Role-Aware Information Spread in Online Social Networks
<p>Illustration of two types of networks with the same set of nodes and different edges (links): (<b>a</b>) a social network in which dashed edges represent social relationships among users (e.g., Facebook friendships), and (<b>b</b>) a directed interaction network laid over the social network, in which solid edges represent user interactions (e.g., user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>4</mn> </msub> </semantics></math> retweeted a message originated by <math display="inline"><semantics> <msub> <mi>v</mi> <mn>3</mn> </msub> </semantics></math> and another message originated by <math display="inline"><semantics> <msub> <mi>v</mi> <mn>5</mn> </msub> </semantics></math>).</p> "> Figure 2
<p>High-level taxonomy of analysis strategies for information spread in online social networks. Grey panels group research approaches for role-aware analysis (left panel), and the associated models (right panel). Refer to <a href="#sec4-entropy-23-01542" class="html-sec">Section 4</a> for a list of studies exemplifying structural models, non-structural models, hybrid models, and models employing external information.</p> "> Figure 3
<p>An illustration of simple and complex contagion in a social network. (<b>a</b>) Simple contagion: node <span class="html-italic">A</span> was infected by a disease after exposure to a single infected node (colored in gray). (<b>b</b>) Complex contagion: node <span class="html-italic">A</span> adopted a product (a smartphone) after being exposed by three nodes (colored in gray) who adopted the product.</p> "> Figure 4
<p>An illustration of the models Susceptible-Infected (SI) [<a href="#B187-entropy-23-01542" class="html-bibr">187</a>], Susceptible-Infected-Susceptible (SIS) [<a href="#B187-entropy-23-01542" class="html-bibr">187</a>], Susceptible-Infected-Recovered (SIR) [<a href="#B188-entropy-23-01542" class="html-bibr">188</a>], Susceptible-Infected-Recovered-for-Susceptible (SIRS) where immunity lasts for only a short period of time [<a href="#B187-entropy-23-01542" class="html-bibr">187</a>], Susceptible-Exposed-Infected-Recovered (SEIR) [<a href="#B189-entropy-23-01542" class="html-bibr">189</a>], the Linear Threshold model (LTM) for influence maximization [<a href="#B37-entropy-23-01542" class="html-bibr">37</a>], and the Independent Cascade model (IC) [<a href="#B190-entropy-23-01542" class="html-bibr">190</a>]. In the LTM, a node is exposed to its neighbors, and if the number of infected neighbors exceeds a threshold, the exposed node is infected. In the IC model, each infected node stays active during one time step only and tries to infect its susceptible neighbors with a certain probability. The attempts are independent random events. A susceptible node that was infected will attempt to infect its neighbors at the next time step.</p> "> Figure 5
<p>A directed social network <math display="inline"><semantics> <mrow> <mi>G</mi> <mo>(</mo> <mi>V</mi> <mo>,</mo> <mi>E</mi> <mo>)</mo> </mrow> </semantics></math> (e.g., Twitter Following–Followee relationships) with a directed interaction network <math display="inline"><semantics> <mrow> <msub> <mi>G</mi> <mrow> <mi>T</mi> <mi>w</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>T</mi> <mi>w</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>E</mi> <mrow> <mi>T</mi> <mi>w</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> (e.g., retweets). The interaction network at time <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math> contains the set of nodes <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>T</mi> <mi>w</mi> </mrow> </msub> <mo>=</mo> <mrow> <mo>{</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>}</mo> </mrow> </mrow> </semantics></math>, and the social network contains the set of nodes <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>=</mo> <mo>{</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>v</mi> <mn>3</mn> </msub> </mrow> </semantics></math>}. In <span class="html-italic">G</span>, node <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> follows node <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>, indicated by a dashed edge (link). Thus, <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> exposes <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> to information. <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>v</mi> <mn>1</mn> </msub> </semantics></math> retweeted <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math>’s original tweet at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mn>1</mn> </mrow> </semantics></math>, indicated by two solid edges.</p> "> Figure 6
<p>An illustration of local and global topic influence. Local and global topic influence of a set of tweets on the same topic <math display="inline"><semantics> <mrow> <mi>W</mi> <mo>=</mo> <mo>{</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <mo>}</mo> </mrow> </semantics></math> that were posted by user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> at times <math display="inline"><semantics> <msub> <mi>t</mi> <mn>0</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math> respectively. (<b>a</b>) Local topic influence: user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>1</mn> </msub> </semantics></math> who follows user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>0</mn> </msub> </semantics></math> retweets <math display="inline"><semantics> <msub> <mi>w</mi> <mn>1</mn> </msub> </semantics></math> at time <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math>. Another example of local topic influence occurs after user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> was exposed to <math display="inline"><semantics> <msub> <mi>w</mi> <mn>1</mn> </msub> </semantics></math> at <math display="inline"><semantics> <msub> <mi>t</mi> <mn>1</mn> </msub> </semantics></math> by user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>1</mn> </msub> </semantics></math> whom s/he follows. Then, user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> retweets tweet <math display="inline"><semantics> <msub> <mi>w</mi> <mn>2</mn> </msub> </semantics></math> on the same topic as <math display="inline"><semantics> <msub> <mi>w</mi> <mn>1</mn> </msub> </semantics></math>. (<b>b</b>) Global topic influence: user <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> retweets <math display="inline"><semantics> <msub> <mi>w</mi> <mn>2</mn> </msub> </semantics></math> before any of the users who are followed by <math display="inline"><semantics> <msub> <mi>v</mi> <mn>2</mn> </msub> </semantics></math> retweeted/posted tweet from <span class="html-italic">W</span>.</p> ">
Abstract
:1. Introduction
2. Social Roles
3. Role Discovery Models
4. Role-Aware Information Spread in Online Social Networks (OSNs)
4.1. Structural Information Spread Models
4.2. Non-Structural Information Spread Models
4.3. Hybrid Information Spread Models
4.4. Homophily-Related Role-Aware Models
5. Viral vs. Non-Viral Information Spread in Online Social Networks (OSNs)
6. Software Platforms for Role-Aware Analysis of Online Social Networks (OSNs)
6.1. Platforms for Egocentric Role-Aware Social Network Analyses
6.2. Additional Platforms for Role-Aware Social Network Analyses
Platform | Description | Publication Year | Reference |
---|---|---|---|
egoDetect | Detect and explore anomalies (alien alters) via unsupervised learning; novel glyph for ego topology | 2020 | [271] |
Eiffel | View nodal, relational and temporal dimensions of evolutionary influence graphs to see influencer effects on other users | 2020 | [268] |
iVIS | Identify light/heavy users and user categories via clustering | 2020 | [272] |
VASABI | Analyze dynamic hierarchies at individual and group levels to identify user roles | 2019 | [267] |
D-map+ | View egocentric and event-centric information diffusion patterns; identify behaviors and roles | 2018 | [265] |
egoStellar | Visualize anomalous users and behaviors via egocentric perspective | 2018 | [270] |
MessageLens | Analyze learner attitudes, interactions among students, and discussion topics | 2018 | [273] |
VisForum | Explore user groups in forums; identify high-impact forum members | 2018 | [274] |
iForum | Analyze users, posts, and threads on three different scales; identify new, active and inactive users | 2016 | [275] |
Episogram | Display dynamic egocentric social interactions to identify initiators and responders | 2015 | [266] |
TargetVue | Identify anomalous users and behaviors via glyph visualizations | 2015 | [269] |
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | 2-dimensional |
3D | 3-dimensional |
AR | Augmented reality |
BIT | Back-In-Time |
BHLFM | Bayesian Hierarchical Latent-Factor Model |
DAGs | Dynamic directed acyclic graphs |
DMMSB | Dynamic Mixed-Membership Stochastic Blockmodels |
DySTGNN | Dynamic structural-temporal graph neural network |
GAT | Graph attention network |
GCN | Graph convolutional network |
GNN | Graph neural networks |
IC | Independent Cascade model |
IoP | Internet of People |
IoT | Internet of Things |
LDA | Latent Dirichlet Allocation |
LIM | Linear Influence Model |
LTM | Linear Threshold Model |
LSTM | Long Short-Term Memory |
MMSB | Mixed-Membership Stochastic Blockmodels |
NLP | Natural Language Processing |
NMF | Non-negative Matrix Factorization |
OSN | Online social network |
RNN | Recurrent neural network |
RAFM | Role Affiliation Frequency Model |
SVD | Singular Value Decomposition |
SEIR | Susceptible–Exposed–Infected–Recovered |
SIR | Susceptible–Infected–Recovered |
SIRS | Susceptible–Infected–Recovered-for Susceptible |
SIS | Susceptible-Infected-Susceptible |
TRM | Topical Role Model |
VR | Virtual reality |
References
- Adali, S.; Golbeck, J. Predicting personality with social behavior. In Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Istanbul, Turkey, 26–29 August 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 302–309. [Google Scholar]
- Lin, K.C.; Wu, S.H.; Chen, L.P.; Yang, P.C. Finding the key users in Facebook fan pages via a clustering approach. In Proceedings of the IEEE International Conference on Information Reuse and Integration, San Francisco, CA, USA, 13–15 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 556–561. [Google Scholar]
- Watts, D.J.; Dodds, P.S. Influentials, Networks, and Public Opinion Formation. J. Consum. Res. 2007, 34, 441–458. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Liu, C.; Zhan, X.X.; Lu, X.; Zhang, C.X.; Zhang, Y.C. Dynamics of Information Diffusion and Its Applications on Complex Networks. Phys. Rep. 2016, 651, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.C. Social Influence; Thomson Brooks/Cole: Pacific Grove, CA, USA, 1991. [Google Scholar]
- Tu, C.; Liu, Z.; Sun, M. PRISM: Profession identification in social media with personal information and community structure. In Chinese National Conference on Social Media Processing; Springer: Berlin/Heidelberg, Germany, 2015; pp. 15–27. [Google Scholar]
- Jurvetson, S. What Exactly Is Viral Marketing. Red Herring 2000, 78, 110–112. [Google Scholar]
- Richardson, M.; Domingos, P. Mining Knowledge-sharing Sites for Viral Marketing. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, AB, Canada, 23 July 2002; pp. 61–70. [Google Scholar]
- Kaplan, A.M.; Haenlein, M. Two Hearts in Three-quarter Time: How to Waltz the Social Media/viral Marketing Dance. Bus. Horizons 2011, 54, 253–263. [Google Scholar] [CrossRef]
- Fournier, S.; Avery, J. The Uninvited Brand. Bus. Horizons 2011, 54, 193–207. [Google Scholar] [CrossRef]
- Daley, D.J.; Kendall, D.G. Stochastic Rumours. Ima J. Appl. Math. 1965, 1, 42–55. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Gao, K.; Zhang, S. A survey on information diffusion in online social networks: Models and methods. Information 2017, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Hsu, L.C.; Wang, K.Y.; Chih, W.H.; Lin, K.Y. Investigating the ripple effect in virtual communities: An example of Facebook Fan Pages. Comput. Hum. Behav. 2015, 51, 483–494. [Google Scholar] [CrossRef]
- Borge-Holthoefer, J.; Banos, R.A.; González-Bailón, S.; Moreno, Y. Cascading Behaviour in Complex Socio-technical Networks. J. Complex Netw. 2013, 1, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Zhang, Y.; Wu, Y.; Yang, Q. Modeling user posting behavior on social media. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, Portland, OR, USA, 12–16 August 2012; pp. 545–554. [Google Scholar]
- Romero, D.M.; Meeder, B.; Kleinberg, J. Differences in the Mechanics of Information Diffusion Across Topics: Idioms, Political Hashtags, and Complex Contagion on Twitter. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; ACM: New York, NY, USA, 2011; pp. 695–704. [Google Scholar]
- Dow, P.A.; Adamic, L.A.; Friggeri, A. The Anatomy of Large Facebook Cascades. In Proceedings of the Seventh International AAAI Conference on Weblogs and Social Media, Cambridge, MA, USA, 28 June 2013; pp. 145–154. [Google Scholar]
- Bakshy, E.; Messing, S.; Adamic, L.A. Exposure to Ideologically Diverse News and Opinion on Facebook. Science 2015, 348, 1130–1132. [Google Scholar] [CrossRef]
- Bartal, A.; Pliskin, N.; Tsur, O. Local/Global Contagion of Viral/non-viral Information: Analysis of Contagion Spread in Online Social Networks. PLoS ONE 2020, 15, e0230811. [Google Scholar] [CrossRef]
- Bartal, A.; Ravid, G.; Tsur, O. Global Contagion of Non-Viral Information. In Proceedings of the 53th Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020; pp. 2803–2812. [Google Scholar]
- Bakshy, E.; Rosenn, I.; Marlow, C.; Adamic, L. The Role of Social Networks in Information Diffusion. In Proceedings of the 21st International Conference on World Wide Web, Lyon, France, 16 April 2012; ACM: New York, NY, USA, 2012; pp. 519–528. [Google Scholar]
- Cheng, J.; Adamic, L.; Dow, P.A.; Kleinberg, J.M.; Leskovec, J. Can Cascades Be Predicted? In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 27 April 2014; ACM: New York, NY, USA, 2014; pp. 925–936. [Google Scholar]
- Subbian, K.; Aggarwal, C.; Srivastava, J. Content-centric Flow Mining for Influence Analysis in Social Streams. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, San Francisco, CA, USA, 27 October 2013; ACM: New York, NY, USA, 2013; pp. 841–846. [Google Scholar]
- Yu, L.; Cui, P.; Wang, F.; Song, C.; Yang, S. From Micro to Macro: Uncovering and Predicting Information Cascading Process With Behavioral Dynamics. In Proceedings of the IEEE International Conference on Data Mining, Atlantic City, NJ, USA, 14–17 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 559–568. [Google Scholar]
- Subbian, K.; Prakash, B.A.; Adamic, L. Detecting Large Reshare Cascades in Social Networks. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; International World Wide Web Conferences Steering Committee: Geneva, Switzerland, 2017; pp. 597–605. [Google Scholar]
- Vaidya, M. Ice Bucket Challenge Cash May Help Derisk ALS Drug Research. Nature 2014, 201, 4. [Google Scholar] [CrossRef]
- Myers, S.A.; Zhu, C.; Leskovec, J. Information Diffusion and External Influence in Networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; ACM: New York, NY, USA, 2012; pp. 33–41. [Google Scholar]
- Tambuscio, M.; Ruffo, G.; Flammini, A.; Menczer, F. Fact-checking effect on viral hoaxes: A model of misinformation spread in social networks. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 977–982. [Google Scholar]
- Yuan, C.; Ma, Q.; Zhou, W.; Han, J.; Hu, S. Jointly embedding the local and global relations of heterogeneous graph for rumor detection. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 796–805. [Google Scholar]
- Yin, M.; Gray, M.L.; Suri, S.; Vaughan, J.W. The Communication Network Within the Crowd. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 1293–1303. [Google Scholar]
- Bartal, A.; Ravid, G. Member behavior in dynamic online communities: Role affiliation frequency model. IEEE Trans. Knowl. Data Eng. 2019, 32, 1773–1784. [Google Scholar] [CrossRef]
- Guille, A.; Hacid, H.; Favre, C.; Zighed, D.A. Information diffusion in online social networks: A survey. ACM Sigmod Rec. 2013, 42, 17–28. [Google Scholar] [CrossRef]
- Yang, Y.; Tang, J.; Leung, C.W.k.; Sun, Y.; Chen, Q.; Li, J.; Yang, Q. Rain: Social role-aware information diffusion. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 9 February 2015. [Google Scholar]
- Wu, S.; Hofman, J.M.; Mason, W.A.; Watts, D.J. Who says what to whom on twitter. In Proceedings of the 20th International Conference on World Wide Web, Hyderabad, India, 28 March–1 April 2011; pp. 705–714. [Google Scholar]
- Peng, S.; Yu, S.; Yang, A. Smartphone Malware and Its Propagation Modeling: A Survey. IEEE Commun. Surv. Tutor. 2013, 16, 925–941. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, Q. A heuristic approach to discovering user correlations from organized social stream data. Multimed. Tools Appl. 2017, 76, 11487–11507. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, Y.; Zhang, L. Scalable influence maximization in social networks under the linear threshold model. In Proceedings of the IEEE International Conference on Data Mining, Sydney, NSW, Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 88–97. [Google Scholar]
- Pariser, E. The Filter Bubble: What the Internet Is Hiding from You; Penguin: London, UK, 2011. [Google Scholar]
- Yang, J.; Leskovec, J. Modeling Information Diffusion in Implicit Networks. In Proceedings of the IEEE International Conference on Data Mining, Sydney, NSW, Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 599–608. [Google Scholar]
- Wang, W.; Zhou, H.; He, K.; Hopcroft, J.E. Learning Latent Topics From the Word Co-occurrence Network. In National Conference of Theoretical Computer Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 18–30. [Google Scholar]
- Wang, F.; Wang, H.; Xu, K. Diffusive Logistic Model Towards Predicting Information Diffusion in Online Social Networks. In Proceedings of the 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 133–139. [Google Scholar]
- Mele, A. A structural model of homophily and clustering in social networks. J. Bus. Econ. Stat. 2021. (Just Accepted). [Google Scholar] [CrossRef]
- McPherson, M.; Smith-Lovin, L.; Cook, J.M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 2001, 27, 415–444. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, B.; Tang, J.; Chen, T.; Li, J. Social influence locality for modeling retweeting behaviors. In Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China, 30 June 2013. [Google Scholar]
- Aslay, C.; Barbieri, N.; Bonchi, F.; Baeza-Yates, R. Online Topic-aware Influence Maximization Queries. In Proceedings of the 17th International Conference on Extending Database Technology (EDBT), Athens, Greece, 24–28 March 2014. [Google Scholar]
- Zhang, J.; Tang, J.; Zhuang, H.; Leung, C.; Li, J. Role-aware conformity modeling and analysis in social networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Québec, QC, Canada, 21 June 2014; Volume 28. [Google Scholar]
- Burt, R.S. Structural Holes; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Leskovec, J.; McGlohon, M.; Faloutsos, C.; Glance, N.; Hurst, M. Patterns of Cascading Behavior in Large Blog Graphs. In Proceedings of the 2007 SIAM International Conference on Data Mining, Minneapolis, MN, USA, 26 April 2007; SIAM: Philadelphia, PA, USA, 2007; pp. 551–556. [Google Scholar]
- Liben-Nowell, D.; Kleinberg, J. Tracing Information Flow on a Global Scale Using Internet Chain-letter Data. Proc. Natl. Acad. Sci. USA 2008, 105, 4633–4638. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Leskovec, J. Patterns of Temporal Variation in Online Media. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; ACM: New York, NY, USA, 2011; pp. 177–186. [Google Scholar]
- Cui, P.; Jin, S.; Yu, L.; Wang, F.; Zhu, W.; Yang, S. Cascading Outbreak Prediction in Networks: A Data-driven Approach. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11 August 2013; ACM: New York, NY, USA, 2013; pp. 901–909. [Google Scholar]
- Wang, S.; Yan, Z.; Hu, X.; Philip, S.Y.; Li, Z. Burst Time Prediction in Cascades. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 325–331. [Google Scholar]
- Nahon, K.; Hemsley, J.; Walker, S.; Hussain, M. Fifteen Minutes of Fame: The Power of Blogs in the Lifecycle of Viral Political Information. Policy Internet D 2011, 3, 1–28. [Google Scholar] [CrossRef]
- Bild, D.R.; Liu, Y.; Dick, R.P.; Mao, Z.M.; Wallach, D.S. Aggregate Characterization of User Behavior in Twitter and Analysis of the Retweet Graph. ACM Trans. Internet Technol. (TOIT) 2015, 15, 4. [Google Scholar] [CrossRef]
- Weng, L.; Flammini, A.; Vespignani, A.; Menczer, F. Competition among memes in a world with limited attention. Sci. Rep. 2012, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yujie, Y. A Survey on Information Diffusion in Online Social Networks. In Proceedings of the 2020 European Symposium on Software Engineering, Rome, Italy, 6–8 November 2020; pp. 181–186. [Google Scholar]
- Chang, B.; Xu, T.; Liu, Q.; Chen, E.H. Study on information diffusion analysis in social networks and its applications. Int. J. Autom. Comput. 2018, 15, 377–401. [Google Scholar] [CrossRef]
- Vega, D.; Magnani, M.; Montesi, D.; Meseguer, R.; Freitag, F. A new approach to role and position detection in networks. Soc. Netw. Anal. Min. 2016, 6, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Mumford, T.V.; Van Iddekinge, C.H.; Morgeson, F.P.; Campion, M.A. The Team Role Test: Development and validation of a team role knowledge situational judgment test. J. Appl. Psychol. 2008, 93, 250. [Google Scholar] [CrossRef] [Green Version]
- Heiss, J. Social roles. In Social Psychology; Routledge: Oxford, UK, 2017; pp. 94–130. [Google Scholar]
- Ebaugh, H.R.; Ebaugh, H.R.F. Becoming an ex: The Process of Role Exit; University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Biddle, B.J. Role Theory: Expectations, Identities, and Behaviors; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Drouin, M.; McDaniel, B.T.; Pater, J.; Toscos, T. How parents and their children used social media and technology at the beginning of the COVID-19 pandemic and associations with anxiety. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 727–736. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neal, Z.P. The Connected City: How Networks Are Shaping the Modern Metropolis; Routledge: Oxford, UK, 2012. [Google Scholar]
- Nielsen, J. Participation Inequality: Encouraging More Users to Contribute. 2006. Available online: http://www.useit.com/alertbox/participation_inequality.html (accessed on 21 September 2021).
- Choobdar, S.; Ribeiro, P.; Parthasarathy, S.; Silva, F. Dynamic inference of social roles in information cascades. Data Min. Knowl. Discov. 2015, 29, 1152–1177. [Google Scholar] [CrossRef]
- Bartal, A.; Pliskin, N.; Ravid, G. Modeling Influence on Posting Engagement in Online Social Networks: Beyond Neighborhood Effects. Soc. Netw. 2019, 59, 61–76. [Google Scholar] [CrossRef]
- Costa, G.; Ortale, R. Mining overlapping communities and inner role assignments through Bayesian mixed-membership models of networks with context-dependent interactions. ACM Trans. Knowl. Discov. Data (TKDD) 2018, 12, 1–32. [Google Scholar] [CrossRef]
- Rossi, R.A.; Gallagher, B.; Neville, J.; Henderson, K. Modeling dynamic behavior in large evolving graphs. In Proceedings of the Sixth ACM International Conference on Web Search And Data Mining, Rome, Italy, 4 February 2013; pp. 667–676. [Google Scholar]
- Gupte, P.V.; Ravindran, B. Scalable positional analysis for studying evolution of nodes in networks. arXiv 2014, arXiv:1402.3797. [Google Scholar]
- Coles, B.A.; West, M. Trolling the trolls: Online forum users constructions of the nature and properties of trolling. Comput. Hum. Behav. 2016, 60, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Barzilai-Nahon, K. Gatekeepers, virtual communities and the gated: Multidimensional tensions in cyberspace. Int. J. Commun. Law Policy 2006, 11, 1–28. [Google Scholar]
- Akerlof, G.A.; Kranton, R.E. Economics and identity. Q. J. Econ. 2000, 115, 715–753. [Google Scholar] [CrossRef]
- Agarwal, N.; Liu, H.; Tang, L.; Yu, P.S. Identifying the influential bloggers in a community. In Proceedings of the 2008 International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2008; pp. 207–218. [Google Scholar]
- Ahmed, N.; Rossi, R.A.; Lee, J.; Willke, T.; Zhou, R.; Kong, X.; Eldardiry, H. Role-based graph embeddings. IEEE Trans. Knowl. Data Eng. 2020, 1, (Just Accepted). [Google Scholar] [CrossRef]
- Rossi, R.A.; Ahmed, N.K. Role discovery in networks. IEEE Trans. Knowl. Data Eng. 2014, 27, 1112–1131. [Google Scholar] [CrossRef] [Green Version]
- van der Valk, T.; Chappin, M.M.; Gijsbers, G.W. Evaluating innovation networks in emerging technologies. Technol. Forecast. Soc. Chang. 2011, 78, 25–39. [Google Scholar] [CrossRef]
- Memon, N.; Larsen, H.L.; Hicks, D.L.; Harkiolakis, N. Retracted: Detecting hidden hierarchy in terrorist networks: Some case studies. In International Conference on Intelligence and Security Informatics, 1–3 July 2018; Springer: Berlin/Heidelberg, Germany, 2008; pp. 477–489. [Google Scholar]
- White, S.; Smyth, P. Algorithms for estimating relative importance in networks. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 266–275. [Google Scholar]
- Borgatti, S.P. Identifying sets of key players in a social network. Comput. Math. Organ. Theory 2006, 12, 21–34. [Google Scholar] [CrossRef]
- Ravid, G.; Rafaeli, S. Asynchronous discussion groups as small world and scale free networks. Firstmonday 2004. (Just Accepted). [Google Scholar] [CrossRef]
- Xing, E.P.; Fu, W.; Song, L. A state-space mixed membership blockmodel for dynamic network tomography. Ann. Appl. Stat. 2010, 4, 535–566. [Google Scholar] [CrossRef]
- Welser, H.T.; Gleave, E.; Fisher, D.; Smith, M. Visualizing the signatures of social roles in online discussion groups. J. Soc. Struct. 2007, 8, 1–32. [Google Scholar]
- Sabidussi, G. The centrality index of a graph. Psychometrika 1966, 31, 581–603. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, V.W.; Liu, Z.; Chang, K.C.C. Topological recurrent neural network for diffusion prediction. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 475–484. [Google Scholar]
- Revelle, M.; Domeniconi, C.; Johri, A. Persistent roles in online social networks. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases; Springer: Berlin/Heidelberg, Germany, 2016; pp. 47–62. [Google Scholar]
- Borgatti, S.P.; Everett, M.G. Notions of position in social network analysis. Sociol. Methodol. 1992, 22, 1–35. [Google Scholar] [CrossRef]
- Costa, G.; Ortale, R. Overlapping communities meet roles and respective behavioral patterns in networks with node attributes. In Proceedings of the International Conference on Web Information Systems Engineering, Puschino, Russia, 7–11 October 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 215–230. [Google Scholar]
- Gupte, P.V.; Ravindran, B.; Parthasarathy, S. Role discovery in graphs using global features: Algorithms, applications and a novel evaluation strategy. In Proceedings of the IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 771–782. [Google Scholar]
- Airoldi, E.M.; Blei, D.M.; Fienberg, S.E.; Xing, E.P. Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 2008, 9, 1981–2014. [Google Scholar]
- Tang, F.; Zhang, B.; Zheng, J.; Gu, Y. Friend recommendation based on the similarity of micro-blog user model. In Proceedings of the IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 2200–2204. [Google Scholar]
- Rehman, A.U.; Jiang, A.; Rehman, A.; Paul, A.; Sadiq, M.T. Identification and role of opinion leaders in information diffusion for online discussion network. J. Ambient. Intell. Humaniz. Comput. 2020, 1–13, (Just Accepted). [Google Scholar] [CrossRef]
- Cave, E. COVID-19 super-spreaders: Definitional quandaries and implications. Asian Bioethics Rev. 2020, 12, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Cheng, J.; Leskovec, J.; Subrahmanian, V. An army of me: Sockpuppets in online discussion communities. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 857–866. [Google Scholar]
- Ghoshal, A.K.; Das, N.; Das, S. Misinformation containment in osns leveraging community structure. In Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan, 23–25 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Grinberg, N.; Joseph, K.; Friedland, L.; Swire-Thompson, B.; Lazer, D. Fake news on Twitter during the 2016 US presidential election. Science 2019, 363, 374–378. [Google Scholar] [CrossRef]
- Chang, S.; Pierson, E.; Koh, P.W.; Gerardin, J.; Redbird, B.; Grusky, D.; Leskovec, J. Mobility network models of COVID-19 explain inequities and inform reopening. Nature 2021, 589, 82–87. [Google Scholar] [CrossRef]
- Da Silva, L.N.; Malacarne, A.; e Silva, J.W.S.; Kirst, F.V.; De-Bortoli, R. The Scientific Collaboration Networks in University Management in Brazil. Creat. Educ. 2018, 9, 1469. [Google Scholar] [CrossRef] [Green Version]
- Guimera, R.; Danon, L.; Diaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network of human interactions. Phys. Rev. E 2003, 68, 065103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šubelj, L.; Bajec, M. Robust network community detection using balanced propagation. Eur. Phys. J. B 2011, 81, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Batagelj, V.; Mrvar, A. Pajek-program for large network analysis. Connections 1998, 21, 47–57. [Google Scholar]
- Arazy, O.; Daxenberger, J.; Lifshitz-Assaf, H.; Nov, O.; Gurevych, I. Turbulent stability of emergent roles: The dualistic nature of self-organizing knowledge coproduction. Inf. Syst. Res. 2016, 27, 792–812. [Google Scholar] [CrossRef]
- Yang, D.; Halfaker, A.; Kraut, R.; Hovy, E. Who did what: Editor role identification in Wikipedia. In Proceedings of the International AAAI Conference on Web and Social Media, Cologne, Germany, 17–20 May 2016; Volume 10. [Google Scholar]
- McCallum, A.; Wang, X.; Corrada-Emmanuel, A. Topic and role discovery in social networks with experiments on enron and academic email. J. Artif. Intell. Res. 2007, 30, 249–272. [Google Scholar] [CrossRef]
- He, J.L.; Fu, Y.; Chen, D.B. A novel top-k strategy for influence maximization in complex networks with community structure. PLoS ONE 2015, 10, e0145283. [Google Scholar]
- Yang, G.; Benko, T.P.; Cavaliere, M.; Huang, J.; Perc, M. Identification of influential invaders in evolutionary populations. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Wang, M.; Li, W.; Guo, Y.; Peng, X.; Li, Y. Identifying influential spreaders in complex networks based on improved k-shell method. Phys. Stat. Mech. Its Appl. 2020, 554, 124229. [Google Scholar] [CrossRef]
- Guo, C.; Yang, L.; Chen, X.; Chen, D.; Gao, H.; Ma, J. Influential nodes identification in complex networks via information entropy. Entropy 2020, 22, 242. [Google Scholar] [CrossRef] [Green Version]
- Carmi, S.; Havlin, S.; Kirkpatrick, S.; Shavitt, Y.; Shir, E. A model of Internet topology using k-shell decomposition. Proc. Natl. Acad. Sci. USA 2007, 104, 11150–11154. [Google Scholar] [CrossRef] [Green Version]
- Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Stanley, H.E.; Makse, H.A. Identification of influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Serrano, M.Á.; Boguna, M. Clustering in complex networks. I. General formalism. Phys. Rev. E 2006, 74, 056114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosvall, M.; Bergstrom, C.T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. USA 2007, 104, 7327–7331. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Chen, M.; Zhou, M.; Gao, S.; Liu, C.; Liu, C. Overlapping community change-point detection in an evolving network. IEEE Trans. Big Data 2018, 6, 189–200. [Google Scholar] [CrossRef]
- Jin, D.; Yu, Z.; Jiao, P.; Pan, S.; Yu, P.S.; Zhang, W. A survey of community detection approaches: From statistical modeling to deep learning. arXiv 2021, arXiv:2101.01669. [Google Scholar] [CrossRef]
- Fortunato, S. Community detection in graphs. Phys. Rep. 2010, 486, 75–174. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Wang, Y.; Orgun, M.A. Social context-aware trust network discovery in complex contextual social networks. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, Canada, 22–26 July 2012. [Google Scholar]
- Gilpin, S.; Eliassi-Rad, T.; Davidson, I. Guided learning for role discovery (GLRD) framework, algorithms, and applications. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 113–121. [Google Scholar]
- Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Wang, G.; Yu, P.S.; Liu, S.; Zhang, S. Inferring social roles and statuses in social networks. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–14 August 2013; pp. 695–703. [Google Scholar]
- Faust, K.; Wasserman, S. Blockmodels: Interpretation and evaluation. Soc. Netw. 1992, 14, 5–61. [Google Scholar] [CrossRef]
- Fu, W.; Song, L.; Xing, E.P. Dynamic mixed membership blockmodel for evolving networks. In Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009; pp. 329–336. [Google Scholar]
- Tu, K.; Cui, P.; Wang, X.; Yu, P.S.; Zhu, W. Deep recursive network embedding with regular equivalence. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2357–2366. [Google Scholar]
- Qiu, J.; Dong, Y.; Ma, H.; Li, J.; Wang, C.; Wang, K.; Tang, J. Netsmf: Large-scale network embedding as sparse matrix factorization. In Proceedings of the World Wide Web Conference, San Francisco, CA, USA, 13–17 May 2019; pp. 1509–1520. [Google Scholar]
- Ma, X.; Qin, G.; Qiu, Z.; Zheng, M.; Wang, Z. RiWalk: Fast structural node embedding via role identification. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8–11 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 478–487. [Google Scholar]
- Cui, P.; Wang, X.; Pei, J.; Zhu, W. A survey on network embedding. IEEE Trans. Knowl. Data Eng. 2018, 31, 833–852. [Google Scholar] [CrossRef] [Green Version]
- Pei, Y.; Fletcher, G.; Pechenizkiy, M. Joint role and community detection in networks via l 2, 1 norm regularized nonnegative matrix tri-factorization. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Vancouver, BC, Canada, 27–30 August 2019; pp. 168–175. [Google Scholar]
- Henderson, K.; Gallagher, B.; Eliassi-Rad, T.; Tong, H.; Basu, S.; Akoglu, L.; Koutra, D.; Faloutsos, C.; Li, L. Rolx: Structural role extraction & mining in large graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 1231–1239. [Google Scholar]
- Henderson, K.; Gallagher, B.; Li, L.; Akoglu, L.; Eliassi-Rad, T.; Tong, H.; Faloutsos, C. It’s who you know: Graph mining using recursive structural features. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 663–671. [Google Scholar]
- Donnat, C.; Zitnik, M.; Hallac, D.; Leskovec, J. Learning structural node embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1320–1329. [Google Scholar]
- Rossi, R.A.; Ahmed, N.K.; Koh, E.; Kim, S.; Rao, A.; Abbasi-Yadkori, Y. A structural graph representation learning framework. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; pp. 483–491. [Google Scholar]
- Ribeiro, L.F.; Saverese, P.H.; Figueiredo, D.R. struc2vec: Learning node representations from structural identity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 385–394. [Google Scholar]
- Pei, Y.; Du, X.; Zhang, J.; Fletcher, G.; Pechenizkiy, M. struc2gauss: Structural role preserving network embedding via Gaussian embedding. Data Min. Knowl. Discov. 2020, 34, 1072–1103. [Google Scholar] [CrossRef]
- Jin, R.; Lee, V.E.; Hong, H. Axiomatic ranking of network role similarity. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 922–930. [Google Scholar]
- Guo, J.; Xu, L.; Liu, J. Spine: Structural identity preserved inductive network embedding. arXiv 2018, arXiv:1802.03984. [Google Scholar]
- Jiao, P.; Guo, X.; Pan, T.; Zhang, W.; Pei, Y. A Survey on Role-Oriented Network Embedding. arXiv 2021, arXiv:2107.08379. [Google Scholar]
- Jin, Y.; Song, G.; Shi, C. GraLSP: Graph neural networks with local structural patterns. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 4361–4368. [Google Scholar]
- Zhang, W.; Guo, X.; Wang, W.; Tian, Q.; Pan, L.; Jiao, P. Role-based network embedding via structural features reconstruction with degree-regularized constraint. Knowl.-Based Syst. 2021, 218, 106872. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, W.; Wang, W.; Yu, Y.; Wang, Y.; Jiao, P. Role-Oriented Graph Auto-encoder Guided by Structural Information. In Proceedings of the International Conference on Database Systems for Advanced Applications, Jeju, Korea, 13 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 466–481. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-supervised classification with graph convolutional networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Li, B.; Pi, D. Learning deep neural networks for node classification. Expert Syst. Appl. 2019, 137, 324–334. [Google Scholar] [CrossRef]
- Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035. [Google Scholar]
- Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864. [Google Scholar]
- Keikha, M.M.; Rahgozar, M.; Asadpour, M. DeepLink: A novel link prediction framework based on deep learning. J. Inf. Sci. 2019, 47, 0165551519891345. [Google Scholar] [CrossRef] [Green Version]
- Agibetov, A. Graph embeddings via matrix factorization for link prediction: Smoothing or truncating negatives? arXiv 2020, arXiv:2011.09907. [Google Scholar]
- Rossi, R.; Gallagher, B.; Neville, J.; Henderson, K. Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model; Technical Report; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 2011. [Google Scholar]
- Yang, D. Computational Social Roles. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2019. [Google Scholar]
- Kittur, A.; Kraut, R.E. Harnessing the wisdom of crowds in wikipedia: Quality through coordination. In Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work, San Diego, CA, USA, 8–12 November 2008; pp. 37–46. [Google Scholar]
- Bamman, D.; O’Connor, B.; Smith, N.A. Learning latent personas of film characters. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria, 4–9 August 2013; pp. 352–361. [Google Scholar]
- Welser, H.T.; Cosley, D.; Kossinets, G.; Lin, A.; Dokshin, F.; Gay, G.; Smith, M. Finding social roles in Wikipedia. In Proceedings of the 2011 Conference, Seattle, WA, USA, 8–11 February 2011; pp. 122–129. [Google Scholar]
- Fazeen, M.; Dantu, R.; Guturu, P. Identification of leaders, lurkers, associates and spammers in a social network: Context-dependent and context-independent approaches. Soc. Netw. Anal. Min. 2011, 1, 241–254. [Google Scholar] [CrossRef]
- Ferschke, O.; Yang, D.; Rosé, C.P. A lightly supervised approach to role identification in wikipedia talk page discussions. In Proceedings of the Ninth international AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015. [Google Scholar]
- Maki, K.; Yoder, M.; Jo, Y.; Rosé, C. Roles and success in wikipedia talk pages: Identifying latent patterns of behavior. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Taipei, Taiwan, 27 November–1 December 2017; pp. 1026–1035. [Google Scholar]
- Lin, S.; Hong, W.; Wang, D.; Li, T. A survey on expert finding techniques. J. Intell. Inf. Syst. 2017, 49, 255–279. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, J.; Li, J. Expert finding in a social network. In Proceedings of the International Conference on Database Systems For Advanced Applications; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1066–1069. [Google Scholar]
- Chen, F.; Gao, X.; Peng, Y.; He, Y.; Xue, C. Identifying Weibo Opinion Leaders with Text Sentiment Analysis. Data Anal. Knowl. Discov. 2019, 3, 120–128. [Google Scholar]
- Wadden, D.; August, T.; Li, Q.; Althoff, T. The Effect of Moderation on Online Mental Health Conversations. arXiv 2020, arXiv:2005.09225. [Google Scholar]
- Ju, W.; Chen, L.; Li, B.; Liu, W.; Sheng, J.; Wang, Y. A new algorithm for positive influence maximization in signed networks. Inf. Sci. 2020, 512, 1571–1591. [Google Scholar] [CrossRef]
- Li, Y.; Fan, J.; Wang, Y.; Tan, K.L. Influence maximization on social graphs: A survey. IEEE Trans. Knowl. Data Eng. 2018, 30, 1852–1872. [Google Scholar] [CrossRef]
- Qing, Y.; Peng, Z. A review of the influence maximization problem in social networks. Comput. Eng. Sci. 2015, 2, (Just Accepted). [Google Scholar]
- Kempe, D.; Kleinberg, J.; Tardos, É. Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, 24–27 August 2003; pp. 137–146. [Google Scholar]
- Goel, S.; Anderson, A.; Hofman, J.; Watts, D.J. The Structural Virality of Online Diffusion. Manag. Sci. 2015, 62, 180–196. [Google Scholar] [CrossRef] [Green Version]
- Bartal, A. Modeling Influence on Posting Engagement: The Gaza Great Return March Analyzed on Twitter. In Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Barcelona, Spain, 28–31 August 2018; pp. 577–578. [Google Scholar]
- Min, B.; San Miguel, M. Competing Contagion Processes: Complex Contagion Triggered by Simple Contagion. Sci. Rep. 2018, 8, 10422. [Google Scholar] [CrossRef]
- Mønsted, B.; Sapieżyński, P.; Ferrara, E.; Lehmann, S. Evidence of Complex Contagion of Information in Social Media: An Experiment Using Twitter Bots. PLoS ONE 2017, 12, e0184148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altinel, A.B.; Hakkoz, M.A.; Bozdag, E.B.; Ganiz, M.C. Identifying Topic-based Opinion Leaders in Social Networks by Content and User Information. Int. J. Intell. Syst. Appl. Eng. 2020, 8, 214–220. [Google Scholar] [CrossRef]
- Aleahmad, A.; Karisani, P.; Rahgozar, M.; Oroumchian, F. OLFinder: Finding opinion leaders in online social networks. J. Inf. Sci. 2016, 42, 659–674. [Google Scholar] [CrossRef]
- Cherepnalkoski, D.; Karpf, A.; Mozetič, I.; Grčar, M. Cohesion and coalition formation in the European Parliament: Roll-call votes and Twitter activities. PLoS ONE 2016, 11, e0166586. [Google Scholar] [CrossRef]
- Adalat, M.; Niazi, M.A.; Vasilakos, A.V. Variations in power of opinion leaders in online communication networks. R. Soc. Open Sci. 2018, 5, 180642. [Google Scholar] [CrossRef] [Green Version]
- Orr, G. Diffusion of innovations, by Everett Rogers (1995). Retrieved J. 2003, 21, 2005. [Google Scholar]
- Trusov, M.; Bodapati, A.V.; Bucklin, R.E. Determining influential users in internet social networks. J. Mark. Res. 2010, 47, 643–658. [Google Scholar] [CrossRef] [Green Version]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Newman, M.E.J. The Structure and Function of Complex Networks. SIAM Rev. 2003, 45, 167–256. [Google Scholar] [CrossRef] [Green Version]
- Kleinberg, J.M.; Kumar, R.; Raghavan, P.; Rajagopalan, S.; Tomkins, A.S. The web as a graph: Measurements, models, and methods. In Proceedings of the International Computing and Combinatorics Conference; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–17. [Google Scholar]
- Lü, L.; Zhou, T.; Zhang, Q.M.; Stanley, H.E. The H-index of a network node and its relation to degree and coreness. Nat. Commun. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zareie, A.; Sheikhahmadi, A. EHC: Extended H-index centrality measure for identification of users’ spreading influence in complex networks. Phys. A Stat. Mech. Its Appl. 2019, 514, 141–155. [Google Scholar] [CrossRef]
- Gao, L.; Yu, S.; Li, M.; Shen, Z.; Gao, Z. Weighted h-index for Identifying Influential Spreaders. Symmetry 2019, 11, 1263. [Google Scholar] [CrossRef] [Green Version]
- Ahajjam, S.; Badir, H. Identification of influential spreaders in complex networks using HybridRank algorithm. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bhat, N.; Aggarwal, N.; Kumar, S. Identification of Influential Spreaders in Social Networks using Improved Hybrid Rank Method. Procedia Comput. Sci. 2020, 171, 662–671. [Google Scholar] [CrossRef]
- Al-garadi, M.A.; Varathan, K.D.; Ravana, S.D. Identification of influential spreaders in online social networks using interaction weighted K-core decomposition method. Phys. Stat. Mech. Its Appl. 2017, 468, 278–288. [Google Scholar] [CrossRef]
- Lü, L.; Zhang, Y.C.; Yeung, C.H.; Zhou, T. Leaders in social networks, the delicious case. PLoS ONE 2011, 6, e21202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Zhou, T.; Lü, L.; Chen, D. Identifying influential spreaders by weighted LeaderRank. Phys. Stat. Mech. Its Appl. 2014, 404, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford InfoLab: Stanford, CA, USA, 1999. [Google Scholar]
- Lü, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T. Vital nodes identification in complex networks. Phys. Rep. 2016, 650, 1–63. [Google Scholar] [CrossRef] [Green Version]
- Pastor-Satorras, R.; Castellano, C.; Van Mieghem, P.; Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 2015, 87, 925. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, A.L.; May, R.M. How viruses spread among computers and people. Science 2001, 292, 1316–1317. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Peng, Y.; Sun, K. SEIR modeling of the COVID-19 and its dynamics. Nonlinear Dyn. 2020, 101, 1667–1680. [Google Scholar] [CrossRef]
- Kleinberg, J. Cascading behavior in networks: Algorithmic and economic issues. Algorithmic Game Theory 2007, 24, 613–632. [Google Scholar]
- Daugherty, T.; Eastin, M.S.; Bright, L. Exploring consumer motivations for creating user-generated content. J. Interact. Advert. 2008, 8, 16–25. [Google Scholar] [CrossRef]
- Saito, K.; Nakano, R.; Kimura, M. Prediction of information diffusion probabilities for independent cascade model. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 67–75. [Google Scholar]
- Kamiński, M.; Szymańska, C.; Nowak, J.K. Whose tweets on COVID-19 gain the Most attention: Celebrities, political, or scientific authorities? Cyberpsychol. Behav. Soc. Netw. 2021, 24, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Chen, H. Relationship between Motivation and Behavior of SNS User. J. Softw. 2012, 7, 1265–1272. [Google Scholar] [CrossRef]
- Easley, D.; Kleinberg, J. Information cascades. In Networks, Crowds, and Markets: Reasoning about a Highly Connected World; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Hodas, N.O.; Lerman, K. The simple rules of social contagion. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, T.W. Network Models of the Diffusion of Innovations; Hampton Press: New York, NY, USA, 1995; Volume 152, p. 157. [Google Scholar]
- Valente, T.W.; Davis, R.L. Accelerating the Diffusion of Innovations Using Opinion Leaders. Ann. Am. Acad. Political Soc. Sci. 1999, 566, 55–67. [Google Scholar] [CrossRef]
- Coleman, J.S.; Katz, E.; Menzel, H. Medical Innovation: A Diffusion Study; Bobbs-Merrill Company: Indianapolis, IN, USA, 1966. [Google Scholar]
- Rogers, E.M.; Kincaid, D.L. Communication Networks: Toward a New Paradigm for Research; Free Press: New York, NY, USA, 1981. [Google Scholar]
- Kramer, A.D.; Guillory, J.E.; Hancock, J.T. Experimental Evidence of Massive-scale Emotional Contagion Through Social Networks. Proc. Natl. Acad. Sci. USA 2014, 111, 8788–8790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, E.; Rosenn, I.; Marlow, C.A.; Lento, T.M. Gesundheit! Modeling Contagion Through Facebook News Feed. In Proceedings of the Third International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 146–153. [Google Scholar]
- Katz, E. The Two-step Flow of Communication: An Up-to-date Report on an Hypothesis. Public Opin. Q. 1957, 21, 61–78. [Google Scholar] [CrossRef]
- Leskovec, J.; Adamic, L.A.; Huberman, B.A. The Dynamics of Viral Marketing. ACM Trans. Web (TWEB) 2007, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Rogers, E.M. Diffusion of Innovations; Simon and Schuster: New York, NY, USA, 2010. [Google Scholar]
- Kreindler, G.E.; Young, H.P. Rapid Innovation Diffusion in Social Networks. Proc. Natl. Acad. Sci. USA 2014, 111, 10881–10888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centola, D. The Spread of Behavior in an Online Social Network Experiment. Science 2010, 329, 1194–1197. [Google Scholar] [CrossRef]
- Granovetter, M. Threshold Models of Collective Behavior. Am. J. Sociol. 1978, 83, 1420–1443. [Google Scholar] [CrossRef] [Green Version]
- Karimi, F.; Holme, P. Threshold Model of Cascades in Empirical Temporal Networks. Phys. Stat. Mech. Its Appl. 2013, 392, 3476–3483. [Google Scholar] [CrossRef] [Green Version]
- Burt, R.S. Social Contagion and Innovation: Cohesion Versus Structural Equivalence. Am. J. Sociol. 1987, 92, 1287–1335. [Google Scholar] [CrossRef]
- Leenders, R.T.A. Modeling Social Influence Through Network Autocorrelation: Constructing the Weight Matrix. Soc. Netw. 2002, 24, 21–47. [Google Scholar] [CrossRef]
- Singh, S.S.; Singh, K.; Kumar, A.; Shakya, H.K.; Biswas, B. A survey on information diffusion models in social networks. In Proceedings of the International Conference on Advanced Informatics for Computing Research, Gurugram, India, 26–27 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 426–439. [Google Scholar]
- Yuan, C.; Li, J.; Zhou, W.; Lu, Y.; Zhang, X.; Hu, S. DyHGCN: A Dynamic Heterogeneous Graph Convolutional Network to Learn Users’ Dynamic Preferences for Information Diffusion Prediction. arXiv 2020, arXiv:2006.05169. [Google Scholar]
- Wang, Y.; Shen, H.; Liu, S.; Gao, J.; Cheng, X. Cascade Dynamics Modeling with Attention-based Recurrent Neural Network. IJCAI 2017, 2985–2991, (Just Accepted). [Google Scholar]
- Yang, C.; Wang, H.; Tang, J.; Shi, C.; Sun, M.; Cui, G.; Liu, Z. Full-Scale Information Diffusion Prediction With Reinforced Recurrent Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–13, (Just Accepted). [Google Scholar] [CrossRef]
- Islam, M.R.; Muthiah, S.; Adhikari, B.; Prakash, B.A.; Ramakrishnan, N. Deepdiffuse: Predicting the ‘who’ and ‘when’ in cascades. In Proceedings of the IEEE International Conference on Data Mining (ICDM), Sorrento, Italy, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1055–1060. [Google Scholar]
- Cao, Z.; Han, K.; Zhu, J. Information Diffusion Prediction via Dynamic Graph Neural Networks. In Proceedings of the IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Dalian, China, 5–7 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1099–1104. [Google Scholar]
- Chang, H. A New Perspective on Twitter Hashtag Use: Diffusion of Innovation Theory. Proc. Assoc. Inf. Sci. Technol. 2010, 47, 1–4. [Google Scholar] [CrossRef]
- Wakamiya, S.; Kawai, Y.; Aramaki, E. Twitter-based Influenza Detection After Flu Peak Via Tweets With Indirect Information: Text Mining Study. JMIR Public Health Surveill. 2018, 4, e65. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, K.; Anton, A. Using Deep Learning at Scale in Twitter’s Timelines. 2017. Available online: https://blog.Twitter.com/engineering/en_us/topics/insights/2017/using-deep-learning-at-scale-in-Twitters-timelines.html (accessed on 17 May 2019).
- Richterich, A. ‘Karma, Precious Karma!’Karmawhoring on Reddit and the Front Page’s Econometrisation. J. Peer Prod. 2014, 4, 1–12. [Google Scholar]
- Çelikkanat, A.; Malliaros, F.D. Topic-aware latent models for representation learning on networks. Pattern Recognit. Lett. 2021, 144, 89–96. [Google Scholar] [CrossRef]
- Barbieri, N.; Bonchi, F.; Manco, G. Topic-aware social influence propagation models. Knowl. Inf. Syst. 2013, 37, 555–584. [Google Scholar] [CrossRef]
- Bailey, N.T. The Mathematical Theory of Infectious Diseases and Its Applications; Charles Griffin and Company Ltd.: Glasgow, UK, 1975. [Google Scholar]
- Alanazi, S.A.; Kamruzzaman, M.; Alruwaili, M.; Alshammari, N.; Alqahtani, S.A.; Karime, A. Measuring and Preventing COVID-19 Using the SIR Model and Machine Learning in Smart Health Care. J. Healthc. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Goffman, W.; Newill, V. Generalization of Epidemic Theory. Nature 1964, 204, 225–228. [Google Scholar] [CrossRef]
- Bass, F.M. A New Product Growth for Model Consumer Durables. Manag. Sci. 1969, 15, 215–227. [Google Scholar] [CrossRef]
- Ma, H.; Yang, H.; Lyu, M.R.; King, I. Mining Social Networks Using Heat Diffusion Processes for Marketing Candidates Selection. In Proceedings of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, CA, USA, 26–30 October 2008; pp. 233–242. [Google Scholar]
- Rezvanian, A.; Meybodi, M.R. Stochastic graph as a model for social networks. Comput. Hum. Behav. 2016, 64, 621–640. [Google Scholar] [CrossRef]
- Rossetti, G.; Pappalardo, L.; Pedreschi, D.; Giannotti, F. Tiles: An online algorithm for community discovery in dynamic social networks. Mach. Learn. 2017, 106, 1213–1241. [Google Scholar] [CrossRef] [Green Version]
- Amati, V.; Lomi, A.; Mira, A. Social network modeling. Annu. Rev. Stat. Its Appl. 2018, 5, 343–369. [Google Scholar] [CrossRef] [Green Version]
- Snijders, T.A. Stochastic actor-oriented models for network dynamics. Annu. Rev. Stat. Its Appl. 2017, 4, 343–363. [Google Scholar] [CrossRef] [Green Version]
- Snijders, T.A. Statistical models for social networks. Annu. Rev. Sociol. 2011, 37, 131–153. [Google Scholar] [CrossRef]
- Wasserman, S. Analyzing social networks as stochastic processes. J. Am. Stat. Assoc. 1980, 75, 280–294. [Google Scholar] [CrossRef]
- Xiong, F.; Liu, Y.; Zhang, Z.j.; Zhu, J.; Zhang, Y. An information diffusion model based on retweeting mechanism for online social media. Phys. Lett. A 2012, 376, 2103–2108. [Google Scholar] [CrossRef]
- Tang, J.; Sun, J.; Wang, C.; Yang, Z. Social influence analysis in large-scale networks. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Paris, France, 28 June–1 July 2009; pp. 807–816. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Cha, M.; Haddadi, H.; Benevenuto, F.; Gummadi, P.K. Measuring User Influence in Twitter: The Million Follower Fallacy. Icwsm 2010, 10, 30. [Google Scholar]
- Leskovec, J.; Backstrom, L.; Kleinberg, J. Meme-tracking and the Dynamics of the News Cycle. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June–1 July 2009; ACM: New York, NY, USA, 2009; pp. 497–506. [Google Scholar]
- Xu, H.; Wei, J.; Yang, Z.; Ruan, J.; Wang, J. Probabilistic topic and role model for information diffusion in social network. In Pacific-Asia Conference on Knowledge Discovery and Data Mining; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–15. [Google Scholar]
- Bakshy, E.; Karrer, B.; Adamic, L.A. Social Influence and the Diffusion of User-created Content. In Proceedings of the 10th ACM Conference on Electronic Commerce, Stanford, CA, USA, 6–10 July 2009; ACM: New York, NY, USA, 2009; pp. 325–334. [Google Scholar]
- Wang, W.; Tang, M.; Shu, P.; Wang, Z. Dynamics of Social Contagions With Heterogeneous Adoption Thresholds: Crossover Phenomena in Phase Transition. New J. Phys. 2016, 18, 013029. [Google Scholar] [CrossRef]
- Kurka, D.B.; Godoy, A.; Von Zuben, F.J. Online Social Network Analysis: A Survey of Research Applications in Computer Science. arXiv 2015, arXiv:1504.05655. [Google Scholar]
- Eyal, K.; Rubin, A.M. Viewer aggression and homophily, identification, and parasocial relationships with television characters. J. Broadcast. Electron. Media 2003, 47, 77–98. [Google Scholar] [CrossRef]
- McCroskey, J.C.; Richmond, V.P.; Daly, J.A. The development of a measure of perceived homophily in interpersonal communication. Hum. Commun. Res. 1975, 1, 323–332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.Z.; Barnes, S.J.; Zhao, S.J.; Zhang, H. Can consumers be persuaded on brand microblogs? An empirical study. Inf. Manag. 2018, 55, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hanks, L.; Line, N.; Yang, W. Status seeking and perceived similarity: A consideration of homophily in the social servicescape. Int. J. Hosp. Manag. 2017, 60, 123–132. [Google Scholar] [CrossRef]
- Wang, Z.; Walther, J.B.; Pingree, S.; Hawkins, R.P. Health information, credibility, homophily, and influence via the Internet: Web sites versus discussion groups. Health Commun. 2008, 23, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ismagilova, E.; Slade, E.; Rana, N.P.; Dwivedi, Y.K. The effect of characteristics of source credibility on consumer behaviour: A meta-analysis. J. Retail. Consum. Serv. 2020, 53, 101736. [Google Scholar] [CrossRef] [Green Version]
- Shang, S.S.; Wu, Y.L.; Sie, Y.J. Generating consumer resonance for purchase intention on social network sites. Comput. Hum. Behav. 2017, 69, 18–28. [Google Scholar] [CrossRef]
- Lee, J.E.; Watkins, B. YouTube vloggers’ influence on consumer luxury brand perceptions and intentions. J. Bus. Res. 2016, 69, 5753–5760. [Google Scholar] [CrossRef]
- Li, F.; Du, T.C. Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decis. Support Syst. 2011, 51, 190–197. [Google Scholar] [CrossRef]
- Ladhari, R.; Massa, E.; Skandrani, H. YouTube vloggers’ popularity and influence: The roles of homophily, emotional attachment, and expertise. J. Retail. Consum. Serv. 2020, 54, 102027. [Google Scholar] [CrossRef]
- Kim, S.; Kandampully, J.; Bilgihan, A. The influence of eWOM communications: An application of online social network framework. Comput. Hum. Behav. 2018, 80, 243–254. [Google Scholar] [CrossRef]
- Sakib, M.N.; Zolfagharian, M.; Yazdanparast, A. Does parasocial interaction with weight loss vloggers affect compliance? The role of vlogger characteristics, consumer readiness, and health consciousness. J. Retail. Consum. Serv. 2020, 52, 101733. [Google Scholar] [CrossRef]
- Bang, H.P. ‘Yes We Can’: Identity Politics and Project Politics for a Late-modern World. Urban Res. Pract. 2009, 2, 117–137. [Google Scholar] [CrossRef]
- Crane, R.; Sornette, D. Robust Dynamic Classes Revealed by Measuring the Response Function of a Social System. Proc. Natl. Acad. Sci. USA 2008, 105, 15649–15653. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, J.P.; Durrett, R. Temporal Profiles of Avalanches on Networks. Nat. Commun. 2017, 8, 1227. [Google Scholar] [CrossRef] [Green Version]
- Chakravarti, I.M.; Laha, R.G.; Roy, J. Handbook of methods of applied statistics. In Wiley Series in Probability and Mathematical Statistics (USA) eng; Wiley: New York, NY, USA, 1967. [Google Scholar]
- Nguyen, T.T.; Hui, P.M.; Harper, F.M.; Terveen, L.; Konstan, J.A. Exploring the filter bubble: The effect of using recommender systems on content diversity. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; pp. 677–686. [Google Scholar]
- Spohr, D. Fake news and ideological polarization: Filter bubbles and selective exposure on social media. Bus. Inf. Rev. 2017, 34, 150–160. [Google Scholar] [CrossRef]
- Zanardi, V.; Capra, L. Social ranking: Uncovering relevant content using tag-based recommender systems. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 1 January 2008; pp. 51–58. [Google Scholar]
- Perry, B.L.; Pescosolido, B.A.; Borgatti, S.P. Egocentric Network Analysis: Foundations, Methods, and Models; Cambridge University Press: Cambridge, UK, 2018; Volume 44. [Google Scholar]
- Xiong, R.; Donath, J. PeopleGarden: Creating data portraits for users. In Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology, Asheville, NC, USA, 7–10 November 1999; pp. 37–44. [Google Scholar]
- Chen, S.; Chen, S.; Wang, Z.; Liang, J.; Wu, Y.; Yuan, X. D-map+ interactive visual analysis and exploration of ego-centric and event-centric information diffusion patterns in social media. ACM Trans. Intell. Syst. Technol. (TIST) 2018, 10, 1–26. [Google Scholar]
- Cao, N.; Lin, Y.R.; Du, F.; Wang, D. Episogram: Visual summarization of egocentric social interactions. IEEE Comput. Graph. Appl. 2015, 36, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.H.; Henkin, R.; Chen, S.; Andrienko, N.; Andrienko, G.; Thonnard, O.; Turkay, C. Vasabi: Hierarchical user profiles for interactive visual user behaviour analytics. IEEE Trans. Vis. Comput. Graph. 2019, 26, 77–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Shi, L.; Su, Y.; Hu, Y.; Tong, H.; Wang, C.; Yang, T.; Wang, D.; Liang, S. Eiffel: Evolutionary flow map for influence graph visualization. IEEE Trans. Vis. Comput. Graph. 2019, 26, 2944–2960. [Google Scholar] [CrossRef] [Green Version]
- Cao, N.; Shi, C.; Lin, S.; Lu, J.; Lin, Y.R.; Lin, C.Y. TargetVue: Visual analysis of anomalous user behaviors in online communication systems. IEEE Trans. Vis. Comput. Graph. 2015, 22, 280–289. [Google Scholar] [CrossRef]
- Han, M.; Wang, Q.; Wei, L.; Zhang, Y.; Cao, Y.; Pu, J. egoStellar: Visual Analysis of Anomalous Communication Behaviors from Egocentric Perspective. In International Computer Symposium; Springer: Berlin/Heidelberg, Germany, 2018; pp. 280–290. [Google Scholar]
- Pu, J.; Zhang, J.; Shao, H.; Zhang, T.; Rao, Y. egoDetect: Visual Detection and Exploration of Anomaly in Social Communication Network. Sensors 2020, 20, 5895. [Google Scholar] [CrossRef]
- Kim, Y.; Bae, Y.; Kim, J.; Nam, Y. iVIS: Interpretable Interactive Visualization for User Behavior Clusters. In International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2020; pp. 47–52. [Google Scholar]
- Wong, J.S. MessageLens: A visual analytics system to support multifaceted exploration of MOOC forum discussions. Vis. Inform. 2018, 2, 37–49. [Google Scholar] [CrossRef]
- Fu, S.; Wang, Y.; Yang, Y.; Bi, Q.; Guo, F.; Qu, H. VisForum: A visual analysis system for exploring user groups in online forums. ACM Trans. Interact. Intell. Syst. (TiiS) 2018, 8, 1–21. [Google Scholar] [CrossRef]
- Fu, S.; Zhao, J.; Cui, W.; Qu, H. Visual analysis of MOOC forums with iForum. IEEE Trans. Vis. Comput. Graph. 2016, 23, 201–210. [Google Scholar] [CrossRef]
- Wu, M.; Dewan, M.A.A.; Lin, F.; Murshed, M. Visualization of course discussion forums: A short review from online learning perspective. In Proceedings of the IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), Edmonton, AB, Canada, 5–8 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Laghari, A.A.; Wu, K.; Laghari, R.A.; Ali, M.; Khan, A.A. A Review and State of Art of Internet of Things (IoT). Arch. Comput. Methods Eng. 2021, 1–19, (Just Accepted). [Google Scholar] [CrossRef]
- Conti, M.; Passarella, A.; Das, S.K. The Internet of People (IoP): A new wave in pervasive mobile computing. Pervasive Mob. Comput. 2017, 41, 1–27. [Google Scholar] [CrossRef]
- Conti, M.; Passarella, A. The Internet of People: A human and data-centric paradigm for the Next Generation Internet. Comput. Commun. 2018, 131, 51–65. [Google Scholar] [CrossRef]
- Zhou, W.X.; Sornette, D.; Hill, R.A.; Dunbar, R.I. Discrete hierarchical organization of social group sizes. Proc. R. Soc. Biol. Sci. 2005, 272, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, R.A.; Dunbar, R.I. Social network size in humans. Hum. Nat. 2003, 14, 53–72. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, R.I.; Arnaboldi, V.; Conti, M.; Passarella, A. The structure of online social networks mirrors those in the offline world. Soc. Netw. 2015, 43, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Arnaboldi, V.; La Gala, M.; Passarella, A.; Conti, M. Information diffusion in distributed OSN: The impact of trusted relationships. Peer -Peer Netw. Appl. 2016, 9, 1195–1208. [Google Scholar] [CrossRef]
- Liberatore, M.J.; Wagner, W.P. Virtual, mixed, and augmented reality: A systematic review for immersive systems research. Virtual Real. 2021, 25, 1–27. [Google Scholar] [CrossRef]
- Sommer, B.; Baaden, M.; Krone, M.; Woods, A. From virtual reality to immersive analytics in bioinformatics. J. Integr. Bioinform. 2018, 15. (Just Accepted). [Google Scholar] [CrossRef]
- Fonnet, A.; Prie, Y. Survey of immersive analytics. IEEE Trans. Vis. Comput. Graph. 2019, 3, 2101–2122. [Google Scholar] [CrossRef]
- Sorger, J.; Arleo, A.; Kán, P.; Knecht, W.; Waldner, M. Egocentric Network Exploration for Immersive Analytics. arXiv 2021, arXiv:2109.09547. [Google Scholar]
- Wagner Filho, J.A.; Rey, M.F.; Freitas, C.M.; Nedel, L. Immersive visualization of abstract information: An evaluation on dimensionally-reduced data scatterplots. In Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Lisbon, Portugal, 27 March–1 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 483–490. [Google Scholar]
- Büschel, W.; Vogt, S.; Dachselt, R. Augmented reality graph visualizations. IEEE Comput. Graph. Appl. 2019, 39, 29–40. [Google Scholar] [CrossRef]
- Belcher, D.; Billinghurst, M.; Hayes, S.; Stiles, R. Using augmented reality for visualizing complex graphs in three dimensions. In Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality, Tokyo, Japan, 10 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 84–93. [Google Scholar]
- Kraus, M.; Weiler, N.; Oelke, D.; Kehrer, J.; Keim, D.A.; Fuchs, J. The impact of immersion on cluster identification tasks. IEEE Trans. Vis. Comput. Graph. 2019, 26, 525–535. [Google Scholar] [CrossRef] [Green Version]
- Greffard, N.; Picarougne, F.; Kuntz, P. Visual community detection: An evaluation of 2d, 3d perspective and 3d stereoscopic displays. In International Symposium on Graph Drawing; Springer: Berlin/Heidelberg, Germany, 2011; pp. 215–225. [Google Scholar]
- Kotlarek, J.; Kwon, O.H.; Ma, K.L.; Eades, P.; Kerren, A.; Klein, K.; Schreiber, F. A Study of Mental Maps in Immersive Network Visualization. In Proceedings of the IEEE Pacific Visualization Symposium (PacificVis), Tianjin, China, 3–5 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–10. [Google Scholar]
- Ens, B.; Bach, B.; Cordeil, M.; Engelke, U.; Serrano, M.; Willett, W.; Prouzeau, A.; Anthes, C.; Büschel, W.; Dunne, C.; et al. Grand challenges in immersive analytics. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2021; pp. 1–17. [Google Scholar]
- Heidrich, D.; Meinecke, A.; Schreiber, A. Towards a Collaborative Experimental Environment for Graph Visualization Research in Virtual Reality. Available online: https://diglib.eg.org/bitstream/handle/10.2312/evp20211068/009-011.pdf?sequence=1&isAllowed=y (accessed on 19 September 2021).
- Kraus, M.; Klein, K.; Fuchs, J.; Keim, D.A.; Schreiber, F.; Sedlmair, M. The Value of Immersive Visualization. IEEE Comput. Graph. Appl. 2021, 41, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Sereno, M.; Wang, X.; Besançon, L.; McGuffin, M.J.; Isenberg, T. Collaborative work in augmented reality: A survey. IEEE Trans. Vis. Comput. Graph. 2020, 1, (Just Accepted). [Google Scholar] [CrossRef] [PubMed]
- Royston, S.; DeFanti, C.; Perlin, K. A collaborative untethered virtual reality environment for interactive social network visualization. arXiv 2016, arXiv:1604.08239. [Google Scholar]
- Drogemuller, A.; Cunningham, A.; Walsh, J.; Ross, W.; Thomas, B.H. VRige: Exploring social network interactions in immersive virtual environments. In Proceedings of the International Symposium on Big Data Visual Analytics (BDVA), Konstanz, Germany, 17–19 October 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Sorger, J.; Waldner, M.; Knecht, W.; Arleo, A. Immersive analytics of large dynamic networks via overview and detail navigation. In Proceedings of the IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Utrecht, The Netherlands, 14–18 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 144–1447. [Google Scholar]
- Riegler, A.; Anthes, C.; Jetter, H.C.; Heinzl, C.; Holzmann, C.; Jodlbauer, H.; Brunner, M.; Auer, S.; Friedl, J.; Fröhler, B.; et al. Cross-Virtuality Visualization, Interaction and Collaboration. Available online: https://www.researchgate.net/profile/Andreas-Riegler-2/publication/346082457_Cross-Virtuality_Visualization_Interaction_and_Collaboration/links/5fba8af7299bf104cf6cda09/Cross-Virtuality-Visualization-Interaction-and-Collaboration.pdf (accessed on 17 September 2021).
- De Vries, J.H.; Spengler, M.; Frintrup, A.; Mussel, P. Personality Development in Emerging Adulthood—How the Perception of Life Events and Mindset Affect Personality Trait Change. Front. Psychol. 2021, 12, 671421. [Google Scholar] [CrossRef]
- Graham, E.K.; Weston, S.J.; Gerstorf, D.; Yoneda, T.B.; Booth, T.; Beam, C.R.; Petkus, A.J.; Drewelies, J.; Hall, A.N.; Bastarache, E.D. Trajectories of big five personality traits: A coordinated analysis of 16 longitudinal samples. Eur. J. Personal. 2020, 34, 301–321. [Google Scholar] [CrossRef]
- Hoff, K.A.; Song, Q.; Einarsdóttir, S.; Briley, D.A.; Rounds, J. Developmental structure of personality and interests: A four-wave, 8-year longitudinal study. J. Personal. Soc. Psychol. 2020, 118, 1044. [Google Scholar] [CrossRef]
- Roberts, B.W.; Mroczek, D. Personality trait change in adulthood. Curr. Dir. Psychol. Sci. 2008, 17, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Carden, L.; Wood, W. Habit formation and change. Curr. Opin. Behav. Sci. 2018, 20, 117–122. [Google Scholar] [CrossRef]
- Cadilhac, A.; Asher, N.; Lascarides, A.; Benamara, F. Preference change. J. Logic. Lang. Inf. 2015, 24, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Hoff, K.A.; Briley, D.A.; Wee, C.J.; Rounds, J. Normative changes in interests from adolescence to adulthood: A meta-analysis of longitudinal studies. Psychol. Bull. 2018, 144, 426. [Google Scholar] [CrossRef] [PubMed]
- Chaabene, N.E.H.B.; Bouzeghoub, A.; Guetari, R.; Ghezala, H.H.B. Deep learning methods for anomalies detection in social networks using multidimensional networks and multimodal data: A survey. Multimed. Syst. 2021, 1–11. [Google Scholar] [CrossRef]
- Mahmood, B.; Alanezi, M. Structural-Spectral-Based Approach for Anomaly Detection in Social Networks. Int. J. Comput. Digit. Syst. 2021, 10, 343–351. [Google Scholar] [CrossRef]
- Rengarajan, R.; Babu, S. Anomaly Detection using User Entity Behavior Analytics and Data Visualization. In Proceedings of the 8th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 17–19 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 842–847. [Google Scholar]
- Wanda, P.; Jie, H.J. DeepFriend: Finding abnormal nodes in online social networks using dynamic deep learning. Soc. Netw. Anal. Min. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Noorossana, R.; Hosseini, S.S.; Heydarzade, A. An overview of dynamic anomaly detection in social networks via control charts. Qual. Reliab. Eng. Int. 2018, 34, 641–648. [Google Scholar] [CrossRef]
- Savage, D.; Zhang, X.; Yu, X.; Chou, P.; Wang, Q. Anomaly detection in online social networks. Soc. Netw. 2014, 39, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Bernstein, M.; Danescu-Niculescu-Mizil, C.; Leskovec, J. Anyone can become a troll: Causes of trolling behavior in online discussions. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, OR, USA, 25 February–1 March 2017; pp. 1217–1230. [Google Scholar]
- Masud, S.; Dutta, S.; Makkar, S.; Jain, C.; Goyal, V.; Das, A.; Chakraborty, T. Hate is the New Infodemic: A Topic-aware Modeling of Hate Speech Diffusion on Twitter. In Proceedings of the IEEE 37th International Conference on Data Engineering (ICDE), Chania, Greece, 14–22 April 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 504–515. [Google Scholar]
- Makkar, S.; Chakraborty, T. Hate Speech Diffusion in Twitter Social Media. Ph.D. Thesis, IIIT-Delhi, New Delhi, India, 2020. [Google Scholar]
- Castano-Pulgarín, S.A.; Suárez-Betancur, N.; Vega, L.M.T.; López, H.M.H. Internet, social media and online hate speech. Systematic review. Aggress. Violent Behav. 2021, 25, 101608. [Google Scholar] [CrossRef]
- Salminen, J.; Sengün, S.; Corporan, J.; Jung, S.g.; Jansen, B.J. Topic-driven toxicity: Exploring the relationship between online toxicity and news topics. PLoS ONE 2020, 15, e0228723. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, H.W. Why people post benevolent and malicious comments online. Commun. ACM 2015, 58, 74–79. [Google Scholar] [CrossRef]
- Cheng, J.; Danescu-Niculescu-Mizil, C.; Leskovec, J. Antisocial behavior in online discussion communities. In Proceedings of the Ninth International AAAI Conference on Web and Social Media, Oxford, UK, 26–29 May 2015. [Google Scholar]
- Kumar, D.; Kelley, P.G.; Consolvo, S.; Mason, J.; Bursztein, E.; Durumeric, Z.; Thomas, K.; Bailey, M. Designing Toxic Content Classification for a Diversity of Perspectives. arXiv 2021, arXiv:2106.04511. [Google Scholar]
- Fiesler, C. Toward a Multi-Stakeholder Perspective for Improving Online Content Moderation. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2019. [Google Scholar]
- Kooti, F.; Yang, H.; Cha, M.; Gummadi, K.P.; Mason, W.A. The emergence of conventions in online social networks. In Proceedings of the Sixth International AAAI Conference on Weblogs and Social Media, Dublin, Ireland, 4–7 June 2012. [Google Scholar]
- Chen, S.; Andrienko, N.; Andrienko, G.; Adilova, L.; Barlet, J.; Kindermann, J.; Nguyen, P.H.; Thonnard, O.; Turkay, C. LDA ensembles for interactive exploration and categorization of behaviors. IEEE Trans. Vis. Comput. Graph. 2019, 26, 2775–2792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benevenuto, F.; Rodrigues, T.; Cha, M.; Almeida, V. Characterizing user behavior in online social networks. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement, Chicago, IL, USA, 4–9 November 2009; pp. 49–62. [Google Scholar]
- Uhde, A.; Tretter, S.; von Terzi, P.; Koelle, M.; Diefenbach, S.; Hassenzahl, M. Interaction in the Public: Aesthetics, Social Acceptability, and Social Context. Mensch Und Comput.-2021-Work. 2021. (Just Accepted). [Google Scholar]
- Uhde, A.; Hassenzahl, M. Towards a Better Understanding of Social Acceptability. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–6. [Google Scholar]
Centrality Metric | Algorithm Description | Citation |
---|---|---|
Betweenness | Given a graph , is the number of shortest paths from to , and is the number of shortest paths from to that pass through a node . | [174] |
Closeness | Measure how close a node is to all other nodes. Ranges from 0 (far) to (very central). is defined as in Betweenness. | [85] |
Degree , defined in Equation (1) | Number of edges connected to a node , or the number of neighbors of a node. Indegree - number of edges connecting into a node in a directed graph. Outdegree - number of edges going out of a node in a directed graph. | [175] |
HITS | In the HITS algorithm (hubs and authorities), each node has both a hub score and an authority score . We initialize . - all nodes that links to. - all nodes linking to . | [176] |
H-index | Computes the interrelationships between publication quantities and numbers of citations, and defines a researcher’s academic influence in a particular domain. H is an operator on a set of real-valued variables and returns the maximum integer h such that there are at least h members with a value (degree k) no less than h where is the set of neighbors of node . | [177] |
Extended H-index | Utilize structural information from a node’s neighbors to compensate for the H-index algorithm that ignores network structure. The extended H-index considers the degrees of the neighbors of nodes using: (i) is the cumulative degree of the neighbors of node ; (ii) is the value of the index of vector ; and (iii) , where h is defined in H-index; and r. | [178] |
Weighted H-index | A weighted H-index is calculated by constructing an operator H on weighted edges. The accumulation of weighted H-index in the node’s neighborhood defines the spreading, then utilizes the SIR model to investigate a spreading process, and define the most influential spreaders. | [179] |
HybridRank were is the set of ’s neighbors | Computes node’s importance using two centralities: (i) Eigenvector centrality (); and (ii) the Coreness (C) (see k-core in Table 1) sum of its neighbors. is a proxy of user influence in terms of connections with high-scored (central) nodes. | [180] |
Improved HybridRank × H-index | Combines two centralities: the Extended Neighborhood Coreness centrality and the H-index centrality. Then, it uses SIR. | [181] |
k-core | The k-core of graph (G) is a maximal subgraph H in which each node has at least degree k (In or Out degree). The coreness of a node is k if it belongs to the k-core but not to the ()-core. | [112] |
Weighted k-core | Applies the same pruning routine as k-core, but measures both the degree of a node and the weights of its links. | [182] |
LeaderRank | The ranking process assigns 1-unit prestige to all (N) nodes in a directed network except the ground node (a node connected with every node). The unit prestige of the nodes is evenly distributed to neighboring nodes via links until a steady state is reached. Using random walks, the score of node i at time step t is ; is an element of an adjacency matrix. | [183] |
Weighted LeaderRank | Node ranking is calculated using two models: The first model measures the users’ relative influence based on quality of tweet, ratio of retweets, and topic similarity among users; and the second model calculates the user network global influence. This is an expansion of LeaderRank where the score from node i to node j is proportional to the weight as defined in [184]. | [184] |
PageRank | Measures the importance of a node in a graph with nodes, by counting the number of edges to a node to determine its importance. Important nodes are likely to receive more links from others. : dumping factor; : out degree of . | [185] |
VoteRank were is the set of ’s neighbors | Each node is represented by where is ’s voting ability and is the score of , i.e., the sum where is ’s neighbor. Initially, is set to 1. At each time step, with the largest score is selected into the target set, and then (i) the voting ability is set to zero; (ii) for each of ’s neighbors, its voting ability decreases by a factor , where k is the average degree, and if , we reset it as . | [186] |
Information Spread in the Study | Structural Models | Non-Structural Models | External Information |
---|---|---|---|
Resharing of online content (e.g., a message or a photo) | [21,22,49,50,202,241] [23,24,25,26,51] | [11,16] | [27,238,239] |
Hybrid models of re-sharing online content | [19,20,40,68,165,240] | ||
Information first spreads to opinion leaders, and then from node to node | [30,164,203] | ||
Information on who adopted an innovation or behavior (e.g., prescribing a drug, imitation, or emotional contagion) | [199,201,210] | [18] | |
Information on who adopted an innovation or behavior depending on the user’s number of adopting OSN neighbors | [22,52,206,207,209,242] | [41] | |
Purchasing a product | [5,7,8,9,10,204] | [54,228] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartal, A.; Jagodnik, K.M. Role-Aware Information Spread in Online Social Networks. Entropy 2021, 23, 1542. https://doi.org/10.3390/e23111542
Bartal A, Jagodnik KM. Role-Aware Information Spread in Online Social Networks. Entropy. 2021; 23(11):1542. https://doi.org/10.3390/e23111542
Chicago/Turabian StyleBartal, Alon, and Kathleen M. Jagodnik. 2021. "Role-Aware Information Spread in Online Social Networks" Entropy 23, no. 11: 1542. https://doi.org/10.3390/e23111542
APA StyleBartal, A., & Jagodnik, K. M. (2021). Role-Aware Information Spread in Online Social Networks. Entropy, 23(11), 1542. https://doi.org/10.3390/e23111542