Nothing Special   »   [go: up one dir, main page]

计算机科学 ›› 2022, Vol. 49 ›› Issue (6A): 407-411.doi: 10.11896/jsjkx.210700018

• 图像处理&多媒体技术 • 上一篇    下一篇

基于局部正则二次线性重构表示的人脸识别

黄璞, 杜旭然, 沈阳阳, 杨章静   

  1. 南京审计大学信息工程学院 南京 211815
  • 出版日期:2022-06-10 发布日期:2022-06-08
  • 通讯作者: 黄璞(huangpu3355@163.com)
  • 基金资助:
    国家自然科学基金(U1831127);江苏省产学研合作项目(DH20190207);南京审计大学(信息工程学院)青年教师开放课题项目(A111010004/012)

Face Recognition Based on Locality Regularized Double Linear Reconstruction Representation

HUANG Pu, DU Xu-ran, SHEN Yang-yang, YANG Zhang-jing   

  1. School of Information Engineering,Nanjing Audit University,Nanjing 211815,China
  • Online:2022-06-10 Published:2022-06-08
  • About author:HUANG Pu,born in 1985,Ph.D,asso-ciate professor.His main research inte-rests include big data analysis,pattern recognition and image processing.
  • Supported by:
    National Natural Science Foundation of China(U1831127),Industry University Research Cooperation Project in Jiangsu Province(DH20190207) and Open Project for Young Teachers of Nanjing Audit University(School of Information Engineering)(A111010004/012).

摘要: 稀疏表示分类器(Sparse Representation based Classification, SRC)求解过程较为复杂,所耗时间较长,协同表示分类器(Collaborative Representation based Classification, CRC)将全体训练样本作为字典来表示待识别样本,字典较大且未考虑样本的类别信息,线性回归分类器(Linear Regression based Classification,LRC)并未考虑不同类样本间的差异,且忽视了样本间的距离关系和潜在的邻域关系。针对以上基于表示学习的图像分类算法的问题和不足,提出了一种基于局部正则二次线性重构表示的人脸识别方法。该方法首先计算待识别样本的类内近邻样本;其次利用类内近邻样本线性重构待识别样本;然后将待识别样本表示成所有类内重构样本的线性组合,同时根据待识别样本与类内重构样本的误差对表示系数施加约束;最后,利用拉格朗日乘子法求解表示系数并根据待识别样本重构误差与表示系数的比值判断待识别样本的类别。在AR,FRGC和FERET数据集上的实验表明,该算法具有优越的识别准确率、时间复杂度和鲁棒性。

关键词: 表示学习, 二次线性重构, 局部正则, 人脸识别

Abstract: The solving process of sparse representation classifier(SRC) is relatively complicated and costs a long time,collaborative representation classifier(CRC) treats all the training samples as the dictionary of unknown samples and the dictionary is large without considering the label information,linear regression classifier(LRC) does not take the differences between inter-class samples into account and ignores the distance information and the neighborhood relations between samples.To address the problems and shortcomings in these representation learning based classification algorithms,this paper proposes a locality regularized double linear reconstruction representation classification method(LRDLRRC) for face recognition.Firstly,LRDLRRC calculates the intra-class nearest neighbors of the query sample and uses the intra-class nearest neighbors to linearly reconstruct the query sample.Then the query sample is represented as a linear combination of all the intra-class reconstruction samples,and the representation coefficient is constrained by the reconstruction error between the query sample and the intra-class reconstruction samples.Finally,the Lagrange multiplier method is applied to solve the representation coefficient,and the classification result of the query sample is determined by the ratio between the reconstruction error and the representation coefficient.Experiments on AR,FRGC and FERET datasets show that the proposed algorithm has superior accuracy,time complexity and strong robustness.

Key words: Double linear reconstruction, Face recognition, Locality regularized, Representation learning

中图分类号: 

  • TP391.4
[1] WRIGHT J,YANG A Y,GANESH A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2009,31(2):210-227.
[2] MA X,HU S,LIU S,et al.Multi-focus image fusion based on joint sparse representation and optimum theory[J].Signal Processing:Image Communication,2019,78:125-134.
[3] NASEEM I,TOGNERI R,BENNAMOUN M.Linear Regres-sion for Face Recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2010,32(11):2106-2112.
[4] ZHANG L,YANG M,FENG X.Sparse representation or collaborative representation:which helps face recognition?[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2012:471-478.
[5] ZHANG S,WEI D,YAN W,et al.Probabilistic collaborativerepresentation on Grassmann manifold for image set classification[J].Neural Computing and Applications,2020,33:2483-2496.
[6] ZENG S,ZHANG B,LAN Y,et al.Robust collaborative representation based classification via regularization of truncated total least squares[J].Neural Computing & Applications,2018,31:5689-5697.
[7] MI J X,LIN Z K.Sparse representation classification via l2-norm based reconstruction sample constraint for face recognition[J].Application Research of Computers,2020,37(4):1252-1255.
[8] CHI H,XIA H,ZHANG L,et al.Competitive and collaborative representation for classification[J].Pattern Recognition Letters,2020,132:46-55.
[9] ZAN B F,KONG J,JIANG M.Human action recognition based on discriminative collaborative representation classifier[J].Laser & Optoelectronics Progress,2018,55(1):257-263.
[10] ZHAO B,SU H J,CAI Y.A hyperspectral image classification method based on collaborative representation in tangent space[J].Geomatics and Information Science of Wuhan University,2018,43(4):555-562.
[11] VO D M,LEE S W.Robust face recognition via hierarchical collaborative representation[J].Information Sciences,2017,432:332-346.
[12] ZHENG C,WANG N.Collaborative representation with k-nearest classes for classification[J].Pattern Recognition Letters,2018,117:30-36.
[13] HUANG P,QIAN C,YANG G,et al.Local mean representation based classifier and its applications for data classification[J].International Journal of Machine Learning & Cybernetics,2018,9(6):969-978.
[14] ALEIX M,BENAVENTE R.The AR Face Database[J].Cvc Technical Report,1998,24:1-8.
[15] PHILLIPS P J,FLYNN P J,SCRUGGS T,et al.Overview of the Face Recognition Grand Challenge[C]//Proceedings of IEEE Computer Society Conference on Computer Vision & Pattern Recognition.2005.
[16] PHILLIPS P,WECHSLER H,HUANG J,et al.The FERET database and evaluation procedure for face-recognition algorithms[J].Image and Vision Computing,1998,16(5):295-306.
[17] TURK M,PENTLAND A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
[1] 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲.
基于无监督集群级的科技论文异质图节点表示学习方法
Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level
计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196
[2] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[3] 黄璞, 沈阳阳, 杜旭然, 杨章静.
基于局部约束特征线表示的人脸识别
Face Recognition Based on Locality Constrained Feature Line Representation
计算机科学, 2022, 49(6A): 429-433. https://doi.org/10.11896/jsjkx.210300169
[4] 程祥鸣, 邓春华.
基于无标签知识蒸馏的人脸识别模型的压缩算法
Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation
计算机科学, 2022, 49(6): 245-253. https://doi.org/10.11896/jsjkx.210400023
[5] 魏勤, 李瑛娇, 娄平, 严俊伟, 胡辑伟.
基于边云协同的人脸识别方法研究
Face Recognition Method Based on Edge-Cloud Collaboration
计算机科学, 2022, 49(5): 71-77. https://doi.org/10.11896/jsjkx.210300222
[6] 何嘉玉, 黄宏博, 张红艳, 孙牧野, 刘亚辉, 周哲海.
基于深度学习的单幅图像三维人脸重建研究综述
Review of 3D Face Reconstruction Based on Single Image
计算机科学, 2022, 49(2): 40-50. https://doi.org/10.11896/jsjkx.210500215
[7] 蒋宗礼, 樊珂, 张津丽.
基于生成对抗网络和元路径的异质网络表示学习
Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning
计算机科学, 2022, 49(1): 133-139. https://doi.org/10.11896/jsjkx.201000179
[8] 王营丽, 姜聪聪, 冯小年, 钱铁云.
时间感知的兴趣点推荐方法
Time Aware Point-of-interest Recommendation
计算机科学, 2021, 48(9): 43-49. https://doi.org/10.11896/jsjkx.210400130
[9] 陈长伟, 周晓峰.
快速局部协同表示分类器及其在人脸识别中的应用
Fast Local Collaborative Representation Based Classifier and Its Applications in Face Recognition
计算机科学, 2021, 48(9): 208-215. https://doi.org/10.11896/jsjkx.200800155
[10] 赵金龙, 赵中英.
基于异质信息网络表示学习与注意力神经网络的推荐算法
Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network
计算机科学, 2021, 48(8): 72-79. https://doi.org/10.11896/jsjkx.200800226
[11] 温荷, 罗频捷.
基于改进脉冲耦合神经网络的动态人脸识别
Dynamic Face Recognition Based on Improved Pulse Coupled Neural Network
计算机科学, 2021, 48(6A): 85-88. https://doi.org/10.11896/jsjkx.200600172
[12] 杨如涵, 戴毅茹, 王坚, 董津.
基于表示学习的工业领域人机物本体融合
Humans-Cyber-Physical Ontology Fusion of Industry Based on Representation Learning
计算机科学, 2021, 48(5): 190-196. https://doi.org/10.11896/jsjkx.200500023
[13] 白子轶, 毛懿荣, 王瑞平.
视频人脸识别进展综述
Survey on Video-based Face Recognition
计算机科学, 2021, 48(3): 50-59. https://doi.org/10.11896/jsjkx.210100210
[14] 钱胜胜, 张天柱, 徐常胜.
多媒体社会事件分析综述
Survey of Multimedia Social Events Analysis
计算机科学, 2021, 48(3): 97-112. https://doi.org/10.11896/jsjkx.210200023
[15] 王雪岑, 张昱, 刘迎婕, 于戈.
基于表示学习的在线学习交互质量评价方法
Evaluation of Quality of Interaction in Online Learning Based on Representation Learning
计算机科学, 2021, 48(2): 207-211. https://doi.org/10.11896/jsjkx.201000042
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!