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Abstract: In this paper, we propose weighted h-index hw and h-index strength sh to measure spreading
capability and identify the most influential spreaders. Experimental results on twelve real networks
reveal that sh was more accurate and more monotonic than hw and four previous measures in ranking
the spreading influence of a node evaluated by the single seed SIR spreading model. We point out
that the questions of how to improve monotonicity and how to determine a proper neighborhood
range are two interesting future directions.
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1. Introduction

Many spreading phenomena, such as the cascading failure [1], rumor diffusion [2], viral advertising [3],
etc., in the real world, can be described as the spreading process on complex networks [4,5].
Understanding the significant role that a single node plays provides insights into network structure [6–9]
and function [10,11]. Identifying influential spreaders, whose fundamental problem is how to identify
and rank the efficient spreaders in complex networks, has attracted much attention [12].

Degree, the most straightforward indicator, focuses on the number of links per node, and is an
often-used measure of the influence of a node in the spreading process. In the early days, people
guessed that the node with the maximal degree was the most influential in a network [13,14]. There are
also many traditional metrics, such as betweenness [15], closeness [16], Katz [17], etc., which show good
performance in distinguishing different influential nodes. However, their computational complexity is
unacceptable when we apply them to large-scale networks. Recently, Kitsak et al. [18] found that the
most influential spreaders are likely to reside in the core part of a network. However, coreness is a metric
based on k-shell decomposition, which assigns many nodes to the same shell. The nodes in the same
shell actually have different spreading abilities [19]. The method in Ref. [18] was extended to identify
the difference in spreading ability among nodes in the same shell [19–31]. For example, Zeng et al.
proposed a mixed degree decomposition (MDD) method by considering both the residual degree
and the exhausted degree [20], but the optimal parameter λ is uncertain. Liu et al. took into account
the shortest distance from a target node to the node with the highest coreness and presented a more
distinguishable identification of influential spreaders [21]. Bae and Kim proposed the neighborhood
coreness centrality, which summed the neighbors’ coreness together [22]. Wang et al. utilized the
iteration information in the k-shell decomposition process to differentiate the spreading influence of
nodes in the same shell [23]. Xu et al. designed an iterative neighbor information gathering (ING) process
to rank the node influence [24]. Other measures [25–33], such as information index [32] and subgraph
centrality [33], also have good performance in finding important nodes. These above-mentioned
measures are structural centralities which measure the importance of a node based mainly on the
topological structure of a network [10].
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In this paper, we argue that edges can be quite different [34] and have different significances when
defining the spreading influence of a node. For example, degree and betweenness have good performance
for unweighted networks, and they have been extended to weighted networks [29,35,36]. Evidence
theory has been employed to identify influential nodes in weighted networks [37]. The different
importance of the direction of a link in spreading was taken into account by considering weighted
neighborhood centrality [38] and asymmetric link weights [39].

Recently, Lü et al. discussed that h-index as a good tradeoff between degree and coreness when
measuring a node’s influence. However, h-index is not the overall best performer when compared
with coreness [40]. Investigated by recent work [41], these three fundamental methods (i.e., degree,
h-index, and coreness) have the advantage of assessing the performance of identifying the influential
node. Inspired by these factors, we propose a weighted h-index (hw) by constructing an operator
H on weighted edges. Furthermore, the sum of weighted h-index (sh) in the node’s neighborhood
defines the spreading influence. To evaluate the effectiveness of the proposed measures, we apply the
susceptible-infected-recovered (SIR) model for investigating an epidemic spreading process on twelve
real-world networks.

The remainder of this paper is organized as follows. Section 2 reviews several centralities and a
detailed description of our methods is presented. Then, the SIR model and the evaluation methods
are introduced and twelve real networks are employed to test the accuracy and monotonicity of our
methods in Section 3. Finally, in Section 4 a simple conclusion is summarized.

2. Methods

Given a network G(V, E) with N = |V| nodes and M = |E| edges, ei j represents the edge linking
node i and node j, the weight of ei j is wi j = kik j, and Γi denotes the set of the neighbors of node i.

2.1. Measures

The degree of node i is defined as ki = |Γi|, where |·| indicates the number of the elements in a set.
The betweenness of node i is defined as

Bi =
∑

j∈V,k∈V, j,k

n jk(i)

n jk
(1)

where n jk is the number of shortest paths connecting node j and node k, while n jk(i) is the number of
shortest paths connecting node j and node k and passing through node i.

The k-shell index (ks) is obtained by k-shell decomposition. During k-shell decomposition, each node
will be assigned to a shell with a specific ks index.

The h-index of node i is defined as [40]

hi = H
(
k j1 , k j2 , · · · , k jki

)
. (2)

where H(·) is an operator, which finds out the maximum integer h such that there are at least h
neighbors whose degree is no less than h.

To reflect the spreading influence of a node in a network, we design a new measure called weighted
h-index (hw). The weight of virtual edges incident with node i is selected to replace the degree of node i
in Ref. [40]. Each neighbor j of node i is cloned k j times. Each cloned neighbor jc has a virtual edge ei jc
whose weight wi jc = wi j. The edge weights of all the virtual edges incident with node j are grouped in
the descending edge weight sequence of node i. This means that wi j, which is the weight of the original
edge ei j, will show up k j times in the descending edge weight sequence. Then, weighted h-index is

hw
i = H

(
wi j1,1, · · · , wi j1,k j1

, wi j2,1, · · · , wi j2,k j2
, · · · , wi jki

,1, · · · , wi jki
,k jki

)
. (3)



Symmetry 2019, 11, 1263 3 of 10

Since the strength of a node [35] is often adopted in identifying the influential nodes [14,39,42],
we define the h-index strength of node i as

sh
i =

∑
j∈Γ(i)

hw
j . (4)

2.2. Single Seed SIR Model

We employed the single seed SIR model to investigate the spreading process on complex networks.
Initially, all nodes in a network are in the susceptible state (S) except for the seed node, which is in
the infectious state (I). At each time step, the nodes in the I state infect their neighbors in the S state
with probability β, then their state changes from the infectious state (I) to the recovered state (R),
which means that they cannot be infected again. The spreading process will stop when any node in
the network is in state I. The number of nodes in the recovered state reflects the final infected scope,
and this is adopted to measure the infection strength of the seed node.

The higher infection probability β, the larger the population that will be infected, wherever it
locates in a network. According to the previous study [43], we know the critical infection probability βc

in a network approximately equals to 〈k〉/
〈
k2

〉
. In this study, the infection probability β is set to larger

than βc.
When node i is the seed for the single seed SIR model, its spreading scope (Si) is quantified by the

average number of recovered nodes over 200 independent simulations.

2.3. Evaluation Methods

The Kendall τb correlation coefficient is adopted to measure the consistency between two rankings.
Given Rµ, the rank vector of a measure µ, and RSIR, that of the single seed SIR model, the Kendall τb
correlation coefficient is defined as

τb
(
Rµ, RSIR

)
=

nc − nd√
(n0 − n1)(n0 − n2)

, (5)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and n0 = n(n− 1)/2,
n1 =

∑
i ti(ti − 1)/2, n2 =

∑
j u j

(
u j − 1

)
/2, where n is the size of rank vectors and ti and u j are the

number of tied values in the ith and jth group of ties, respectively. Since all measures are evaluated by
RSIR, τb

(
Rµ, RSIR

)
will be denoted by τb(µ) for short.

To quantify the accuracy of a measure, the imprecision function [10] is employed. Given a selection
fraction p ∈ [0, 1], Veff(p) is the top p fraction of the most influential spreaders, and Vµ(p) is the pN
nodes with the highest value of measure µ. Their average spreading scope is denoted by Seff(p) and
Sµ(p), respectively. Then the imprecision function is defined as

εµ(p) = 1−
Sµ(p)

Seff(p)
. (6)

A smaller εµ means that the corresponding measure µ performs more accurately in identifying
the most influential spreaders. The measure µ, as discussed in this work, could be k, B, ks, h, hw, and sh.

The monotonicity of ranking vector Rµ is defined as [14]

M
(
Rµ

)
=

1−

∑
rεRµ N(r)(N(r) − 1)

N(N − 1)

2

, (7)

where N is the size of ranking vector Rµ, which is equal to the number of nodes in a network in
this paper. Furthermore, N(r) is the number of nodes with the same rank r in Rµ. If every node
is given a distinctive rank, then M

(
Rµ

)
= 1. This means that Rµ is a complete monotonic ranking,

and each node can therefore be differentiated from others. When M
(
Rµ

)
= 0, all nodes have the
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same rank, and ranking nodes by the measure µ cannot distinguish nodes at all. A measure with
perfect monotonicity in ranking the nodes of a network will rank each node via an exclusive rank,
which means that each node has a different rank from any other nodes.

3. Results

Setting the ranking of nodes by their spreading scope, with the single seed SIR model as
the benchmark, we evaluated the accuracy and the monotonicity of ranking nodes by degree (k),
node betweenness (B), k-shell index (ks), h-index of node (h), weighted h-index of node (hw) and
h-index strength of node (sh) on twelve real networks. The twelve real networks were one power
grid network (Power Grid [44]), one computer network in the autonomous systems level (AS),
two file-sharing networks (Gnutella06, Gnutella08), one metabolic network (C. elegans [45]), one email
communication network (Email [46]), three social networks (PGP [47], Facebook [48] and Hamster [49]),
two collaboration networks (CondMat [50] and NetSci [51]) and one protein–protein interaction
network (Protein [52]). Their primary features are summarized in Table 1.

Table 1. Properties of twelve real networks. N: the number of nodes, M: the number of edges, βc:
the critical infection rate for single seed SIR model, 〈k〉: the average degree, kmax: the maximum degree,
and ks,max: the maximum k-shell index.

Network N M βc 〈k〉 kmax ks,max

Power Grid 4941 6594 0.26 2.6691 19 5
AS 3015 5156 0.01 3.4202 590 9

Gnutella06 8717 31,525 0.07 7.2330 115 9
Gnutella08 6301 20,777 0.06 6.5948 97 10
C. elegans 453 2025 0.02 8.9404 237 10

Email 1133 5451 0.05 9.6222 71 11
PGP 10,680 24,316 0.05 4.5536 205 31

Facebook 4039 88,234 0.01 43.6910 1045 115
Hamster 2426 16,630 0.02 13.7098 273 24
CondMat 23,133 93,497 0.05 8.0830 279 25

NetSci 379 914 0.12 4.8232 34 9
Protein 1870 2203 0.15 2.3562 56 5

3.1. Accuracy

Table 2 shows that sh obtained eleven highest scores, and hw obtained one highest score in the
consistency between ranking by measures and the averaged spreading scope. Compared to the four
previous measures, sh and hw were better in twelve and ten real networks, respectively. Table 2 suggests
that sh was a better measure than hw in most networks (except for Hamster). It is noteworthy that
similar results can be found in Table 3 when β = 1.5βc.

Table 2. Kendall τb correlation coefficient for six measures in twelve real networks. In the single seed
SIR model, the infection probability β is set to slightly larger than βc, i.e., β = 1.005βc. The largest τb in
each row is marked in boldface.

Network τb(k) τb(B) τb(ks) τb(h) τb(hw) τb(sh)

Power Grid 0.6020 0.4238 0.5142 0.6177 0.7466 0.8060
AS 0.4478 0.2896 0.4540 0.4522 0.3999 0.5023

Gnutella06 0.6715 0.6393 0.6811 0.6940 0.7206 0.7578
Gnutella08 0.6549 0.5987 0.6887 0.6913 0.7139 0.7527
C. elegans 0.5729 0.4361 0.5969 0.5820 0.5868 0.6289

Email 0.7222 0.5862 0.7486 0.7483 0.7694 0.7868
PGP 0.6027 0.4160 0.5707 0.6051 0.6481 0.6566

Facebook 0.6818 0.4491 0.7135 0.7074 0.7320 0.7575
Hamster 0.7477 0.5773 0.7378 0.7523 0.8390 0.8383
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Table 2. Cont.

Network τb(k) τb(B) τb(ks) τb(h) τb(hw) τb(sh)

CondMat 0.6158 0.3884 0.6337 0.6432 0.7312 0.7564
NetSci 0.6391 0.4071 0.5830 0.6499 0.8256 0.8592
Protein 0.5642 0.5227 0.5598 0.5835 0.7690 0.8246

Table 3. Kendall τb correlation coefficient for six measures in twelve real networks. In the single seed
SIR model, the infection probability is β = 1.5βc. The largest τb in each row is marked in boldface.

Network τ(k) τ(B) τ(ks) τ(h) τ(hw) τ(sh)

Power Grid 0.4241 0.2921 0.3987 0.4646 0.6206 0.6893
AS 0.4148 0.2409 0.4412 0.4237 0.5091 0.5927

Gnutella06 0.8135 0.7626 0.8073 0.8438 0.8599 0.8645
Gnutella08 0.7214 0.6597 0.7525 0.7627 0.7844 0.8254
C. elegans 0.5759 0.4137 0.6140 0.5867 0.6355 0.6842

Email 0.7738 0.6171 0.7964 0.8050 0.8438 0.8601
PGP 0.5153 0.3500 0.5118 0.5287 0.6575 0.7099

Facebook 0.6220 0.4251 0.6660 0.6526 0.7353 0.7875
Hamster 0.7151 0.5727 0.7110 0.7232 0.8484 0.8745
CondMat 0.6051 0.3942 0.6316 0.6422 0.7714 0.8152

NetSci 0.5335 0.3443 0.5019 0.5609 0.7747 0.8330
Protein 0.4718 0.4466 0.5147 0.5103 0.7452 0.8429

The imprecision functions of the ranking by six measures are shown in Figure 1. The imprecision
of sh (black) and hw (red) was less than 0.1 for all p ∈ [0.01, 0.3] in all cases. To date, the imprecision of
sh is even less than 0.05 in eleven networks except for Power Grid. Furthermore, sh is always the most
accurate measure in identifying the influential nodes in a network when compared to the other five
measures. Similar results are shown in Figure 2 (where β = 1.5βc), which proves that sh is the most
accurate measure in identifying the influential spreaders.
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in the twelve real networks. The six measures are k (purple), B (blue), ks (cyan), h (green), hw (red) and
sh (black).

To investigate the robustness of the accuracy of the ranking based on the proposed measures,
we show the Kendall τb correlation coefficient as a function of the infection probability β on six
selected real networks in Figure 3. When the infection probability β is set around βc, sh and hw show
a significantly higher robustness of accuracy. For Power Grid, NetSci and Protein networks in the
whole range of β, sh is more accurate than hw, and they are both more accurate than the other four
measures. When β < βc, the spreading is typically confined to the neighborhood of the initially infected
seed node. Since the seed node with a larger degree has a relatively larger neighborhood, it will infect
more nodes than other seed nodes with a smaller degree. This is why degree (k) always achieves
the most significant τ values when β < βc for C. elegans and Email. When β is increasing, sh and
hw perform better gradually. The results in Figure 3 demonstrate that sh is a better measure of the
ranking’s robustness for identifying the influential spreaders in a network.
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3.2. Monotonicity

Table 4 shows the monotonicity of the ranking based on six measures. For all the networks, ranking
nodes based on sh achieve the best performance, and hw gets the second best performance. Both hw

and sh are more competitive measures than k, B, ks, and h from monotonicity’s perspective in the global
scale of a network.

Table 4. The monotonicity M of node ranking based on six measures was applied to twelve real networks.

Network M(k) M(B) M(ks) M(h) M(hw) M(sh)

Power Grid 0.5927 0.8322 0.2460 0.4776 0.8523 0.9606
AS 0.4506 0.3728 0.3734 0.4336 0.9557 0.9803

Gnutella06 0.8110 0.8990 0.5625 0.7945 0.9738 0.9986
Gnutella08 0.7636 0.8511 0.5990 0.7575 0.9644 0.9979
C. elegans 0.7922 0.8743 0.6962 0.7599 0.9301 0.9961

Email 0.8874 0.9400 0.8088 0.8661 0.9914 0.9996
PGP 0.6193 0.5099 0.4806 0.5836 0.9495 0.9920

Facebook 0.9740 0.9855 0.9419 0.9674 0.9838 0.9998
Hamster 0.8980 0.7128 0.8714 0.8892 0.9796 0.9854
CondMat 0.8524 0.4506 0.7980 0.8268 0.9863 0.9974

NetSci 0.7642 0.3387 0.6421 0.6976 0.9472 0.9907
Protein 0.4264 0.4053 0.2534 0.3825 0.9084 0.9563

To depict the monotonicity in the local scale of a network, the node distribution between ranks
is plotted by the complementary cumulative distribution function (CCDF) in Figure 4. The more
monotonic a measure is, the slower the distribution in CCDF decreases, and the more significant in
distinguishing influential spreaders (nodes). In all twelve real networks, k, ks, and h drop quickly at
the left beginning, which means that they are poor at distinguishing nodes from each other based on
the spreading influence. sh decreases slower than hw, and both sh and hw are slower than k, ks, and h in
all twelve real networks.Symmetry 2019, 11, x FOR PEER REVIEW 8 of 11 
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Figure 4. Complementary cumulative distribution function (CCDF) of ranking by six different measures.
Six measures are k (purple), B (blue), ks (cyan), h (green), hw (red) and sh (black).

Undoubtedly, B has a competitive performance compared with sh and hw. For the five real networks
including Power Grid, PGP, Gnutella06, Gnutella08, and Protein, B decreases slower than sh and hw,
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which means that B shows better monotonicity than sh and hw. For the other seven networks, sh always
has the best monotonicity. AS is a typical example (Figure 4b), where B decreases slower than sh at the
beginning. However, the black line (sh) goes across the blue line (B), which means that ranking nodes
by sh will distinguish nodes into more different ranks, and proves that sh has a better monotonicity
than B.

4. Discussion

Spreading like an epidemic, information is a ubiquitous process in social, biological,
and technological networks. Identifying influential nodes in the spreading process, as one of the
primary problems in network science, remains an open issue. In this study, we propose the weighted
h-index hw and the h-index strength sh to identify the influential nodes in the spreading process on
complex networks. To evaluate the accuracy and monotonicity of the proposed measures, the single
seed SIR model was employed and simulated on twelve real networks. The results show that compared
to the four previous measures, h-index strength, sh, was the best measure and weighted h-index, hw,
was the second best measure to identify the influential nodes in single seed SIR spreading process.

Although the weighted h-index hw and the h-index strength sh perform better in most of the
conditions, the insufficient monotonicity of the local scale of a network cannot be neglected. The issue
of how to improve monotonicity in the local scale of a network requires further studies. Since we only
extended a weighted edge to virtual edges according to the degree of the incident neighbor node,
how to determine a proper neighborhood range is another noteworthy topic for the future.

Note that the criteria for essential nodes are diverse. For example, the node acts as an articulation
point, damage to which will destroy a network into two or more components, and it may therefore be
totally unimportant in the spreading process. Although the proposed measures are outstanding in
identifying the vital node for the single seed SIR spreading process, it is necessary to conduct further
experiments, if one wishes to apply our methods to other situations.
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