516–521. [Google Scholar] [CrossRef]
- Chung, W.H.; Hung, S.I.; Hong, H.S.; Hsih, M.S.; Yang, L.C.; Ho, H.C.; Wu, J.Y.; Chen, Y.T. Medical genetics: A marker for Stevens-Johnson syndrome. Nature 2004, 428, 486. [Google Scholar] [CrossRef]
- Posadas, S.J.; Padial, A.; Torres, M.J.; Mayorga, C.; Leyva, L.; Sanchez, E.; Alvarez, J.; Romano, A.; Juarez, C.; Blanca, M. Delayed reactions to drugs show levels of perforin, granzyme B, and Fas-L to be related to disease severity. J. Allergy Clin. Immunol. 2002, 109, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Metbulut, A.P.; Ozkaya Parlakay, A.; Bayhan, G.I.; Kanik Yuksek, S.; Gulhan, B.; Sengul Emeksiz, Z.; Senel, E.; Dibek Misirlioglu, E. Evaluation of cutaneous symptoms in children infected with COVID-19. Pediatr. Allergy Immunol. 2021, 32, 1120–1125. [Google Scholar] [CrossRef] [PubMed]
- Ozkaya, A.O.S.; Karaatmaca, B.; Tiftik, M.; Cinel, G.; Senel, E. COVID-19 presenting like Steven Johnson Syndrome in a pediatric patient. Authorea 2020, 1–4. [Google Scholar] [CrossRef]
- Zou, H.; Daveluy, S. Toxic epidermal necrolysis and Stevens-Johnson syndrome after COVID-19 infection and vaccination. Australas. J. Dermatol. 2023, 64, e1–e10. [Google Scholar] [CrossRef]
- World Health Organization. Weekly Epidemiological Update–31 August 2020. Available online: https://www.who.int/publications/m/item/weekly-epidemiological-update (accessed on 31 August 2020).
- Roujeau, J.C.; Stern, R.S. Severe adverse cutaneous reactions to drugs. N. Engl. J. Med. 1994, 331, 1272–1285. [Google Scholar] [CrossRef]
- Pavlos, R.; Mallal, S.; Phillips, E. HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics 2012, 13, 1285–1306. [Google Scholar] [CrossRef]
- Jouhar, L.; Yahya, M.; Elsiddiq, S. Toxic Epidermal Necrolysis associated with COVID-19 infection: A case report. Clin. Case Rep. 2022, 10, e05565. [Google Scholar] [CrossRef]
- Westly, E.D.; Wechsler, H.L. Toxic epidermal necrolysis. Granulocytic leukopenia as a prognostic indicator. Arch. Dermatol. 1984, 120, 721–726. [Google Scholar] [CrossRef]
- Ferrandiz-Pulido, C.; Garcia-Patos, V. A review of causes of Stevens-Johnson syndrome and toxic epidermal necrolysis in children. Arch. Dis. Child. 2013, 98, 998–1003. [Google Scholar] [CrossRef]
- Yoshimura, A.; Naka, T.; Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 2007, 7, 454–465. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 2010, 10, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Tang, S.; Li, S.; Pan, Y.; Ding, Y. Biologic TNF-alpha inhibitors in the treatment of Stevens-Johnson syndrome and toxic epidermal necrolysis: A systemic review. J. Dermatol. Treat. 2020, 31, 66–73. [Google Scholar] [CrossRef] [PubMed]
Parameter | Reference | Hospitalization Days | |||
---|---|---|---|---|---|
Day 1 | Day 2 | Day 3 | Day 4 | ||
Red blood cells | |||||
Erythrocyte (106/μL) | 3.0–5.3 | 3.87 | 3.61 | NT | 3.62 |
Hemoglobin (g/dL) | 12.6–16.0 | 11.6 * | 11.1 * | NT | 11.1 * |
Hematocrit (%) | 42.0–51.0 | 35.3 * | 33.1 * | NT | 33.9 * |
Mean corpuscular volume (fL) | 80.0–100.0 | 91.2 | 91.7 | NT | 93.6 |
MCH (pg/cell) | 27.0–32.0 | 30 | 30.7 | NT | 30.7 |
MCHC (g/dL) | 32.0–36.0 | 32.9 | 33.5 | NT | 32.7 |
Red cell distribution width (%) | 11.0–17.0 | 14.1 | 14.3 | NT | 14 |
Platelets (103/μL) | 150.0–400.0 | 150 | 119 * | NT | 162 |
Mean platelet volume (fL) | 7.0–11.0 | 9.1 | 9.6 | NT | 8.3 |
White blood cells | |||||
Leukocytes (103/μL) | 5.0–10.0 | 6.38 | 3.9 * | NT | 3.6 * |
Neutrophils (%) | 37.0–75 | 82.5 * | 74.2 | NT | 50.7 |
Lymphocytes (%) | 17.0–45.0 | 10.7 * | 16.4 * | NT | 35.7 |
Monocyte (%) | 2.0–12.0 | 6.4 | 9.4 | NT | 13.6 * |
Eosinophils (%) | 1.0–7.0 | 0.2 * | NT | NT | NT |
Basophils (%) | 0.3–2.0 | 0.2 * | NT | NT | NT |
Leukocyte absolute values | |||||
Lymphocytes (103/μL) | 1.0–5.0 | 0.68 * | 0.6 * | NT | 1.3 |
Neutrophils (103/μL) | 2.0–8.0 | 5.27 | 2.9 | NT | 1.8 * |
Monocyte (103/μL) | 0.1–1.0 | 0.41 | 0.4 | NT | 0.5 |
Eosinophils (103/μL) | 0.0–0.4 | 0 | NT | NT | NT |
Basophils (103/μL) | 0.0–0.2 | 0 | NT | NT | NT |
Leukocyte differential | |||||
Lymphocytes (%) | NA | 17 * | NT | NT | NT |
Monocyte (%) | NA | 9 | NT | NT | NT |
Segmented neutrophils (%) | NA | 40 * | NT | NT | NT |
Bands (%) | NA | 34 * | NT | NT | NT |
Eosinophils (%) | NA | 0 | NT | NT | NT |
Basophils (%) | NA | 0 | NT | NT | NT |
Coagulation parameters | |||||
Prothrombin time (seconds) | 11.0–14.0 | 22.9 * | NT | 15.7 * | NT |
International normalized ratio (%) | 0.93–1.5 | 1.77 * | NT | 1.18 | NT |
PTT (seconds) | 26.0–40.0 | 40.7 * | NT | 35.4 | NT |
D dimer (μg/mL) | <0.50 | 1.37 | NT | NT | NT |
Fibrinogen (mg/dL) | 200–400 | 274 | NT | NT | NT |
Biochemical parameters | |||||
Ferritin (ng/mL) | 30–400 | 397.6 | NT | NT | NT |
Glucose (mg/dL) | 70.0–110.0 | 147 * | 112 * | 126 * | 121 * |
Urea (mg/dL) | 15.0–43.0 | 18.7 | 18.3 | 17.7 | 20.8 |
Serum creatinine (mg/dL) | 0.7–1.5 | 0.36 | 0.27 * | 0.25 * | 0.28 * |
Blood urea nitrogen (mg/dL) | 7.0–20 | 9 | 8.6 | NT | 10 |
Sodium (mmol/L) | 135.0–148.0 | 140 | 138.3 | 137 | 146 |
Potassium (mmol/L) | 3.5–5.3 | 3.04 * | 3.9 | 3.57 | 4.15 |
Chlorine (mmol/L) | 98.0–107.0 | 106.5 | 108.7 * | 106.5 | 110.4 * |
Calcium (mg/dL) | 8.4–10.2 | 7.15 | 9.2 | 7.27 * | 7.81 * |
Phosphorous (mg/dL) | 2.5–4.5 | 3.2 | 3.3 | 2.99 | 3.48 |
Magnesium (mg/dL) | 1.6–2.3 | 1.7 | 1.6 | 1.74 | 1.98 |
Bilirubin total (mg/dL) | 0.2–1.3 | 0.19 | 0.19 | NT | 0.22 |
Direct bilirubin (mg/dL) | 0.0–0.4 | 0.1 | 0.09 | NT | 0.13 |
Indirect bilirubin (mg/dL) | 0.0–1.0 | 0.09 | 0.1 | NT | 0.09 |
AST (U/L) | 10.0–42.0 | 55 * | 67.4 * | NT | 63.4 * |
ALP (U/L) | 38.0–126.0 | 98 | 83.7 | NT | 95 |
ALT (U/L) | 0.0–42.0 | 18.9 | 27.1 | NT | 35.2 |
LDH (U/L) | 135.0–225.0 | 712 * | 512 * | NT | 451 * |
Globulin (mg/dL) | 2–3.3 | 1.96 * | 2.99 | NT | 2.5 |
Albumin (g/dL) | 3.8–5.10 | 3.02 * | 2.99 * | 2.65 * | 2.94 * |
Albumin globulin ratio | 1.10–18.10 | 1.54 | 0.94 * | NT | 1.18 |
Total protein (g/dL) | 6.4–8.3 | 4.98 * | 5.8 * | NT | 5.44 * |
CKMB (U/L) | 7.0–25.0 | 437.2 * | NT | NT | NT |
CK (U/L) | 20.0–180.0 | 311 * | NT | NT | NT |
Triglycerides (mg/dL) | 40.0–160.0 | NT | 78 | NT | 86 |
Total cholesterol (mg/dL) | 50.0–200.0 | NT | 91 | NT | 121 |
HDL cholesterol (mg/dL) | 40.0–45.0 | NT | 38.5 * | NT | 46.1 |
LDL cholesterol (mg/dL) | 50.0–172.0 | NT | 75.4 | NT | 94.6 |
VLDL cholesterol (mg/dL) | 45.0–65.0 | NT | 15.6 * | NT | 17.2 * |
C reactive protein (mg/dL) | 0.25–0.65 | NT | NT | NT | 11.98 * |
Procalcitonine (ng/mL) | <0.5 | NT | NT | NT | 0.781 |
Cytokine | Type of Immune Response | Types of Producing Cells | Expected Level | Observed Level | Possible Causes of/Possible Explanations for Discrepancy |
---|---|---|---|---|---|
IL-1a | Innate | Monocytes, macrophages | ↑ | ↑ | Severe inflammation from TEN |
IL-1b | Innate | Monocytes, macrophages | ↑ | ↑ | Severe inflammation from TEN |
IL-6 | Innate | Monocytes, macrophages, T cells | ↑ | ↓ | Acute inflammation from TEN and COVID-19/individual variability, disease phase, viral effect |
IL-8 | Innate | Monocytes, macrophages, T cells | ↑ | ↑ | Inflammation and neutrophil attraction |
NFkβ | Innate | All cells | ↑ | ↑ | Pro-inflammatory genes regulation |
IL-2 | Adaptive | T cells | ↑ | ND | T cell activation/Immunosuppression or individual variability |
IL-4 | Adaptive | Th2, mast cells | Variable | ↓ | Th2 response/immunosuppression, individual variability |
IL-5 | Adaptive | Th2, eosinophils | Variable | ↑ | Th2 response and eosinophils/inflammation and Th2 response |
IL-10 | Adaptive | Monocytes, macrophages, Th2 | ↑ | ND | Anti-inflammatory regulation/insufficient regulatory response |
IL-12 | Adaptive, Antiviral | Dendritic cells, macrophages | ↑ | ↓ | Antiviral and Th1 response/viral evasion, individual variability |
INFα | Antiviral | Dendritic cells, macrophages | ↑ | ↑ | Antiviral response |
INFβ | Antiviral | Dendritic cells, fibroblasts | ↑ | ↑ | Antiviral response |
INFγ | Antiviral, Adaptive | T cells, NK cells | ↑ | ↑ | Antiviral response and macrophage activation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Fierro, M.L.; Garza-Veloz, I.; Zorrilla-Alfaro, S.M.; Campuzano-Garcia, A.E.; Rodriguez-Borroel, M. Peripheral Blood Mononuclear Cells Cytokine Profile in a Patient with Toxic Epidermal Necrolysis Triggered by Lamotrigine and COVID-19: A Case Study. Int. J. Mol. Sci. 2025, 26, 1374. https://doi.org/10.3390/ijms26031374
Martinez-Fierro ML, Garza-Veloz I, Zorrilla-Alfaro SM, Campuzano-Garcia AE, Rodriguez-Borroel M. Peripheral Blood Mononuclear Cells Cytokine Profile in a Patient with Toxic Epidermal Necrolysis Triggered by Lamotrigine and COVID-19: A Case Study. International Journal of Molecular Sciences. 2025; 26(3):1374. https://doi.org/10.3390/ijms26031374
Chicago/Turabian StyleMartinez-Fierro, Margarita L., Idalia Garza-Veloz, Sidere Monserrath Zorrilla-Alfaro, Andrés Eduardo Campuzano-Garcia, and Monica Rodriguez-Borroel. 2025. "Peripheral Blood Mononuclear Cells Cytokine Profile in a Patient with Toxic Epidermal Necrolysis Triggered by Lamotrigine and COVID-19: A Case Study" International Journal of Molecular Sciences 26, no. 3: 1374. https://doi.org/10.3390/ijms26031374
APA StyleMartinez-Fierro, M. L., Garza-Veloz, I., Zorrilla-Alfaro, S. M., Campuzano-Garcia, A. E., & Rodriguez-Borroel, M. (2025). Peripheral Blood Mononuclear Cells Cytokine Profile in a Patient with Toxic Epidermal Necrolysis Triggered by Lamotrigine and COVID-19: A Case Study. International Journal of Molecular Sciences, 26(3), 1374. https://doi.org/10.3390/ijms26031374