The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition
<p>OPLS-DA score plot and the number of lipid species in each detected lipid class. (<b>A</b>): The OPLS-DA score plot between the 10-DPA fiber group and 20-DPA fiber group, * represents the multiplication sign. (<b>B</b>): The OPLS-DA score plot between the 10-DPA fiber group of wild type (TM-1) and the 10-DPA fiber group of li-1 mutant. (<b>C</b>): Thirty-three lipid classes detected in three samples and the number of lipid molecule species in each detected lipid class. The number on each column represents the number of molecular species in each lipid class. 10 D: 10-DPA fibers of TM-1 (wild type); 20 D: 20-DPA fibers of TM-1 (wild type); 10 D-li: 10-DPA fibers of <span class="html-italic">li-1</span> mutant. AGlcSiE, AcylGlcSitosterol ester; Cer, ceramides; CerG1, glucocerebroside; CerP, ceramides phosphate; CL, cardiolipin; Co, coenzyme; DG, diglyceride; DGMG, Digalactosylmonoacylglycerol; DGDG, digalactosyldiacylglycerol; FA, fatty acid; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; MG, monoglyceride; MGDG, monogalactosyldiacylglycerol; MGMG, Monogalactosylmonoacylglycerol; OAHFA, O-Acetylated Hydroxy Fatty Acid. PA, phosphatidic acid; PC, phosphatidylserine; PE, phosphatidylcholine; PG, phosphatidylglycerol; phSM, phytosphingosine; PI, phosphatidylinositol; PS, phosphatidylserine; SiE, sitosterol ester; SM, sphingomyelin; So, sphingosine; MG, monoglyceride; SQDG, Sulfoquinovosyldiacylglycerol; StE, stigmasterol ester; TG, triglyceride; WE, wax esters.</p> "> Figure 2
<p>The lipid intensity of various lipid classes. The intensity of 7 classes of lipids including GP, SP, GL, SL, ST, FA, and PL and 33 kinds of lipid sub-classes in the fiber cell. GP, glycerophospholipid; SP, sphingolipid; GL, glycerolipid; ST, sterol lipids; PL, prenol lipid; FA, fatty acid; SL, saccharolipid; AGlcSiE, AcylGlcSitosterol ester; Cer, ceramides; CerG1, glucocerebroside; CerP, ceramides phosphate; DG, diglyceride; CL, cardiolipin; DGMG, Digalactosylmonoacylglycerol; DGDG, digalactosyldiacylglycerol; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPI, lysophosphatidylinositol; MG, monoglyceride; MGDG, monogalactosyldiacylglycerol; MGMG, Monogalactosylmonoacylglycerol; OAHFA, O-Acetylated Hydroxy Fatty Acid; PA, phosphatidic acid; PC, phosphatidylserine; PE, phosphatidylcholine; PG, phosphatidylglycerol; phSM, phytosphingosine; PI, phosphatidylinositol; PS, phosphatidylserine; SiE, sitosterol ester; SM, sphingomyelin; So, sphingosine; SQDG, Sulfoquinovosyldiacylglycerol; StE, stigmasterol ester; TG, triglyceride; WE, wax esters; Co, coenzyme.</p> "> Figure 3
<p>The intensity difference in lipid sub-classes and lipid molecule species between 10-DPA fiber cells and 20-DPA fiber cells. (<b>A</b>): The fold changes in various lipid sub-classes between 10-DPA fiber cells and 20-DPA fiber cells; (<b>B</b>): the fold changes in various lipid molecule species between 10-DPA fiber cells and 20-DPA fiber cells; (<b>C</b>): the proportion of various lipid compounds in the total significantly changed lipids; (<b>D</b>): the proportion of various lipid molecule species in the total significantly changed lipids. 10 DPA: 10-DPA fibers of TM-1 (wild type); 20 DPA: 20-DPA fibers of TM-1 (wild type).</p> "> Figure 4
<p>The intensity difference in lipid sub-classes and lipid molecule species between 10-DPA fiber cells of TM-1 (wild type) and 10-DPA fiber cells of <span class="html-italic">li-1</span> mutant. (<b>A</b>): The fold changes in various lipid sub-classes between 10-DPA fiber cells of TM-1 and 10-DPA fiber cells of <span class="html-italic">li-1</span> mutant; (<b>B</b>): the fold changes in various lipid molecule species between 10-DPA fiber cells of TM-1 and 10-DPA fiber cells of li-1 mutant; (<b>C</b>): the proportion of various lipid compounds in the total significantly changed lipids; (<b>D</b>): the proportion of various lipid molecule species in the total significantly changed lipids. 10 DPA: 10-DPA fibers of TM-1 (wild type); 10 <span class="html-italic">li-1</span>: 10-DPA fibers of <span class="html-italic">li-1</span> mutant.</p> "> Figure 5
<p>Sphingolipid classes in cotton fiber cells and their alteration in <span class="html-italic">li-1</span> mutant fiber cells compared with its wild-type TM-1. The change ratio represents the percentage of increase and decrease in sphingolipid classes and molecular species in <span class="html-italic">li-1</span> fiber cells compared to wild-type fiber cells. (<b>A</b>): The number of classes and molecular species of sphingolipids detected in fiber cells of <span class="html-italic">li-1</span> and TM-1; (<b>B</b>): the change percentage of sphingolipid content in <span class="html-italic">li-1</span> fiber cells; (<b>C</b>): the change percentage of molecular species of t-S1P and Sph; (<b>D</b>): the change percentage of molecular species of Cer; (<b>E</b>): the change percentage of molecular species of Phyto-Cer; (<b>F</b>): the change percentage of molecular species of GIPC; (<b>G</b>): the change percentage of molecular species of PhytoCer-OHFA; (<b>H</b>): the change percentage of molecular species of GluCer. Cer, ceramides; PhytoCer, phytoceramides; PhytoCer-OHFA, phytoceramides with hydroxylated fatty acyls; S1P, sphingosine-1-phosphate; t-S1P, phytosphingosine-1-phosphate; Sph, sphingosines; PhytoSph, phytosphingosines; GluCer, glucosylceramides; Phyto-GluCer, phyto-glucosylceramides; GIPC, glycosyl inositol phospho ceramides.</p> "> Figure 6
<p>The content changes in sterol and steryl ester in <span class="html-italic">li-1</span> fiber cells. (<b>A</b>) The content changes in total sterol and various sterol classes in <span class="html-italic">li-1</span> fiber cells. (<b>B</b>) The content changes in total steryl ester and two steryl esters in <span class="html-italic">li-1</span> fiber cells. (<b>C</b>) The ratio of stigmasterol to sitosterol (St/Si) and campesterol to sitosterol (C/S) in 10-DPA fibers of mutant and wild type.</p> "> Figure 7
<p>GO annotations and KEGG enrichment analysis for the differentially expressed genes in 10-DPA fiber cells between <span class="html-italic">li-1</span> mutant and TM-1 wild type. Red arrows indicated the pathway involved in lipid metabolism.</p> "> Figure 8
<p>The expression changes in selected genes in <span class="html-italic">li-1</span> mutant fiber cells. Gh_D12G0217, LAG1 homologue 2; Gh_A07G0513, LAG1 longevity assurance homolog 3; Gh_D10G0211, Lactosylceramide 4-alpha-galactosyltransferase; Gh_A06G0144, phospholipase A 2A; Gh_A02G0884, GDSL-like Lipase/Acylhydrolase superfamily protein; Gh_D03G1074 and Gh_A05G3810, HXXXD-type acyl-transferase family protein; Gh_A08G1600, phospholipase D beta 1; Gh_A01G1605, alcohol dehydrogenase 1; Gh_D06G2376, 3-ketoacyl-CoA synthase 19. Error bars represent the SD for three independent experiments and asterisks indicate statistically significant differences between <span class="html-italic">li-1</span> and TM-1 fiber cells, as determined by Student’s <span class="html-italic">t</span>-test (** <span class="html-italic">p</span> < 0.01).</p> "> Figure 9
<p>Oil bodies in the leaf and fiber cell of TM-1 and <span class="html-italic">li-1</span> mutant. (<b>A</b>) Oil bodies in the leaf of TM-1 and <span class="html-italic">li-1</span> mutant; (<b>B</b>) oil bodies in the fiber cell of TM-1 and <span class="html-italic">li-1</span> mutant. <span class="html-italic">Li-1</span>, <span class="html-italic">li-1</span> mutant; TM-1, wild type; UV, ultraviolet light; BF, bright light.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Untargeted Lipidomics Analysis in Fiber Cells
2.2. The Lipid Difference Between the Stage of Rapid Elongation and SCW Deposition of Fiber Cells
2.3. The Lipid Change in Fiber Cells of li-1 Mutant
2.4. The Changes in Sphingolipids in li-1 Mutant Fiber Cells
2.5. The Changes in Phytosterols in li-1 Mutant Fiber Cells
2.6. The Expression of Genes Involved in Lipid Metabolism Was Altered in li-1 Fiber Cells
2.7. The Expression Levels of Key Genes in Lipid Metabolism Were Elevated in li-1 Fiber Cells
2.8. The Number of Oil Bodies Was Increased in li-1 Leaf and Fiber Cells
3. Discussion
3.1. The Role of Lipids in Fiber Elongation and SCW Deposition
3.2. The Lipid Metabolism Disruption in the li-1 Mutant Fibers
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. RNA Extraction and qRT-PCR Assay
4.3. Sample Preparation and Lipid Extraction and Lipidomics
4.4. The Nile Red Stain
4.5. Bioinformatic Analysis
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Kim, H.J.; Triplett, B.A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127, 1361–1366. [Google Scholar] [CrossRef]
- Qin, Y.M.; Zhu, Y.X. How cotton fibers elongate: A tale of linear cell-growth mode. Curr. Opin. Plant Biol. 2011, 14, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Haigler, C.H.; Betancur, L.; Stiff, M.R.; Tuttle, J.R. Cotton fiber: A powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 2012, 3, 104. [Google Scholar] [CrossRef]
- Stiff, M.R.; Haigler, C.H. Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis. Sci. Rep. 2016, 6, 27883. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, C.; Yang, X.; Liu, K.; Wu, Z.; Zhang, X.; Zheng, W.; Xun, Q.; Liu, C.; Lu, L.; et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytol. 2014, 203, 437–448. [Google Scholar] [CrossRef]
- Griffee, F.; Ligon, L.L. Occurrence of “Lintless” Cotton Plants and the Inheritance of the Character “Lintless”. Agron. J. 1929, 21, 711–717. [Google Scholar] [CrossRef]
- Bolton, J.J.; Soliman, K.M.; Wilkins, T.A.; Jenkins, J.N. Aberrant Expression of Critical Genes during Secondary Cell Wall Biogenesis in a Cotton Mutant, Ligon Lintless-1 (Li-1). Comp. Funct. Genom. 2009, 2009, 659301. [Google Scholar] [CrossRef]
- Gilbert, M.K.; Kim, H.J.; Tang, Y.; Naoumkina, M.; Fang, D.D. Comparative transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms pertinent to fiber elongation in cotton (Gossypium hirsutum L.). PLoS ONE 2014, 9, e95554. [Google Scholar] [CrossRef]
- Gilbert, M.K.; Turley, R.B.; Kim, H.J.; Li, P.; Thyssen, G.; Tang, Y.; Delhom, C.D.; Naoumkina, M.; Fang, D.D. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1). BMC Genom. 2013, 14, 403. [Google Scholar] [CrossRef]
- Liu, K.; Sun, J.; Yao, L.; Yuan, Y. Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant. Genomics 2012, 100, 42–50. [Google Scholar] [CrossRef]
- Zhao, P.M.; Wang, L.L.; Han, L.B.; Wang, J.; Yao, Y.; Wang, H.Y.; Du, X.M.; Luo, Y.M.; Xia, G.X. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.). J. Proteome Res. 2010, 9, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Kohel, R.J.; Quisenberry, J.E.; Benedict, C.R. Fiber Elongation and Dry Weight Changes in Mutant Lines of Cotton. Crop Sci. 1974, 14, 471–474. [Google Scholar] [CrossRef]
- Karaca, M.; Saha, S.; Jenkins, J.N.; Zipf, A.; Kohel, R.; Stelly, D.M. Simple sequence repeat (SSR) markers linked to the Ligon lintless (Li(1)) mutant in cotton. J. Hered. 2002, 93, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Kohel, R.J.; Benedict, C.R.; Jividen, G.M. Incorporation of [14C]Glucose into Crystalline Cellulose in Aberrant Fibers of a Cotton Mutant. Crop. Sci. 1993, 33, 1036–1040. [Google Scholar] [CrossRef]
- Ohlrogge, J.; Browse, J. Lipid biosynthesis. Plant Cell 1995, 7, 957–970. [Google Scholar] [PubMed]
- Sanjaya Miller, R.; Durrett, T.P.; Kosma, D.K.; Lydic, T.A.; Muthan, B.; Koo, A.J.K.; Bukhman, Y.V.; Reid, G.E.; Howe, G.A.; Ohlrogge, J. Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2. Plant Cell 2013, 25, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Farmer, E.E.; Weber, H.; Vollenweider, S. Fatty acid signaling in Arabidopsis. Planta 1998, 206, 167–174. [Google Scholar] [CrossRef]
- Liu, G.-J.; Xiao, G.-H.; Liu, N.-J.; Liu, D.; Chen, P.-S.; Qin, Y.-M.; Zhu, Y.-X. Targeted Lipidomics Studies Reveal that Linolenic Acid Promotes Cotton Fiber Elongation by Activating Phosphatidylinositol and Phosphatidylinositol Monophosphate Biosynthesis. Mol. Plant 2015, 8, 911–921. [Google Scholar] [CrossRef]
- Ji, S.J.; Lu, Y.C.; Feng, J.X.; Wei, G.; Li, J.; Shi, Y.H.; Fu, Q.; Liu, D.; Luo, J.C.; Zhu, Y.X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Res. 2003, 31, 2534–2543. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zhu, S.W.; Mao, X.Z.; Feng, J.X.; Qin, Y.M.; Zhang, L.; Cheng, J.; Wei, L.P.; Wang, Z.Y.; Zhu, Y.X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18, 651–664. [Google Scholar] [CrossRef]
- Yang, S.S.; Cheung, F.; Lee, J.J.; Ha, M.; Wei, N.E.; Sze, S.H.; Stelly, D.M.; Thaxton, P.; Triplett, B.; Town, C.D.; et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J. 2006, 47, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.Y.; Wang, L.J.; Chen, S.P.; Hu, W.L.; Chen, X.Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007, 17, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.M.; Hu, C.Y.; Pang, Y.; Kastaniotis, A.J.; Hiltunen, J.K.; Zhu, Y.X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 2007, 19, 3692–3704. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.M.; Pujol, F.M.; Hu, C.Y.; Feng, J.X.; Kastaniotis, A.J.; Hiltunen, J.K.; Zhu, Y.X. Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. J. Exp. Bot. 2007, 58, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Dou, L.; Shang, H.; Li, H.; Yu, J.; Xiao, G. GhPIPLC2D promotes cotton fiber elongation by enhancing ethylene biosynthesis. iScience 2021, 24, 102199. [Google Scholar] [CrossRef]
- Wanjie, S.W.; Welti, R.; Moreau, R.A.; Chapman, K.D. Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids 2005, 40, 773–785. [Google Scholar] [CrossRef]
- Chen, M.; Cahoon, E.B.; Saucedo-García, M.; Plasencia, J.; Gavilanes-Ruíz, M. Plant Sphingolipids: Structure, Synthesis and Function. In Lipids in Photosynthesis: Essential and Regulatory Functions; Wada, H., Murata, N., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 77–115. [Google Scholar]
- Lynch, D.V.; Dunn, T.M. An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytol. 2004, 161, 677–702. [Google Scholar] [CrossRef]
- Markham, J.E.; Jaworski, J.G. Rapid measurement of sphingolipids from Arabidopsis thaliana by reversed-phase high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 1304–1314. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Suo, X.; Li, F.; Bao, C.; He, S.; Huang, L.; Luo, M. Membrane lipid raft organization during cotton fiber development. J. Cotton Res. 2020, 3, 13. [Google Scholar] [CrossRef]
- Xu, F.; Chen, Q.; Huang, L.; Luo, M. Advances about the Roles of Membranes in Cotton Fiber Development. Membranes 2021, 11, 471. [Google Scholar] [CrossRef]
- Wang, L.; Liu, C.; Liu, Y.; Luo, M. Fumonisin B1-Induced Changes in Cotton Fiber Elongation Revealed by Sphingolipidomics and Proteomics. Biomolecules 2020, 10, 1258. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, F.; Wang, L.; Suo, X.D.; Wang, Q.L.; Meng, Q.; Huang, L.; Ma, C.X.; Li, G.M.; Luo, M. Sphingolipid Profile during Cotton Fiber Growth Revealed That a Phytoceramide Containing Hydroxylated and Saturated VLCFA Is Important for Fiber Cell Elongation. Biomolecules 2021, 11, 1352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Meng, Q.; Xu, F.; Chen, Q.; Ma, C.; Huang, L.; Li, G.; Luo, M. Comparative Metabolomics Analysis Reveals Sterols and Sphingolipids Play a Role in Cotton Fiber Cell Initiation. Int. J. Mol. Sci. 2021, 22, 11438. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, Q.; Meng, Q.; Wang, G.; Xu, F.; Chen, Q.; Liu, F.; Hu, Y.; Luo, M. Overexpression of a ceramide synthase gene, GhCS1, inhibits fiber cell initiation and elongation by promoting the synthesis of ceramides containing dihydroxy LCB and VLCFA. Front. Plant Sci. 2022, 13, 1000348. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, Q.; Xu, F.; Chen, Q.; Ma, C.; Huang, L.; Li, G.; Liu, F.; Luo, M. Down-regulating a fiber-specific KCR like gene GhKCRL1 suppressed fiber elongation through blocking the synthesis of sphingolipids in fiber cell. Ind. Crops Prod. 2022, 186, 115290. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Q.; Wang, Q.; Zhang, H.; Tian, H.; Wang, T.; Xu, F.; Yan, X.; Luo, M. Cotton sphingosine kinase GhLCBK1 participates in fiber cell elongation by affecting sphingosine-1-phophate and auxin synthesis. Int. J. Biol. Macromol. 2024, 267, 131323. [Google Scholar] [CrossRef]
- Tartaglio, V.; Rennie, E.A.; Cahoon, R.; Wang, G.; Baidoo, E.; Mortimer, J.C.; Cahoon, E.B.; Scheller, H.V. Glycosylation of inositol phosphorylceramide sphingolipids is required for normal growth and reproduction in Arabidopsis. Plant J. 2017, 89, 278–290. [Google Scholar] [CrossRef] [PubMed]
- Olzmann, J.A.; Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019, 20, 137–155. [Google Scholar] [CrossRef]
- Chapman, K.D.; Dyer, J.M.; Mullen, R.T. Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: From Yeast to Man. J. Lipid Res. 2012, 53, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.; Liu, J.Y. Molecular characterization of GhPLD alpha 1 and its relationship with se(c)ondary cell wall thickening in cotton fibers. Acta Bioch. Bioph. Sin. 2017, 49, 33–43. [Google Scholar] [CrossRef]
- Deng, S.; Wei, T.; Tan, K.; Hu, M.; Li, F.; Zhai, Y.; Ye, S.; Xiao, Y.; Hou, L.; Pei, Y.; et al. Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: Role of phytosterols in cell elongation. Sci. China Life Sci. 2016, 59, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Tan, K.L.; Zang, Z.L.; Xiao, Z.Y.; Chen, K.J.; Hu, M.Y.; Luo, M. Modification of phytosterol composition influences cotton fiber cell elongation and secondary cell wall deposition. BMC Plant Biol. 2019, 19, 208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ruan, Y.-L.; Zhou, N.; Wang, F.; Guan, X.; Fang, L.; Shang, X.; Guo, W.; Zhu, S.; Zhang, T. Suppressing a Putative Sterol Carrier Gene Reduces Plasmodesmal Permeability and Activates Sucrose Transporter Genes during Cotton Fiber Elongation. Plant Cell 2017, 29, 2027–2046. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wei, T.; Wang, Q.; Li, G.; Meng, Q.; Huang, L.; Cheng, X.; Yan, X.; Hu, Y.; Xu, F.; et al. GhSMO2-2 is regulated by brassinosteroid signal and involved in cotton fiber elongation via influencing phytosterol and sphingolipid biosynthesis. Ind. Crops Prod. 2023, 205, 117527. [Google Scholar] [CrossRef]
- Ferrer, A.; Altabella, T.; Arro, M.; Boronat, A. Emerging roles for conjugated sterols in plants. Prog. Lipid Res. 2017, 67, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Valitova, Y.N.; Kotlova, E.R.; Novikov, A.V.; Shavarda, A.L.; Artemenko, K.A.; Zubarev, R.A.; Minibayeva, F.V. Binding of sterols affects membrane functioning and sphingolipid composition in wheat roots. Biochemistry 2010, 75, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Mongrand, S.; Morel, J.; Laroche, J.; Claverol, S.; Carde, J.P.; Hartmann, M.A.; Bonneu, M.; Simon-Plas, F.; Lessire, R.; Bessoule, J.J. Lipid rafts in higher plant cells—Purification and characterization of triton X-100-insoluble microdomains from tobacco plasma membrane. J. Biol. Chem. 2004, 279, 36277–36286. [Google Scholar] [CrossRef]
- Lefebvre, B.; Furt, F.; Hartmann, M.A.; Michaelson, L.V.; Carde, J.P.; Sargueil-Boiron, F.; Rossignol, M.; Napier, J.A.; Cullimore, J.; Bessoule, J.J.; et al. Characterization of lipid rafts from Medicago truncatula root plasma membranes: A proteomic study reveals the presence of a raft-associated redox system. Plant Physiol. 2007, 144, 402–418. [Google Scholar] [CrossRef]
- Borner, G.H.H.; Sherrier, D.J.; Weimar, T.; Michaelson, L.V.; Hawkins, N.D.; MacAskill, A.; Napier, J.A.; Beale, M.H.; Lilley, K.S.; Dupree, P. Analysis of detergent-resistant membranes in Arabidopsis. Evidence for plasma membrane lipid rafts. Plant Physiol. 2005, 137, 104–116. [Google Scholar] [CrossRef]
- Zäuner, S.; Ternes, P.; Warnecke, D. Biosynthesis of sphingolipids in plants (and some of their functions). Adv. Exp. Med. Biol. 2010, 688, 249–263. [Google Scholar]
- Ali, U.; Li, H.; Wang, X.; Guo, L. Emerging Roles of Sphingolipid Signaling in Plant Response to Biotic and Abiotic Stresses. Mol. Plant 2018, 11, 1328–1343. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Luberto, C. Ceramide in the eukaryotic stress response. Trends Cell Biol. 2000, 10, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Scheller, H.V.; Moore, W.M.; Fang, L.; Chan, C.; Ishikawa, T.; Ebert, B.; Rautengarten, C.; Kawai-Yamada, M.; Heazlewood, J.L.; Mortimer, J.C. Sphingolipid glycosylation and its role in membrane organization and plant-microbe interactions. Glycobiology 2018, 28, 1020. [Google Scholar]
- Liang, W.H.; Fang, L.; Xiang, D.; Hu, Y.; Feng, H.; Chang, L.J.; Zhang, T.Z. Transcriptome Analysis of Short Fiber Mutant Ligon lintless-1 (Li-1) Reveals Critical Genes and Key Pathways in Cotton Fiber Elongation and Leaf Development. PLoS ONE 2015, 10, e0143503. [Google Scholar] [CrossRef] [PubMed]
- Ternes, P.; Feussner, K.; Werner, S.; Lerche, J.; Iven, T.; Heilmann, I.; Riezman, H.; Feussner, I. Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytol. 2011, 192, 841–854. [Google Scholar] [CrossRef]
- Mullen, T.D.; Hannun, Y.A.; Obeid, L.M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 2012, 441, 789–802. [Google Scholar] [CrossRef]
- Worgall, T.S. Sphingolipids: Major regulators of lipid metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.L.; Shimada, T.; Okazaki, Y.; Higashi, Y.; Saito, K.; Kuwata, K.; Oyama, K.; Kato, M.; Ueda, H.; Nakano, A.; et al. HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nat. Plants 2019, 5, 1154–1166. [Google Scholar] [CrossRef] [PubMed]
- Krahmer, N.; Hilger, M.; Kory, N.; Wilfling, F.; Stoehr, G.; Mann, M.; Farese, R.V., Jr.; Walther, T.C. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell. Proteom. MCP 2013, 12, 1115–1126. [Google Scholar] [CrossRef]
- Deevska, G.M.; Nikolova-Karakashian, M.N. The expanding role of sphingolipids in lipid droplet biogenesis. Biochim. Et Biophys. Acta Mol. Cell Biol. Lipids 2017, 1862, 1155–1165. [Google Scholar] [CrossRef] [PubMed]
- Guzha, A.; Whitehead, P.; Ischebeck, T.; Chapman, K.D. Lipid Droplets: Packing Hydrophobic Molecules Within the Aqueous Cytoplasm. Annu. Rev. Plant Biol. 2023, 74, 195–223. [Google Scholar] [CrossRef] [PubMed]
- Ischebeck, T.; Krawczyk, H.E.; Mullen, R.T.; Dyer, J.M.; Chapman, K.D. Lipid droplets in plants and algae: Distribution, formation, turnover and function. Semin. Cell Dev. Biol. 2020, 108, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Wang, T.; Zhao, Y.; Ma, C.; Shao, Q. Molecular Machinery of Lipid Droplet Degradation and Turnover in Plants. Int. J. Mol. Sci. 2023, 24, 16039. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Wang, Q.; Yan, X.; Zhang, H.; Chen, Z.; Ma, C.; Meng, Q.; Xu, F.; Luo, M. The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition. Int. J. Mol. Sci. 2025, 26, 1375. https://doi.org/10.3390/ijms26031375
Tian H, Wang Q, Yan X, Zhang H, Chen Z, Ma C, Meng Q, Xu F, Luo M. The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition. International Journal of Molecular Sciences. 2025; 26(3):1375. https://doi.org/10.3390/ijms26031375
Chicago/Turabian StyleTian, Huidan, Qiaoling Wang, Xingying Yan, Hongju Zhang, Zheng Chen, Caixia Ma, Qian Meng, Fan Xu, and Ming Luo. 2025. "The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition" International Journal of Molecular Sciences 26, no. 3: 1375. https://doi.org/10.3390/ijms26031375
APA StyleTian, H., Wang, Q., Yan, X., Zhang, H., Chen, Z., Ma, C., Meng, Q., Xu, F., & Luo, M. (2025). The Disruptions of Sphingolipid and Sterol Metabolism in the Short Fiber of Ligon-Lintless-1 Mutant Revealed Obesity Impeded Cotton Fiber Elongation and Secondary Cell Wall Deposition. International Journal of Molecular Sciences, 26(3), 1375. https://doi.org/10.3390/ijms26031375