The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment
"> Figure 1
<p>Origins and Excretion of TMAO. TMAO is absorbed directly from dietary sources through the intestines. Exogenous TMAO is subsequently produced via oxidation by the gut microbiome and the liver. The primary excretion pathways for TMAO include urine, feces, and respiration. Abbreviations: TMA, trimethylamine; TMAO, trimethylamine N-oxide; FMO, flavin-containing monooxygenase; OCT, organic cation transporter.</p> "> Figure 2
<p>Contributions of TMAO to the pathogenesis of MCI. TMAO potentially contributes to the pathogenesis of MCI by promoting oxidative stress, neuroinflammation, and abnormal protein accumulation. TMAO induces oxidative stress by enhancing the production of reactive oxygen species (ROS) and reducing antioxidant activity. It also triggers neuroinflammation by activating NF-κβ and the NLRP3 inflammasome. Furthermore, TMAO exacerbates the formation of amyloid plaques and neurofibrillary tangles by impairing the intracellular ubiquitin–proteasome system. Abbreviations: TMAO, trimethylamine N-oxide; GSH, glutathione; GPX, glutathione peroxidase; SOD, superoxide dismutase; MsrA, methionine sulfoxide reductase A; NF-κB, nuclear factor kappa B; NLRP3, NOD-like receptor family pyrin domain containing 3; Sirt3, sirtuin 3; mtROS, mitochondrial reactive oxygen species; IL, interleukin; TXNIP, thioredoxin-interacting protein; NFTs, neurofibrillary tangles.</p> "> Figure 3
<p>Effects of TMAO on the blood–brain barrier and synaptic plasticity. TMAO impairs the structural integrity and function of the blood–brain barrier (BBB) and reduces synaptic plasticity, contributing to the pathogenesis of MCI. It reduces hippocampal synaptic plasticity by activating the PI3K/Akt/mTOR and PERK signaling pathways. Simultaneously, TMAO disrupts the BBB, facilitating the accumulation of neurotoxic molecules in the brain and inducing oxidative stress and neuroinflammation. Abbreviations: SYN, synaptophysin; NMDAR, N-methyl-D-aspartate receptor; GluA1, glutamate receptor ionotropic AMPA 1; GluN2A, glutamate receptor ionotropic NMDA 2A; PSD95, postsynaptic density protein 95; PERK, protein kinase R-like endoplasmic reticulum kinase; ATF4, activating transcription factor 4; CREB, cAMP response element-binding protein; p-PI3K, phosphorylated phosphoinositide 3-kinase; p-Akt, phosphorylated Akt protein; p-mTOR, phosphorylated mammalian target of rapamycin; ZO-1, zonula occludens-1; PDGFRβ, platelet-derived growth factor receptor beta.</p> "> Figure 4
<p>Effects of TMAO on mitochondrial metabolism. TMAO adversely affects mitochondrial metabolism, contributing to the pathogenesis of MCI. It significantly inhibits the oxidation of pyruvate and fatty acids in mitochondria, leading to energy metabolism disorders. Abbreviations: CAT, carnitine acylcarnitine translocase; CPT2, carnitine palmitoyl transferase II; TCA cycle, tricarboxylic acid cycle; IMM, inner mitochondrial membrane; OMM, outer mitochondrial membrane; ATP, adenosine triphosphate.</p> "> Figure 5
<p>Treatment Strategy for improving MCI by affecting TMAO.</p> ">
Abstract
:1. Introduction
2. Origin and Excretion of TMAO
2.1. Origins of TMAO
2.1.1. Endogenous TMAO
2.1.2. Exogenous TMAO
2.2. Excretion of TMAO
3. Abnormal Levels of TMAO in MCI
4. TMAO and MCI Risk Factors
4.1. TMAO and Hypertension
4.2. TMAO and Stroke
4.3. TMAO and Depression
4.4. TMAO and Cardiovascular Disease
4.5. TMAO and Diabetes
4.6. TMAO and Other Diseases
5. The Role of TMAO in the Pathogenesis of MCI
5.1. TMAO Promotes Oxidative Stress
5.2. TMAO Disrupts the Blood–Brain Barrier (BBB) and Reduces Synaptic Plasticity
5.3. TMAO Induces Inflammation
5.4. TMAO Affects Mitochondrial Metabolism
5.5. TMAO Promotes Abnormal Protein Aggregation
6. TMAO and Intervention in MCI
6.1. Dietary Structure
6.2. Traditional Chinese Medicine
6.3. Microecological Agents
6.4. Other Therapies
7. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.T. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age Ageing 2022, 51, afac173. [Google Scholar] [CrossRef]
- Chertkow, H. Mild cognitive impairment. Curr. Opin. Neurol. 2002, 15, 401–407. [Google Scholar] [CrossRef]
- Ganguli, M.; Dodge, H.H.; Shen, C.; DeKosky, S.T. Mild cognitive impairment, amnestic type: An epidemiologic study. Neurology 2004, 63, 115–121. [Google Scholar] [CrossRef]
- Han, H.; Qin, Y.; Chen, D.; An, J.; Yu, H. Progression and Reversion of Mild Cognitive Impairment: A Study Using Data from the Uniform Data Set. Chin. Gen. Pract. 2022, 25, 1070–1076. [Google Scholar] [CrossRef]
- Sanford, A.M. Mild Cognitive Impairment. Clin. Geriatr. Med. 2017, 33, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA 2011, 108, 16050–16055. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, Q.; Ma, S.R.; Zhao, Z.X.; Pan, L.B.; Cong, L.; Han, P.; Peng, R.; Yu, H.; Lin, Y.; et al. Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct. Target. Ther. 2021, 6, 77. [Google Scholar] [CrossRef] [PubMed]
- Schluter, J.; Peled, J.U.; Taylor, B.P.; Markey, K.A.; Smith, M.; Taur, Y.; Niehus, R.; Staffas, A.; Dai, A.; Fontana, E.; et al. The gut microbiota is associated with immune cell dynamics in humans. Nature 2020, 588, 303–307. [Google Scholar] [CrossRef]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef]
- Brunt, V.E.; LaRocca, T.J.; Bazzoni, A.E.; Sapinsley, Z.J.; Miyamoto-Ditmon, J.; Gioscia-Ryan, R.A.; Neilson, A.P.; Link, C.D.; Seals, D.R. The gut microbiome-derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience 2021, 43, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Ugur, Z.; Bisgin, H.; Akyol, S.; Bahado-Singh, R.; Wilson, G.; Imam, K.; Maddens, M.E.; Graham, S.F. Targeted Metabolic Profiling of Urine Highlights a Potential Biomarker Panel for the Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment: A Pilot Study. Metabolites 2020, 10, 357. [Google Scholar] [CrossRef]
- Li, D.; Ke, Y.; Zhan, R.; Liu, C.; Zhao, M.; Zeng, A.; Shi, X.; Ji, L.; Cheng, S.; Pan, B.; et al. Trimethylamine-N-oxide promotes brain aging and cognitive impairment in mice. Aging Cell 2018, 17, e12768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, G.; Li, R.; Liu, R.; Yu, Z.; Zhang, Z.; Wan, Z. Trimethylamine N-oxide aggravated cognitive impairment from APP/PS1 mice and protective roles of voluntary exercise. Neurochem. Int. 2023, 162, 105459. [Google Scholar] [CrossRef]
- Buawangpong, N.; Pinyopornpanish, K.; Phrommintikul, A.; Chindapan, N.; Devahastin, S.; Chattipakorn, N.; Chattipakorn, S.C. Increased plasma trimethylamine-N-oxide levels are associated with mild cognitive impairment in high cardiovascular risk elderly population. Food Funct. 2022, 13, 10013–10022. [Google Scholar] [CrossRef]
- Xu, R.; Wang, Q. Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst. Biol. 2016, 10 (Suppl. S3), 63. [Google Scholar] [CrossRef]
- Zhuang, Z.; Gao, M.; Yang, R.; Liu, Z.; Cao, W.; Huang, T. Causal relationships between gut metabolites and Alzheimer’s disease: A bidirectional Mendelian randomization study. Neurobiol. Aging 2021, 100, 119.e15–119.e18. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, P.; Boserman, P.; van der Vegt, N.F.A.; Shea, J.E. Trimethylamine N-oxide Counteracts Urea Denaturation by Inhibiting Protein-Urea Preferential Interaction. J. Am. Chem. Soc. 2018, 140, 483–492. [Google Scholar] [CrossRef]
- Fennema, D.; Phillips, I.R.; Shephard, E.A. Trimethylamine and Trimethylamine N-Oxide, a Flavin-Containing Monooxygenase 3 (FMO3)-Mediated Host-Microbiome Metabolic Axis Implicated in Health and Disease. Drug Metab. Dispos. 2016, 44, 1839–1850. [Google Scholar] [CrossRef]
- Zhu, Y.; Jameson, E.; Crosatti, M.; Schäfer, H.; Rajakumar, K.; Bugg, T.D.H.; Chen, Y. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc. Natl. Acad. Sci. USA 2014, 111, 4268–4273. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef]
- Romano, K.A.; Vivas, E.I.; Amador-Noguez, D.; Rey, F.E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 2015, 6, e02481. [Google Scholar] [CrossRef] [PubMed]
- Arias, N.; Arboleya, S.; Allison, J.; Kaliszewska, A.; Higarza, S.G.; Gueimonde, M.; Arias, J.L. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 2020, 12, 2340. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Chen, X.L.; Zhang, D.; Wang, P.; Sheng, Q.; Peng, M.; Xie, B.B.; Qin, Q.L.; Li, P.Y.; Zhang, X.Y.; et al. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide. Mol. Microbiol. 2017, 103, 992–1003. [Google Scholar] [CrossRef]
- Taesuwan, S.; Cho, C.E.; Malysheva, O.V.; Bender, E.; King, J.H.; Yan, J.; Thalacker-Mercer, A.E.; Caudill, M.A. The metabolic fate of isotopically labeled trimethylamine-N-oxide (TMAO) in humans. J. Nutr. Biochem. 2017, 45, 77–82. [Google Scholar] [CrossRef]
- Vogt, N.M.; Romano, K.A.; Darst, B.F.; Engelman, C.D.; Johnson, S.C.; Carlsson, C.M.; Asthana, S.; Blennow, K.; Zetterberg, H.; Bendlin, B.B.; et al. The gut microbiota-derived metabolite trimethylamine N-oxide is elevated in Alzheimer’s disease. Alzheimer’s Res. Ther. 2018, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Wan, J.; Wang, C.; Liu, J.; Qian, C.; Tan, H. Increased Serum Trimethylamine N-Oxide Level in Type 2 Diabetic Patients with Mild Cognitive Impairment. Diabetes Metab. Syndr. Obes. Targets Ther. 2022, 15, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhou, F.; Lu, L. Clinical study on the relationship between trimethylamine N-Oxide and mild cognitive impairment in young and middle-aged patients with maintenance hemodialysis. Clin. Focus 2019, 34, 991–994. [Google Scholar]
- Zhang, W. Trimethylamine N-Oxide Regulates Cognitive Function in Alzheimer’s Disease Through Brain-Gut-Microbiota Axis. Ph.D. Thesis, Chongqing Medical University, Chongqing, China, 2023. [Google Scholar]
- Tang, W.H.; Wang, Z.; Fan, Y.; Levison, B.; Hazen, J.E.; Donahue, L.M.; Wu, Y.; Hazen, S.L. Prognostic Value of Elevated Levels of Intestinal Microbe-Generated Metabolite Trimethylamine-N-Oxide in Patients With Heart Failure. J. Am. Coll. Cardiol. 2014, 64, 1908–1914. [Google Scholar] [CrossRef]
- Zhu, W.; Romano, K.A.; Li, L.; Buffa, J.A.; Sangwan, N.; Prakash, P.; Tittle, A.N.; Li, X.S.; Fu, X.; Androjna, C.; et al. Gut microbes impact stroke severity via the trimethylamine N-oxide pathway. Cell Host Microbe 2021, 29, 1199–1208.e5. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.J.; Rim, J.H.; Ji, D.; Lee, S.; Yoo, H.S.; Jung, J.H.; Baik, K.; Choi, Y.; Ye, B.S.; Sohn, Y.H.; et al. Gut microbiota-derived metabolite trimethylamine N-oxide as a biomarker in early Parkinson’s disease. Nutrition 2021, 83, 111090. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y. A prospective cohort study of Serum Trimethylamine Oxide and the Risk of Mild Cognitive Impairment in the elderly. Master’s Thesis, China Medical University, Shengyang, China, 2022. [Google Scholar]
- Li, T.; Chen, Y.; Gua, C.; Li, X. Elevated Circulating Trimethylamine N-Oxide Levels Contribute to Endothelial Dysfunction in Aged Rats Through Vascular Inflammation and Oxidative Stress. Front. Physiol. 2017, 8, 350. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Luo, Y.; Liu, J.P.; Sun, N.; Guo, D.; Cui, L.L.; Zheng, P.P.; Yao, S.M.; Yang, J.F.; Wang, H. Trimethylamine N-Oxide, a Gut Microbiota-Dependent Metabolite, is Associated with Frailty in Older Adults with Cardiovascular Disease. Clin. Interv. Aging 2020, 15, 1809–1820. [Google Scholar] [CrossRef]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Zhang, H.X.; Yang, J.C.; Qu, Y.M.; Jiang, Y.; Li, J.L. Influencing factors of mild cognitive impairment among the Chinese elderly: A meta-analysis. Natl. Med. J. China 2023, 103, 1340–1348. [Google Scholar] [CrossRef]
- Jiang, S.; Shui, Y.; Cui, Y.; Tang, C.; Wang, X.; Qiu, X.; Hu, W.; Fei, L.; Li, Y.; Zhang, S.; et al. Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II–induced hypertension. Redox Biol. 2021, 46, 102115. [Google Scholar] [CrossRef]
- Ge, X.; Zheng, L.; Zhuang, R.; Yu, P.; Xu, Z.; Liu, G.; Xi, X.; Zhou, X.; Fan, H. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose–Response Meta-analysis. Adv. Nutr. 2020, 11, 66–76. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, F.; Zhou, Q.; Qiu, Y.; Zhang, J.; Tu, Q.; Zhou, Z.; Shao, Y.; Xu, S.; Wang, Y.; et al. Berberine Improves Vascular Dysfunction by Inhibiting Trimethylamine-N-oxide via Regulating the Gut Microbiota in Angiotensin II-Induced Hypertensive Mice. Front. Microbiol. 2022, 13, 814855. [Google Scholar] [CrossRef]
- Khalesi, S.; Sun, J.; Buys, N.; Jayasinghe, R. Effect of probiotics on blood pressure: A systematic review and meta-analysis of randomized, controlled trials. Hypertension 2014, 64, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, Q.; Ding, X.; Chen, L.; Zhang, Z. Trimethylamine N-oxide and its precursors in relation to blood pressure: A mendelian randomization study. Front. Cardiovasc. Med. 2022, 9, 922441. [Google Scholar] [CrossRef] [PubMed]
- Oakley, C.I.; Vallejo, J.A.; Wang, D.; Gray, M.A.; Tiede-Lewis, L.M.; Shawgo, T.; Daon, E.; Zorn, G.; Stubbs, J.R.; Wacker, M.J. Trimethylamine-N-oxide acutely increases cardiac muscle contractility. Am. J. Physiol.-Heart Circ. Physiol. 2020, 318, H1272–H1282. [Google Scholar] [CrossRef] [PubMed]
- Langa, K.M.; Levine, D.A. The Diagnosis and Management of Mild Cognitive Impairment. JAMA 2014, 312, 2551–2561. [Google Scholar] [CrossRef]
- Kuźma, E.; Lourida, I.; Moore, S.F.; Levine, D.A.; Ukoumunne, O.C.; Llewellyn, D.J. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimer’s Dement. 2018, 14, 1416–1426. [Google Scholar] [CrossRef]
- Qiu, F.; Chen, W.; Gao, S.; He, L.; Ji, Y.; Du, J.; Chen, B.; Zhang, Y. A study on influencing factors for mild cognitive impairment in the elderly in Huangpu District, Shanghai. Geriatr. Health Care 2024, 30, 403–409+417. [Google Scholar]
- Cong, L.; Ren, Y.; Wang, Y.; Hou, T.; Dong, Y.; Han, X.; Yin, L.; Zhang, Q.; Feng, J.; Wang, L.; et al. Mild cognitive impairment among rural-dwelling older adults in China: A community-based study. Alzheimer’s Dement. 2022, 19, 56–66. [Google Scholar] [CrossRef]
- Ihle-Hansen, H.; Thommessen, B.; Wyller, T.B.; Engedal, K.; Øksengård, A.R.; Stenset, V.; Løken, K.; Aaberg, M.; Fure, B. Incidence and Subtypes of MCI and Dementia 1 Year after First-Ever Stroke in Patients without Pre-Existing Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2011, 32, 401–407. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Ye, Z.S.; Xia, N.G.; Xu, Y. TMAO as a Novel Predictor of Major Adverse Vascular Events and Recurrence in Patients with Large Artery Atherosclerotic Ischemic Stroke. Clin. Appl. Thromb./Hemost. 2022, 28, 10760296221090503. [Google Scholar] [CrossRef] [PubMed]
- Rexidamu, M.; Li, H.; Jin, H.; Huang, J. Serum levels of Trimethylamine-N-oxide in patients with ischemic stroke. Biosci. Rep. 2019, 39, BSR20190515. [Google Scholar] [CrossRef]
- Haghikia, A.; Li, X.S.; Liman, T.G.; Bledau, N.; Schmidt, D.; Zimmermann, F.; Kränkel, N.; Widera, C.; Sonnenschein, K.; Haghikia, A.; et al. Gut Microbiota–Dependent Trimethylamine N-Oxide Predicts Risk of Cardiovascular Events in Patients With Stroke and Is Related to Proinflammatory Monocytes. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2225–2235. [Google Scholar] [CrossRef]
- Liu, D.; Gu, S.; Zhou, Z.; Ma, Z.; Zuo, H. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study. J. Intern. Med. 2022, 293, 110–120. [Google Scholar] [CrossRef]
- Hong, Y.; Sun, Z.; Liu, N.; Yang, K.; Li, Y.; Xu, Q.; Guo, Z.; Duan, Y. The relationship between trimethylamine-N-oxide and the risk of acute ischemic stroke: A dose‒response meta-analysis. PLoS ONE 2023, 18, e0293275. [Google Scholar] [CrossRef]
- Ge, P.; Duan, H.; Tao, C.; Niu, S.; Hu, Y.; Duan, R.; Shen, A.; Sun, Y.; Sun, W. TMAO Promotes NLRP3 Inflammasome Activation of Microglia Aggravating Neurological Injury in Ischemic Stroke Through FTO/IGF2BP2. J. Inflamm. Res. 2023, 16, 3699–3714. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Fan, S.; Zhang, L.; Qi, H. TMAO Aggregates Neurological Damage Following Ischemic Stroke by Promoting Reactive Astrocytosis and Glial Scar Formation via the Smurf2/ALK5 Axis. Front. Cell. Neurosci. 2021, 15, 569424. [Google Scholar] [CrossRef]
- Kaur, N.; LaForce, G.; Mallela, D.P.; Saha, P.P.; Buffa, J.; Li, X.S.; Sangwan, N.; Rothenberg, K.; Zhu, W. Exploratory Transcriptomic Profiling Reveals the Role of Gut Microbiota in Vascular Dementia. Int. J. Mol. Sci. 2023, 24, 8091. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Witkowski, M.; Witkowski, M.; Friebel, J.; A Buffa, J.A.; Li, X.S.; Wang, Z.; Sangwan, N.; Li, L.; DiDonato, J.A.; Tizian, C.; et al. Vascular endothelial tissue factor contributes to trimethylamine N-oxide-enhanced arterial thrombosis. Cardiovasc. Res. 2021, 118, 2367–2384. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Cai, J.; Lei, A.; Liu, C.; Lin, R.; Jia, L.; Fu, Y. Gut microbial metabolite TMAO portends prognosis in acute ischemic stroke. J. Neuroimmunol. 2021, 354, 577526. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Cheng, H.; Shi, Y.; Liu, J.; Wang, Y.; Wan, D. Utility of Trimethylamine Oxide (TMAO) in Predicting Early Neurological Deterioration after Acute Ischemic Stroke. J. Coll. Physicians Surg.—Pak. JCPSP 2023, 33, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lei, S.Q.; Du, X.Z.; Yuan, B.; Liu, M.K. Naochang Tongtiao acupuncture based on brain-gut axis for acute ischemic stroke and its effect on levels of IL-17, hs-CRP and TMAO. Zhongguo Zhen Jiu = Chin. Acupunct. Moxibustion 2022, 42, 853–856. [Google Scholar] [CrossRef]
- Song, J.; Chen, X.; Lyu, Y.; Zhuang, W.; Zhang, J.; Gao, L.; Tong, X. Sanhuang Xiexin decoction promotes good functional outcome in acute ischemic stroke. Brain Behav. 2018, 9, e01185. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, A.; Pang, B.; Wu, Y.; Shi, J.; Zhang, N.; Ye, T. Electroacupuncture pretreatment alleviates spasticity after stroke in rats by inducing the NF-κB/NLRP3 signaling pathway and the gut-brain axis. Brain Res. 2024, 1822, 148643. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.; Thandavan, S.P.; Mohebbi, M.; Pasco, J.A.; Williams, L.J.; Walder, K.; Ng, B.L.; Gupta, V.B. Depression and bone loss as risk factors for cognitive decline: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 76, 101575. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, S.; Simoes Loureiro, I.; Kandana Arachchige, K.G.; Lefebvre, L. Late-Life Depression, Cognitive Impairment, and Relationship with Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. 2021, 50, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Shu, X.; Wu, X.; Chen, F.; Hu, H.; Zhang, J.; Yan, P.; Feng, H. Neuropsychiatric symptoms as prognostic makers for the elderly with mild cognitive impairment: A meta-analysis. J. Affect. Disord. 2020, 271, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fan, X.; Zhang, X. Cognitive Weakness and Its Influencing Factors in Elderly Patients with Mild Cognitive Impairment. Neural Inj. Funct. Reconstr. 2023, 18, 68–71+102. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Deng, K.; Hu, Y. Modulating gut microbiota improves neurological function and depressive symptoms in rats with post-stroke depression. Nan Fang Yi Ke Da Xue Xue Bao = J. South. Med. Univ. 2024, 44, 405–410. [Google Scholar] [CrossRef]
- Meinitzer, S.; Baranyi, A.; Holasek, S.; Schnedl, W.J.; Zelzer, S.; Mangge, H.; Herrmann, M.; Meinitzer, A.; Enko, D. Sex-Specific Associations of Trimethylamine-N-Oxide and Zonulin with Signs of Depression in Carbohydrate Malabsorbers and Nonmalabsorbers. Dis. Markers 2020, 2020, 7897240. [Google Scholar] [CrossRef]
- Zheng, P.; Chen, J.J.; Zhou, C.J.; Zeng, L.; Li, K.W.; Sun, L.; Liu, M.L.; Zhu, D.; Liang, Z.H.; Xie, P. Identification of sex-specific urinary biomarkers for major depressive disorder by combined application of NMR- and GC-MS-based metabonomics. Transl. Psychiatry 2016, 6, e955. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Wang, Z.; Levison, B.S.; Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 2013, 368, 1575–1584. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Huang, N.; Yuan, Z. Meta-analysis of Correlation between Plasma TMAO Concentration and Adverse Prognosis in Patients with Coronary Heart Disease. Chin. J. Integr. Med. Cardio-Cerebrovasc. Dis. 2023, 21, 3886–3891. [Google Scholar]
- Jarmukhanov, Z.; Mukhanbetzhanov, N.; Kozhakhmetov, S.; Nurgaziyev, M.; Sailybayeva, A.; Bekbossynova, M.; Kushugulova, A. The association between the gut microbiota metabolite trimethylamine N-oxide and heart failure. Front. Microbiol. 2024, 15, 1440241. [Google Scholar] [CrossRef]
- Yuan, H. Influencing factors of cognitive decline of mild cognitive impairment of the seniors. China Mod. Dr. 2013, 51, 12–14+17. [Google Scholar]
- González, H.M.; Tarraf, W.; González, K.A.; Fornage, M.; Zeng, D.; Gallo, L.C.; Talavera, G.A.; Daviglus, M.L.; Lipton, R.B.; Kaplan, R.; et al. Diabetes, cognitive decline, and mild cognitive impairment among diverse Hispanics/ Latinos: Study of Latinos–Investigation of neurocognitive aging results (HCHS/SOL). Diabetes Care 2020, 43, 1111–1117. [Google Scholar] [CrossRef]
- Li, J.Q.; Tan, L.; Wang, H.F.; Tan, M.S.; Tan, L.; Xu, W.; Zhao, Q.F.; Wang, J.; Jiang, T.; Yu, J.T. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry 2016, 87, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, H.; Ma, Z.; Fan, Y.; Xu, Y.; Tan, J.; Tian, J.; Cao, J.; Zhang, W.; Huang, G.; et al. Structural and functional alterations of the hippocampal subfields in T2DM with mild cognitive impairment and insulin resistance: A prospective study. J. Diabetes 2024, 16, e70029. [Google Scholar] [CrossRef]
- Kalagi, N.A.; Thota, R.N.; Stojanovski, E.; Alburikan, K.A.; Garg, M.L. Association between Plasma Trimethylamine N-Oxide Levels and Type 2 Diabetes: A Case Control Study. Nutrients 2022, 14, 2093. [Google Scholar] [CrossRef]
- Aw, W.; Fukuda, S. Understanding the role of the gut ecosystem in diabetes mellitus. J. Diabetes Investig. 2017, 9, 5–12. [Google Scholar] [CrossRef]
- Jia, J.; Dou, P.; Gao, M.; Kong, X.; Li, C.; Liu, Z.; Huang, T. Assessment of Causal Direction Between Gut Microbiota–Dependent Metabolites and Cardiometabolic Health: A Bidirectional Mendelian Randomization Analysis. Diabetes 2019, 68, 1747–1755. [Google Scholar] [CrossRef] [PubMed]
- Oellgaard, J.; Winther, S.A.; Hansen, T.S.; Rossing, P.; von Scholten, B.J. Trimethylamine N-oxide (TMAO) as a New Potential Therapeutic Target for Insulin Resistance and Cancer. Curr. Pharm. Des. 2017, 23, 3699–3712. [Google Scholar] [CrossRef]
- Lanz, M.; Janeiro, M.H.; Milagro, F.I.; Puerta, E.; Ludwig, I.A.; Pineda-Lucena, A.; Ramírez, M.J.; Solas, M. Trimethylamine N-oxide (TMAO) drives insulin resistance and cognitive deficiencies in a senescence accelerated mouse model. Mech. Ageing Dev. 2022, 204, 111668. [Google Scholar] [CrossRef]
- Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.M.; Pinheiro, A.A.; Koini, M.; Anderson, C.D.; Aparicio, H.; Hofer, E.; Kern, D.; Blacker, D.; DeCarli, C.; Hwang, S.J.; et al. Impaired kidney function, cerebral small vessel disease and cognitive disorders: The Framingham Heart Study. Nephrol. Dial. Transplant. 2024, 39, 1911–1922. [Google Scholar] [CrossRef]
- Janelidze, S.; Barthélemy, N.R.; He, Y.; Bateman, R.J.; Hansson, O. Mitigating the Associations of Kidney Dysfunction With Blood Biomarkers of Alzheimer Disease by Using Phosphorylated Tau to Total Tau Ratios. JAMA Neurol. 2023, 80, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tong, S.; Chu, X.; Feng, T.; Geng, M. Chronic Kidney Disease and Cognitive Impairment: The Kidney-Brain Axis. Kidney Dis. 2022, 8, 275–285. [Google Scholar] [CrossRef]
- Miller, S.M.; Wilson, L.E.; Greiner, M.A.; Pritchard, J.E.; Zhang, T.; Kaye, D.R.; Cohen, H.J.; Becher, R.D.; Maerz, L.L.; Dinan, M.A. Evaluation of mild cognitive impairment and dementia in patients with metastatic renal cell carcinoma. J. Geriatr. Oncol. 2022, 13, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Rocca, W.A.; Lohse, C.M.; Smith, C.Y.; Fields, J.A.; Machulda, M.M.; Mielke, M.M. Association of Premenopausal Bilateral Oophorectomy With Cognitive Performance and Risk of Mild Cognitive Impairment. JAMA Netw. Open 2021, 4, e2131448. [Google Scholar] [CrossRef]
- Huang, K.Y.; Tang, X.Y.; Yang, L.; Zhang, Z.Y.; Ye, K.X.; Shen, Q.F.; Wang, X.; Zhu, X.H.; Huang, X.W.; Lu, G.D.; et al. Inactive bowel movement and stroke are associated with increased risks of mild cognitive impairment among community-living Singapore elderly. Aging 2020, 12, 17257–17270. [Google Scholar] [CrossRef]
- Zhang, X.; Witteveen-Lane, M.; Skovira, C.; Dave, A.A.; Jones, J.S.; McNeely, E.R.; Lawrence, M.R.; Morgan, D.G.; Chesla, D.; Chen, B. Rural-Urban mild cognitive impairment comparison in West Michigan through EHR. Alzheimer’s Dement. 2024, 10, e12495. [Google Scholar] [CrossRef]
- Wilson, A.; Teft, W.A.; Morse, B.L.; Choi, Y.H.; Woolsey, S.; DeGorter, M.K.; Hegele, R.A.; Tirona, R.G.; Kim, R.B. Trimethylamine-N-oxide: A Novel Biomarker for the Identification of Inflammatory Bowel Disease. Dig. Dis. Sci. 2015, 60, 3620–3630. [Google Scholar] [CrossRef]
- Nantachai, G.; Vasupanrajit, A.; Tunvirachaisakul, C.; Solmi, M.; Maes, M. Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 79, 101639. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R.; Lovell, M.A. Damage to lipids, proteins, DNA, and RNA in mild cognitive impairment. Arch. Neurol. 2007, 64, 954–956. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A. Ubiquitin carboxyl-terminal hydrolase L-1 in brain: Focus on its oxidative/nitrosative modification and role in brains of subjects with Alzheimer disease and mild cognitive impairment. Free. Radic. Biol. Med. 2021, 177, 278–286. [Google Scholar] [CrossRef]
- Cenini, G.; Sultana, R.; Memo, M.; Butterfield, D.A. Elevated levels of pro-apoptotic p53 and its oxidative modification by the lipid peroxidation product, HNE, in brain from subjects with amnestic mild cognitive impairment and Alzheimer’s disease. J. Cell. Mol. Med. 2008, 12, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Tramutola, A.; Triplett, J.C.; Di Domenico, F.; Niedowicz, D.M.; Murphy, M.P.; Coccia, R.; Perluigi, M.; Butterfield, D.A. Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): Analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J. Neurochem. 2015, 133, 739–749. [Google Scholar] [CrossRef]
- Hegde, M.L.; Rao, K.S. DNA induces folding in α-synuclein: Understanding the mechanism using chaperone property of osmolytes. Arch. Biochem. Biophys. 2007, 464, 57–69. [Google Scholar] [CrossRef]
- Kelly, S.C.; Nelson, P.T.; Counts, S.E. Pontine Arteriolosclerosis and Locus Coeruleus Oxidative Stress Differentiate Resilience from Mild Cognitive Impairment in a Clinical Pathologic Cohort. J. Neuropathol. Exp. Neurol. 2021, 80, 325–335. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Poon, H.F.; St Clair, D.; Keller, J.N.; Pierce, W.M.; Klein, J.B.; Markesbery, W.R. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer’s disease. Neurobiol. Dis. 2006, 22, 223–232. [Google Scholar] [CrossRef]
- Govindarajulu, M.; Pinky, P.D.; Steinke, I.; Bloemer, J.; Ramesh, S.; Kariharan, T.; Rella, R.T.; Bhattacharya, S.; Dhanasekaran, M.; Suppiramaniam, V.; et al. Gut Metabolite TMAO Induces Synaptic Plasticity Deficits by Promoting Endoplasmic Reticulum Stress. Front. Mol. Neurosci. 2020, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jiao, X.; Ma, Y.; Liu, Y.; Zhang, L.; He, Y.; Chen, Y. Trimethylamine N-oxide induces inflammation and endothelial dysfunction in human umbilical vein endothelial cells via activating ROS-TXNIP-NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 2016, 481, 63–70. [Google Scholar] [CrossRef]
- Deng, Y.; Zou, J.; Hong, Y.; Peng, Q.; Fu, X.; Duan, R.; Chen, J.; Chen, X. Higher Circulating Trimethylamine N-Oxide Aggravates Cognitive Impairment Probably via Downregulating Hippocampal SIRT1 in Vascular Dementia Rats. Cells 2022, 11, 3650. [Google Scholar] [CrossRef]
- Meng, F.; Li, N.; Li, D.; Song, B.; Li, L. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behav. Brain Res. 2019, 368, 111902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, C.; Cao, G.; Dong, X.; Li, D.; Jiang, L. Higher Circulating Trimethylamine N-oxide Sensitizes Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Probably by Downregulating Hippocampal Methionine Sulfoxide Reductase A. Neurochem. Res. 2019, 44, 2506–2516. [Google Scholar] [CrossRef]
- Hoyles, L.; Pontifex, M.G.; Rodriguez-Ramiro, I.; Anis-Alavi, M.A.; Jelane, K.S.; Snelling, T.; Solito, E.; Fonseca, S.; Carvalho, A.L.; Carding, S.R.; et al. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 2021, 9, 235. [Google Scholar] [CrossRef] [PubMed]
- Wullschleger, S.; Loewith, R.; Hall, M.N. TOR signaling in growth and metabolism. Cell 2006, 124, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.; Gu, C.; Wu, R.; Yao, Y.; Gao, F.; Luo, L.; Zhang, Y. TMAO promotes dementia progression by mediating the PI3K/Akt/mTOR pathway. Tissue Cell 2023, 81, 102034. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, J.; Sun, Y.; Xu, P.; Liu, J.L.; Sun, S.; Zhu, B.; Wu, H. Dietary choline metabolite TMAO impairs cognitive function and induces hippocampal synaptic plasticity declining through the mTOR/P70S6K/4EBP1 pathway. Food Funct. 2023, 14, 2881–2895. [Google Scholar] [CrossRef]
- Spriggs, M.J.; Thompson, C.S.; Moreau, D.; McNair, N.A.; Wu, C.C.; Lamb, Y.N.; McKay, N.S.; King, R.O.C.; Antia, U.; Shelling, A.N.; et al. Human Sensory LTP Predicts Memory Performance and Is Modulated by the BDNF Val(66)Met Polymorphism. Front. Hum. Neurosci. 2019, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Praveenraj, S.S.; Sonali, S.; Anand, N.; Tousif, H.A.; Vichitra, C.; Kalyan, M.; Kanna, P.V.; Chandana, K.A.; Shasthara, P.; Mahalakshmi, A.M.; et al. The Role of a Gut Microbial-Derived Metabolite, Trimethylamine N-Oxide (TMAO), in Neurological Disorders. Mol. Neurobiol. 2022, 59, 6684–6700. [Google Scholar] [CrossRef]
- Chen, M.L.; Zhu, X.H.; Ran, L.; Lang, H.D.; Yi, L.; Mi, M.T. Trimethylamine-N-Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3-SOD2-mtROS Signaling Pathway. J. Am. Heart Assoc. 2017, 6, e006347. [Google Scholar] [CrossRef]
- Yue, C.; Yang, X.; Li, J.; Chen, X.; Zhao, X.; Chen, Y.; Wen, Y. Trimethylamine N-oxide prime NLRP3 inflammasome via inhibiting ATG16L1-induced autophagy in colonic epithelial cells. Biochem. Biophys. Res. Commun. 2017, 490, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Meng, G.; Huang, B.; Zhou, X.; Stavrakis, S.; Wang, M.; Li, X.; Zhou, L.; Wang, Y.; Wang, M.; et al. A potential relationship between gut microbes and atrial fibrillation: Trimethylamine N-oxide, a gut microbe-derived metabolite, facilitates the progression of atrial fibrillation. Int. J. Cardiol. 2018, 255, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Valla, J.; Schneider, L.; Niedzielko, T.; Coon, K.D.; Caselli, R.; Sabbagh, M.N.; Ahern, G.L.; Baxter, L.; Alexander, G.; Walker, D.G.; et al. Impaired platelet mitochondrial activity in Alzheimer’s disease and mild cognitive impairment. Mitochondrion 2006, 6, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.F.; Santana, I.; Esteves, A.R.; Baldeiras, I.; Arduino, D.M.; Oliveira, C.R.; Cardoso, S.M. Prodromal metabolic phenotype in MCI cybrids: Implications for Alzheimer’s disease. Curr. Alzheimer Res. 2013, 10, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Makrecka-Kuka, M.; Volska, K.; Antone, U.; Vilskersts, R.; Grinberga, S.; Bandere, D.; Liepinsh, E.; Dambrova, M. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol. Lett. 2017, 267, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, L.; Malinowska, A.M.; Petracci, I.; Szwengiel, A.; Gabbianelli, R.; Chmurzynska, A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol. Nutr. Food Res. 2022, 66, e2200003. [Google Scholar] [CrossRef]
- Bordoni, L.; Petracci, I.; Feliziani, G.; de Simone, G.; Rucci, C.; Gabbianelli, R. Gut Microbiota-Derived Trimethylamine Promotes Inflammation with a Potential Impact on Epigenetic and Mitochondrial Homeostasis in Caco-2 Cells. Antioxidants 2024, 13, 1061. [Google Scholar] [CrossRef] [PubMed]
- Videja, M.; Vilskersts, R.; Korzh, S.; Cirule, H.; Sevostjanovs, E.; Dambrova, M.; Makrecka-Kuka, M. Microbiota-Derived Metabolite Trimethylamine N-Oxide Protects Mitochondrial Energy Metabolism and Cardiac Functionality in a Rat Model of Right Ventricle Heart Failure. Front. Cell Dev. Biol. 2020, 8, 622741. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.I.; Siedlak, S.L.; Wang, X.; Santos, M.S.; Oliveira, C.R.; Tabaton, M.; Nunomura, A.; Szweda, L.I.; Aliev, G.; Smith, M.A.; et al. Increased autophagic degradation of mitochondria in Alzheimer disease. Autophagy 2007, 3, 614–615. [Google Scholar] [CrossRef]
- Velmurugan, G.V.; Vekaria, H.J.; Hartz, A.M.S.; Bauer, B.; Hubbard, W.B. Oxidative stress alters mitochondrial homeostasis in isolated brain capillaries. Fluids Barriers CNS 2024, 21, 81. [Google Scholar] [CrossRef]
- Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002, 82, 47–95. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.Z.; Jiang, S.; Zhang, L.; Yu, Z.B. Mitochondrial electron transport chain, ROS generation and uncoupling (Review). Int. J. Mol. Med. 2019, 44, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Markesbery, W.R. Neuropathologic alterations in mild cognitive impairment: A review. J. Alzheimer’s Dis. JAD 2010, 19, 221–228. [Google Scholar] [CrossRef]
- Kumari, A.; Rajput, R.; Shrivastava, N.; Somvanshi, P.; Grover, A. Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2018, 99, 19–27. [Google Scholar] [CrossRef]
- Yang, D.S.; Yip, C.M.; Huang, T.H.; Chakrabartty, A.; Fraser, P.E. Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J. Biol. Chem. 1999, 274, 32970–32974. [Google Scholar] [CrossRef]
- Levine, Z.A.; Larini, L.; LaPointe, N.E.; Feinstein, S.C.; Shea, J.E. Regulation and aggregation of intrinsically disordered peptides. Proc. Natl. Acad. Sci. USA 2015, 112, 2758–2763. [Google Scholar] [CrossRef] [PubMed]
- Scaramozzino, F.; Peterson, D.W.; Farmer, P.; Gerig, J.T.; Graves, D.J.; Lew, J. TMAO promotes fibrillization and microtubule assembly activity in the C-terminal repeat region of tau. Biochemistry 2006, 45, 3684–3691. [Google Scholar] [CrossRef] [PubMed]
- Hoscheidt, S.; Sanderlin, A.H.; Baker, L.D.; Jung, Y.; Lockhart, S.; Kellar, D.; Whitlow, C.T.; Hanson, A.J.; Friedman, S.; Register, T.; et al. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid-life: A randomized trial. Alzheimer’s Dement. 2021, 18, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Russin, K.J.; Nair, K.S.; Montine, T.J.; Baker, L.D.; Craft, S. Diet Effects on Cerebrospinal Fluid Amino Acids Levels in Adults with Normal Cognition and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2021, 84, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.J.; Lautenschlager, N.T.; Wattanapenpaiboon, N.; Greenop, K.R.; Beer, C.; Flicker, L.; Alfonso, H.; Nowson, C.A. Dietary Patterns Are Associated with Cognition among Older People with Mild Cognitive Impairment. Nutrients 2012, 4, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- Aarsland, D.; Khalifa, K.; Bergland, A.K.; Soennesyn, H.; Oppedal, K.; Holteng, L.B.; Oesterhus, R.; Nakling, A.; Jarholm, J.A.; de Lucia, C.; et al. A Randomised Placebo-Controlled Study of Purified Anthocyanins on Cognition in Individuals at Increased Risk for Dementia. Am. J. Geriatr. Psychiatry 2023, 31, 141–151. [Google Scholar] [CrossRef]
- Shen, X.; Li, X.; Li, Y.; Zhang, X.; Zhao, L. Analysis of epidemic status and influencing factors of mild cognitive im-pairment in Chinese people ≥ 65 years old. Mod. Prev. Med. 2024, 51, 2013–2019+2042. [Google Scholar] [CrossRef]
- García-Casares, N.; Gallego Fuentes, P.; Barbancho, M.; López-Gigosos, R.; García-Rodríguez, A.; Gutiérrez-Bedmar, M. Alzheimer’s Disease, Mild Cognitive Impairment and Mediterranean Diet. A Systematic Review and Dose-Response Meta-Analysis. J. Clin. Med. 2021, 10, 4642. [Google Scholar] [CrossRef]
- Xu, R.; Gao, T.; Cai, J.; Zhang, H.; Zhou, H.; Ding, K.; Chen, L.; Zhong, F.; Ma, A. Food consumption and mild cognitive impairment in Qingdao rural elderly: A cross-sectional study. Asia Pac. J. Clin. Nutr. 2020, 29, 867–875. [Google Scholar] [CrossRef]
- Uchiyama-Tanaka, Y.; Yamakage, H.; Inui, T. The Effects of Dietary Intervention and Macrophage-Activating Factor Supplementation on Cognitive Function in Elderly Users of Outpatient Rehabilitation. Nutrients 2024, 16, 2078. [Google Scholar] [CrossRef]
- Ornish, D.; Madison, C.; Kivipelto, M.; Kemp, C.; McCulloch, C.E.; Galasko, D.; Artz, J.; Rentz, D.; Lin, J.; Norman, K.; et al. Effects of intensive lifestyle changes on the progression of mild cognitive impairment or early dementia due to Alzheimer’s disease: A randomized, controlled clinical trial. Alzheimer’s Res. Ther. 2024, 16, 122. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Park, S.; Paik, J.W.; Chae, S.W.; Kim, D.H.; Jeong, D.G.; Ha, E.; Kim, M.; Hong, G.; Park, S.H.; et al. Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2019, 11, 305. [Google Scholar] [CrossRef]
- Brandt, J.; Buchholz, A.; Henry-Barron, B.; Vizthum, D.; Avramopoulos, D.; Cervenka, M.C. Preliminary Report on the Feasibility and Efficacy of the Modified Atkins Diet for Treatment of Mild Cognitive Impairment and Early Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 68, 969–981. [Google Scholar] [CrossRef]
- Li, Q.; Wu, T.; Liu, R.; Zhang, M.; Wang, R. Soluble Dietary Fiber Reduces Trimethylamine Metabolism via Gut Microbiota and Co-Regulates Host AMPK Pathways. Mol. Nutr. Food Res. 2017, 61, 1700473. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, H.; Zhang, M.; Wu, T.; Liu, R. Altered short chain fatty acid profiles induced by dietary fiber intervention regulate AMPK levels and intestinal homeostasis. Food Funct. 2019, 10, 7174–7187. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Li, L.; Xiao, Y.; He, S.; Zhao, J.; Lin, X.; He, Y.; Wang, J.; Guo, X.; Liang, W.; et al. The Effect of Inulin-Type Fructans on Plasma Trimethylamine N-Oxide Levels in Peritoneal Dialysis Patients: A Randomized Crossover Trial. Mol. Nutr. Food Res. 2023, 67, e2200531. [Google Scholar] [CrossRef]
- Wang, X.; Hu, X.; He, W.; Yin, J.Y. Inulin does not affect trimethylamine N-oxide formation in mice with a high-fat diet combined with choline and L-carnitine. Food Sci. Nutr. 2024, 12, 8968–8977. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.D.; Zhang, Q.Y.; Mi, M.T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio 2016, 7, e02210-15. [Google Scholar] [CrossRef]
- Annunziata, G.; Maisto, M.; Schisano, C.; Ciampaglia, R.; Narciso, V.; Tenore, G.C.; Novellino, E. Effects of Grape Pomace Polyphenolic Extract (Taurisolo(®)) in Reducing TMAO Serum Levels in Humans: Preliminary Results from a Randomized, Placebo-Controlled, Cross-Over Study. Nutrients 2019, 11, 139. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.H.; Chen, L.P.; Wang, C.C.; Zhao, Y.C.; Wang, Y.M.; Xue, C.H.; Zhang, T.T. Docosahexaenoic acid-acylated curcumin diester alleviates cisplatin-induced acute kidney injury by regulating the effect of gut microbiota on the lipopolysaccharide- and trimethylamine-N-oxide-mediated PI3K/Akt/NF-κB signaling pathway in mice. Food Funct. 2022, 13, 6103–6117. [Google Scholar] [CrossRef]
- Berge, R.K.; Ramsvik, M.S.; Bohov, P.; Svardal, A.; Nordrehaug, J.E.; Rostrup, E.; Bruheim, I.; Bjørndal, B. Krill oil reduces plasma triacylglycerol level and improves related lipoprotein particle concentration, fatty acid composition and redox status in healthy young adults—A pilot study. Lipids Health Dis. 2015, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Chen, Y.; Yang, S.; Liang, C.; Gao, L.; Wang, S.; Wang, Y.; Zhang, Z.; Shi, N. Chinese Herbal Medicine for Mild Cognitive Impairment: A Systematic Review of Randomized Controlled Trials. Front. Neurol. 2022, 13, 903224. [Google Scholar] [CrossRef]
- Li, N.; Li, O.; Sha, Z.; Wang, Y.; Li, Z.; Li, Y.; Zhang, J.; Zhao, Z.; Xu, S.; Xu, J. Efficacy and Safety of Acupuncture Combined with Yishen Granule in Elderly Adults with Mild Cognitive Impairment: A Multicenter, Randomized Controlled Trial. Altern. Ther. Health Med. 2023, 29, 340–349. [Google Scholar] [PubMed]
- Zhang, J.; Liu, Z.; Zhang, H.; Yang, C.; Li, H.; Li, X.; Chen, K.; Zhang, Z. A Two-Year Treatment of Amnestic Mild Cognitive Impairment using a Compound Chinese Medicine: A Placebo Controlled Randomized Trial. Sci. Rep. 2016, 6, 28982. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Shin, H.; Kim, H.; Yim, T.; Jeon, G.; Jahng, G.; Cho, S.; Park, S.; Ko, C. Efficacy and safety of Kami-guibi-tang for mild cognitive impairment: A pilot, randomized, double-blind, placebo-controlled trial. Alzheimer’s Dement. 2022, 18, e060537. [Google Scholar] [CrossRef]
- Zhao, M.; Dong, Z.; Yu, Z.; Xiao, S.; Li, Y. Effects of Ginkgo biloba extract in improving episodic memory of patients with mild cognitive impairment: A randomized controlled trial. J. Chin. Integr. Med. 2012, 10, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, C.; Pu, B. Effects of ginkgo biloba tablet in treating mild cognitive impairment. Chin. J. Integr. Tradit. West. Med. 2012, 32, 1208–1211. [Google Scholar]
- Yu, Z.; Zhang, C.; Pu, B.; Xiao, S.; Dong, Z.; Li, Y. Ginkgo leaves tablet improved the memory quotient of patients with mild cognitive impairment: A clinical observation. Chin. J. Integr. Tradit. West. Med. 2014, 34, 287–291. [Google Scholar]
- Lin, Z.Y.; Huang, T.W.; Huang, J.S.; Zheng, G.Y.; Fu, K.L.; Chen, X.Y.; Lin, K. Nourishing Xin and Shen method improved mild cognitive impairment due to subcortical small vessel disease: A clinical study. Chin. J. Integr. Tradit. West. Med. 2015, 35, 41–45. [Google Scholar]
- Miao, Y.C.; Tian, J.Z.; Shi, J.; Mao, M. Effects of Chinese medicine for tonifying the kidney and resolving phlegm and blood stasis in treating patients with amnestic mild cognitive impairment: A randomized, double-blind and parallel-controlled trial. J. Chin. Integr. Med. 2012, 10, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhong, Q.; Sun, S. A Prospective Multicenter Randomized Double-blinded Controlled Clinical Trial on Effects of Tiantai No.1 in Treating Mild Cognitive Impairment. Chin. J. Integr. Tradit. West. Med. 2010, 30, 255–258. [Google Scholar]
- Guo, R.; Zhou, W.; Luo, Z. Effect of modified huanglian wendan decoction in treating senile patients with mild cognitive impairment of turbid-phlegm blocking orifice syndrome. Chin. J. Integr. Tradit. West. Med. 2010, 30, 33–36. [Google Scholar]
- Zhao, J. Curcumin Antagonizes Vascular Endothelial Cell Pyroptosis Induced by Trimethylamine Oxide and Its Mechanism. Master’s Thesis, Nanhua University, Hengyang, China, 2020. [Google Scholar]
- Liu, J.; Zhou, S.; Wang, Y.; Liu, J.; Sun, S.; Sun, Y.; Xu, P.; Xu, X.; Zhu, B.; Wu, H. ZeXieYin Formula alleviates TMAO-induced cognitive impairment by restoring synaptic plasticity damage. J. Ethnopharmacol. 2023, 314, 116604. [Google Scholar] [CrossRef]
- Zhu, G.; Zhao, J.; Zhang, H.; Chen, W.; Wang, G. Probiotics for Mild Cognitive Impairment and Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Foods 2021, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Wang, R.; Lu, J.; Peng, S.; Yang, S.; Wang, Y.; Zheng, K.; Li, R.; Lin, L.; Li, M. Probiotic intervention benefits multiple neural behaviors in older adults with mild cognitive impairment. Geriatr. Nurs. 2023, 51, 167–175. [Google Scholar] [CrossRef]
- Aljumaah, M.R.; Bhatia, U.; Roach, J.; Gunstad, J.; Azcarate Peril, M.A. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr. 2022, 41, 2565–2576. [Google Scholar] [CrossRef] [PubMed]
- Asaoka, D.; Xiao, J.; Takeda, T.; Yanagisawa, N.; Yamazaki, T.; Matsubara, Y.; Sugiyama, H.; Endo, N.; Higa, M.; Kasanuki, K.; et al. Effect of Probiotic Bifidobacterium breve in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimer’s Dis. 2022, 88, 75–95. [Google Scholar] [CrossRef]
- Xiao, J.; Katsumata, N.; Bernier, F.; Ohno, K.; Yamauchi, Y.; Odamaki, T.; Yoshikawa, K.; Ito, K.; Kaneko, T. Probiotic Bifidobacterium breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Alzheimer’s Dis. 2020, 77, 139–147. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kitada, Y.; Shimomura, Y.; Naito, Y. Bifidobacterium animalis subsp. lactis LKM512 reduces levels of intestinal trimethylamine produced by intestinal microbiota in healthy volunteers: A double-blind, placebo-controlled study. J. Funct. Foods 2017, 36, 94–101. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, P.P.; Yu, D.; Liao, G.C.; Wu, S.L.; Fang, A.P.; Chen, P.Y.; Wang, X.Y.; Luo, Y.; Long, J.A.; et al. Effects of probiotic supplementation on serum trimethylamine-N-oxide level and gut microbiota composition in young males: A double-blinded randomized controlled trial. Eur. J. Nutr. 2021, 60, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Zhang, Z.; Lv, Y.; Tong, L.; Liu, T.; Yi, H.; Zhou, X.; Yu, Z.; Tian, X.; Cui, Q.; et al. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis. Nutrition 2020, 79–80, 110941. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Yang, D.; Tao, X.; Yu, J.; Xiong, H.; Wei, H. Enterobacter aerogenes ZDY01 Attenuates Choline-Induced Trimethylamine N-Oxide Levels by Remodeling Gut Microbiota in Mice. J. Microbiol. Biotechnol. 2017, 27, 1491–1499. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Caruso, D.; Buonomo, G.; D’avino, M.; Ciampaglia, R.; Maisto, M.; Schisano, C.; Bocchino, B.; Novellino, E. Lactofermented Annurca Apple Puree as a Functional Food Indicated for the Control of Plasma Lipid and Oxidative Amine Levels: Results from a Randomised Clinical Trial. Nutrients 2019, 11, 122. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Summanen, P.H.; Henning, S.M.; Hsu, M.; Lam, H.; Huang, J.; Tseng, C.H.; Dowd, S.E.; Finegold, S.M.; Heber, D.; et al. Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: A pilot study. Front. Physiol. 2015, 6, 216. [Google Scholar] [CrossRef]
- Canfora, E.E.; van der Beek, C.M.; Hermes, G.D.A.; Goossens, G.H.; Jocken, J.W.E.; Holst, J.J.; van Eijk, H.M.; Venema, K.; Smidt, H.; Zoetendal, E.G.; et al. Supplementation of Diet with Galacto-oligosaccharides Increases Bifidobacteria, but Not Insulin Sensitivity, in Obese Prediabetic Individuals. Gastroenterology 2017, 153, 87–97.e3. [Google Scholar] [CrossRef] [PubMed]
- Baugh, M.E.; Steele, C.N.; Angiletta, C.J.; Mitchell, C.M.; Neilson, A.P.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Inulin Supplementation Does Not Reduce Plasma Trimethylamine N-Oxide Concentrations in Individuals at Risk for Type 2 Diabetes. Nutrients 2018, 10, 793. [Google Scholar] [CrossRef]
- Dahl, W.J.; Hung, W.L.; Ford, A.L.; Suh, J.H.; Auger, J.; Nagulesapillai, V.; Wang, Y. In older women, a high-protein diet including animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine-N-oxide. Nutr. Res. 2020, 78, 72–81. [Google Scholar] [CrossRef]
- Ramadhani, A.; Tanaka, A.; Minagawa, K.; Takehara, S.; Yamada, T.; Sone, H.; Kaneko, N.; Nohno, K.; Ogawa, H. Exploring the Changes in Mild Cognitive Impairment Blood-Based Biomarkers after Local Antibiotic Periodontal Treatment in Diabetic Patients: Secondary Analysis of Data from a Randomized Controlled Trial. Eur. J. Dent. 2024. Advance online publication. [Google Scholar] [CrossRef]
- Stremmel, W.; Schmidt, K.V.; Schuhmann, V.; Kratzer, F.; Garbade, S.F.; Langhans, C.D.; Fricker, G.; Okun, J.G. Blood Trimethylamine-N-Oxide Originates from Microbiota Mediated Breakdown of Phosphatidylcholine and Absorption from Small Intestine. PLoS ONE 2017, 12, e0170742. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, M.E.; Hov, J.R.; Ueland, T.; Dahl, T.B.; Kummen, M.; Otterdal, K.; Holm, K.; Berge, R.K.; Mollnes, T.E.; Trøseid, M.; et al. Gut Microbiota-Dependent Trimethylamine N-Oxide Associates With Inflammation in Common Variable Immunodeficiency. Front. Immunol. 2020, 11, 574500. [Google Scholar] [CrossRef]
- Chang, J.; Liu, M.; Liu, C.; Zhou, S.; Jiao, Y.; Sun, H.; Ji, Y. Effects of vitamins and polyunsaturated fatty acids on cognitive function in older adults with mild cognitive impairment: A meta-analysis of randomized controlled trials. Eur. J. Nutr. 2024, 63, 1003–1022. [Google Scholar] [CrossRef] [PubMed]
- Kane, M. Lecanemab Therapy and APOE Genotype. In Medical Genetics Summaries; Pratt, V.M., Scott, S.A., Pirmohamed, M., Esquivel, B., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2012. [Google Scholar]
- Obeid, R.; Awwad, H.M.; Kirsch, S.H.; Waldura, C.; Herrmann, W.; Graeber, S.; Geisel, J. Plasma trimethylamine-N-oxide following supplementation with vitamin D or D plus B vitamins. Mol. Nutr. Food Res. 2017, 61, 1600358. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lai, L.; Lin, J.; Zheng, J.; Nie, X.; Zhu, X.; Xue, J.; Liu, T. Ranitidine and finasteride inhibit the synthesis and release of trimethylamine N-oxide and mitigates its cardiovascular and renal damage through modulating gut microbiota. Int. J. Biol. Sci. 2020, 16, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Hao, L.; Yang, K.; Feng, W.; Guo, Z.; Liu, M.; Xiao, R. Fecal microbiota transplantation derived from mild cognitive impairment individuals impairs cerebral glucose uptake and cognitive function in wild-type mice: Bacteroidetes and TXNIP-GLUT signaling pathway. Gut Microbes 2024, 16, 2395907. [Google Scholar] [CrossRef] [PubMed]
- Su, S.H.; Chen, M.; Wu, Y.F.; Lin, Q.; Wang, D.P.; Sun, J.; Hai, J. Fecal microbiota transplantation and short-chain fatty acids protected against cognitive dysfunction in a rat model of chronic cerebral hypoperfusion. CNS Neurosci. Ther. 2023, 29 (Suppl. S1), 98–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, W.; Lin, Z.; Zheng, C.; Chen, S.; Zhou, H.; Liu, Z. Preliminary evidence for developing safe and efficient fecal microbiota transplantation as potential treatment for aged related cognitive impairments. Front. Cell. Infect. Microbiol. 2023, 13, 1103189. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Tang, W.; Zhou, C.; Sun, X.; Wei, Z.; Zhong, J.; Huang, Z. Fecal Microbiota Transplantation Is a Promising Method to Restore Gut Microbiota Dysbiosis and Relieve Neurological Deficits after Traumatic Brain Injury. Oxidative Med. Cell. Longev. 2021, 2021, 5816837. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, T.; Xiao, Y.; Tian, L.; Cui, B.; Ji, G.; Liu, Y.Y.; Zhang, F. Timing for the second fecal microbiota transplantation to maintain the long-term benefit from the first treatment for Crohn’s disease. Appl. Microbiol. Biotechnol. 2019, 103, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.Y.; Xia, G.H.; Lu, J.Q.; Chen, M.X.; Zhen, X.; Wang, S.; You, C.; Nie, J.; Zhou, H.W.; Yin, J. Impaired renal function and dysbiosis of gut microbiota contribute to increased trimethylamine-N-oxide in chronic kidney disease patients. Sci. Rep. 2017, 7, 1445. [Google Scholar] [CrossRef]
- Smits, L.P.; Kootte, R.S.; Levin, E.; Prodan, A.; Fuentes, S.; Zoetendal, E.G.; Wang, Z.; Levison, B.S.; Cleophas, M.C.P.; Kemper, E.M.; et al. Effect of Vegan Fecal Microbiota Transplantation on Carnitine- and Choline-Derived Trimethylamine-N-Oxide Production and Vascular Inflammation in Patients With Metabolic Syndrome. J. Am. Heart Assoc. 2018, 7, e008342. [Google Scholar] [CrossRef]
- Gan, G.; Zhang, R.; Zeng, Y.; Lu, B.; Luo, Y.; Chen, S.; Lei, H.; Cai, Z.; Huang, X. Fecal microbiota transplantation validates the importance of gut microbiota in an ApoE(-/-) mouse model of chronic apical periodontitis-induced atherosclerosis. BMC Oral Health 2024, 24, 1455. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, T.; Peng, W.; Wang, M.; Chen, X.; Yang, Y.; Huang, Y.; Jiang, Y.; Wang, F.; Sun, S.; et al. Effects of a Multicomponent Intervention with Cognitive Training and Lifestyle Guidance for Older Adults at Risk of Dementia: A Randomized Controlled Trial. J. Clin. Psychiatry 2024, 85, 54825. [Google Scholar] [CrossRef]
- Falck, R.S.; Davis, J.C.; Best, J.R.; Chan, P.C.Y.; Li, L.C.; Wyrough, A.B.; Bennett, K.J.; Backhouse, D.; Liu-Ambrose, T. Effect of a Multimodal Lifestyle Intervention on Sleep and Cognitive Function in Older Adults with Probable Mild Cognitive Impairment and Poor Sleep: A Randomized Clinical Trial. J. Alzheimer’s Dis. JAD 2020, 76, 179–193. [Google Scholar] [CrossRef]
- Erickson, M.L.; Malin, S.K.; Wang, Z.; Brown, J.M.; Hazen, S.L.; Kirwan, J.P. Effects of Lifestyle Intervention on Plasma Trimethylamine N-Oxide in Obese Adults. Nutrients 2019, 11, 179. [Google Scholar] [CrossRef]
- Baptista, L.C.; Wilson, L.; Barnes, S.; Anton, S.D.; Buford, T.W. Effects of resveratrol on changes in trimethylamine-N-oxide and circulating cardiovascular factors following exercise training among older adults. Exp. Gerontol. 2024, 194, 112479. [Google Scholar] [CrossRef]
Reference | Sample | Research Subjects | TMAO Levels | Consequence |
---|---|---|---|---|
Xu N., 2022 [27] | 74 /150 | MCI in Chinese type 2 diabetes mellitus /healthy controls | 14.16 (11.28, 18.44) /5.10 (4.48, 6.06) | Serum TMAO Increase |
Vogt N.M., 2018 [26] | 35 /335 | MCI/cognitively unimpaired individuals | 2.1 ± 1.4 /1.3 ± 1.5 | Cerebrospinal fluid TMAO Increase |
Li D., 2018 [13] | 168 /118 /141 | Young adults /middle-aged adults /older adults | 2.85 ± 3.10 /4.42 ± 4.39 /9.83 ± 10.63 | Plasma TMAO Increase |
Zhu Z.Z., 2019 [28] | 50 /58 | MCI in maintenance hemodialysis (MHD) /non-MCI in MHD | 196.4 ± 41.2 /109.9 ± 61.7 | Serum TMAO Increase |
Yuan W., 2023 [33] | 112 /312 | MCI/healthy controls | 0.74 (0.48,1.12) /0.82 (0.55,1.32) | Serum TMAO Decrease |
Li T., 2017 [34] | 18 /18 | Old rats/young rats | 14.30 ± 1.52 /6.41 ± 1.27 | Plasma TMAO Increase |
Brunt V.E., 2021 [11] | 22/ 103 | Young adults /middle-aged and older adults | Unavailable | Plasma TMAO Increase |
Brunt V.E., 2021 [11] | 9/ 14 | Young mice /older mice | Unavailable | Plasma TMAO Increase |
He W., 2020, [35] | 135/ 316 | Physical and cognitive frail older adults /nonfrail older adults | 4.0 (2.8–7.0) /3.2 (2.1–5.0) | Plasma TMAO Increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Jiang, J.; Cao, S.; Xu, X.; Zhou, J.; Zhang, R.; Huang, B.; Lu, P.; Peng, L.; Liu, M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int. J. Mol. Sci. 2025, 26, 1373. https://doi.org/10.3390/ijms26031373
Xie H, Jiang J, Cao S, Xu X, Zhou J, Zhang R, Huang B, Lu P, Peng L, Liu M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. International Journal of Molecular Sciences. 2025; 26(3):1373. https://doi.org/10.3390/ijms26031373
Chicago/Turabian StyleXie, Haihua, Jia Jiang, Sihui Cao, Xuan Xu, Jingyin Zhou, Ruhan Zhang, Bo Huang, Penghui Lu, Liang Peng, and Mi Liu. 2025. "The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment" International Journal of Molecular Sciences 26, no. 3: 1373. https://doi.org/10.3390/ijms26031373
APA StyleXie, H., Jiang, J., Cao, S., Xu, X., Zhou, J., Zhang, R., Huang, B., Lu, P., Peng, L., & Liu, M. (2025). The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. International Journal of Molecular Sciences, 26(3), 1373. https://doi.org/10.3390/ijms26031373