计算机科学 ›› 2021, Vol. 48 ›› Issue (3): 97-112.doi: 10.11896/jsjkx.210200023
所属专题: 多媒体技术进展
钱胜胜1, 张天柱2, 徐常胜1
QIAN Sheng-sheng1, ZHANG Tian-zhu2, XU Chang-sheng1
摘要: 由于网络技术的飞速发展,自媒体、微博、论坛等基于互联网的多种交流渠道日渐完善,人们能够方便地在线生成和共享丰富的社会多媒体内容。社会事件数据具有跨平台、多模态、大规模、噪声大等特点,基于多媒体社会事件的分析研究非常具有挑战性。因此,如何对社会媒体数据进行处理,研究社会事件分析方法、设计有效的社会事件分析模型成为社会事件分析研究的关键问题。文中对近年来多媒体社会事件分析的相关研究展开了综述,重点回顾了多媒体社会事件表示方法及其在虚假新闻检测、多媒体热点事件检测跟踪及演化分析、社交媒体危机事件响应等领域的应用,并对不同应用涉及的数据集进行了详细介绍。最后对多媒体社会事件分析方面未来可能的研究课题进行了展望。
中图分类号:
[1]ATEFEH F,KHREICH W.A Survey of Techniques for Event Detection in Twitter [J].Computational Intelligence,2015,31(1):132-164. [2]GARG M,KUMAR M.Review on Event Detection Techniques in Social Multimedia [J].Online Information Review,2016,40(3):347-361. [3]ZEPPELZAUER M,SCHOPFHAUSER D.Multimodal Classification of Events in Social Media [J].Image and Vision Computing,2016,53(SEP.):45-56. [4]ZHOU H K,YU H M.A Survey on Trends of Cross-MediaTopic Evolution Map [J].KNOWL-BASED SYST,2017,124,164-175. [5]LIU X L,WANG M,HUET B.Event Analysis in Social Multimedia:A Survey [J].Frontiers Comput.Sci,2016,10(3):433-446. [6]QIAN S S,ZHANG T Z,XU C S.A Research and Prospect ofMultimedia Social Event Analysis [J].Journal of Nanjing University of Information Science & Technology:Natural Science Edition,2017,9(6):599-612. [7]ZHOU H,YIN H,ZHENG H,et al.A Survey on Multi-Modal Social Event Detection [J].Knowledge-Based Systems,2020,195:105695. [8]DEBOLE F,SEBASTIANI F.Supervised Term Weighting forAutomated Text Categorization[C]//Proceedings of the 2003 ACM Symposium on Applied Computing.2003:784-788. [9]JONES K S.A Statistical Interpretation of Term Specificity and its Application in Retrieval [J].Journal of Documentation,2004,60(5):493-502. [10]DEERWESTER S,DUMAIS S T,FURNAS G W,et al.Indexing by Latent Semantic Analysis[J].Journal of the Association for Information Science & Technology,2010,41(6):391-407. [11]HOFMANN T.Probabilistic Latent Semantic Indexing[C]//Proceedings of the international Acm Sigir Conference on Research & Development in Information Retrieval.ACM,1999. [12]BLEI D M,NG A,JORDAN M I.Latent Dirichlet Allocation[J].The Journal of Machine Learning Research,2003,3(4/5):993-1022. [13]BLEI D M,MCAULIFFE J D.Supervised Topic Models[J].Advances in Neural Information Processing Systems,2010,3:327-332. [14]HINTON G E,SALAKHUTDINOV R R.Supporting OnlineMaterial for “Reducing the Dimensionality of Data with Neural Networks”[J/OL].Methods,2006,504.http://www.utstat.utoronto.ca/~rsalakhu/papers/science_som.pdf. [15]HINTON G E,OSINDERO S,TEH Y W.A Fast Learning Algorithm for Deep Belief Nets [J].Neural Computation,2006,18(7):1527-1554. [16]HINTON G E.Learning Distributed Representations of Con-cepts[C]//Proceedings of theeighth Conference of the Cognitive Science Society.1989. [17]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating Embeddings for Modeling Multi-Relational Data[C]//Proceedings of the Neural Information Processing Systems 26:27th Annual Conference on Neural Information Processing Systems 2013.2013:2787-2795. [18]PEROZZI B,AL-RFOU R,SKIENA S.DeepWalk:OnlineLearning of Social Representations[C]//Proceedings of the 20th ACM SIGKDDInternational Conference on Knowledge Discoveryand Data Mining.2014:701-710. [19]MIKOLOV T,SUTSKEVER I,CHEN K,et al[C]//Procee-dings of the 26th International Conference on Neural Information Processing Systems.2013:3111-3119. [20]JADERBERG M,VEDALDI A,ZISSERMAN A.Deep Features for Text Spotting[C]//Proceedings of the European Conference on Computer Vision.2014:512-528. [21]YANG X,MACDONALD C,OUNIS I.Using Word Embed-dings in Twitter Election Classification [J].Information Retrieval Journal,2018,21:183-207. [22]LIMSOPATHAM N,COLLIER N H.Bidirectional Lstm forNamed Entity Recognition in Twitter Messages[C]//Procee-dings of the NUT@COLING 2016.2016:145-152. [23]CHEN W,YEO C K,LAU C T,et al.Leveraging Social Media News to Predict Stock Index Movement Using RNN-Boos [J].Data Knowl.Eng,2018(118):14-24. [24]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J/OL].2018.https://tooob.com/api/objs/read/noteid/2871-7995/. [25]SANH V,DEBUT L,CHAUMOND J,et al.Distilbert,a Distilled Version of BERT:Smaller,Faster,Cheaper and Lighter[OL].http://arxiv.org/abs/1910.01108. [26]SUN C,QIU X P,XU Y G,et al.How To Fine-Tune BERT For Text Classification?[C]//Proceedings of the Chinese Computational Linguistics-18th China National Conference.Kunming,2019:194-206. [27]CSURKA G,DANCE C R,FAN L X,et al.Visual Categorization With Bags Of Keypoints[C]//Proceedings of the Statistical Learning in Compu-ter Vision,European Conference on Computer Vision.2004:1-2. [28]BOIMAN O,SHECHTMAN E,IRANI M.In Defense of Nearest-Neighbor Based Image Classification[C]//Proceedings of the IEEE Conference on Computer Vision & Pattern Recognition.USA,2008. [29]YIN H,JIAO X,CHAI Y,et al.Scene Classification Based on Single-Layer SAE And SVM[J].Expert Systems with Applications,2015,42(7):3368-3380. [30]SONG J,ZHANG H,LI X,et al.Self-Supervised Video Hashing with Hierarchical Binary Auto-Encoder[J].IEEE Transactions on Image Processing,2018,PP(99):3210-3221. [31]KRIZHEVSKY A,SUTSKEVER I,HINTON G.ImagenetClassification with Deep Convolutional Neural Networks[C]//Proceedings of the Neural Information Processing Systems 25:26th Annual Conference on Neural Information Processing Systems.Lake Tahoe,Nevada,United States,2012:1106-1114. [32]GOODFELLOW I,POUGET-ABADIE J,MIRZA M,et al.Ge-nerative Adversarial Nets.[C]//Proceedings of the Neural Information Processing Systems 27:Annual Conference on Neural Information.Montreal,Quebec,Canada,2014,2672-2680. [33]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[C]//Proceedings of the 3rd International Conference on Learning Representations.San Diego,CA,USA,2015. [34]SZEGEDY C,LIU W,JIA Y,et al.Going Deeper with Convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA,2015,1-9. [35]RADFORD A,METZ L,CHINTALA S.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks[C]//Proceedings of the4th International Conference on Learning Representations.Puerto Rico,2016. [36]HARDOON D R,SZEDMAK S,SHAWE-TAYLOR J.Canonical Correlation Analysis:An Overview with Application to Learning Methods[J].Neural Computation,2004,16(12):2639-2664. [37]RASIWASIA N,PEREIRA J C,COVIELLO E,et al.A New Approach to Cross-Modal Multimedia Retrieval[C]//Procee-dings of the 18th International Conference on Multimedea 2010.Firenze,Italy,2010. [38]GUILLAUMIN M,VERBEEK J J,Schmid C.Multimodal semi-supervised learning for image classification[C]//Computer Vision & Pattern Recognition.2010. [39]THEIL H,CHUNG C F.Relations between two sets of va-riates:The bits of information provided by each variate in each set[J].Statistics & Probability Letters,1988,6(3):137-139. [40]WU F,ZHANG H,ZHUANG Y.Learning Semantic Correla-tions for Cross-Media Retrie-val[C]//Proceedings of the IEEE International Conference on Image Processing.IEEE,2007. [41]PEREIRA J C,COVIELLO E,DOYLE G,et al.On the Role of Correlation and Abstraction in Cross-Modal Multimedia Retrie-val[J].IEEE Trans Pattern Anal Mach Intell,2014,36(3):521-535. [42]AKAHO S.A Kernel Method for Canonical Correlation Analysis[OL].https://arxiv.org/abs/cs/0609071. [43]ANDREW G,ARORA R,BILMES J,et al.Deep Canonical Correlation Analysis[C]//International Conference on International Conference on Machine Learning.2013. [44]WANG W,ARORA R,LIVESCU K,et al.On Deep Multi-View Representation Learning:Objectives and Optimization[OL].https://arxiv.org/abs/1602.01024v1. [45]HUANG P Y,LIANG J,LAMARE J B,et al.Multimodal Filtering of Social Media for Temporal Monitoring and Event Analysis[C]//Proceedings of the ACM.2018:450-457. [46]BLEI D M,JORDAN M I.Modeling Annotated Data[C]//Proceedings of the 26th Annual International Conference on Research and Development in Information Retrieval.Toronto,Canada,2003:127-134. [47]RAMAGE D,HEYMANN P,MANNING C D,et al.Clustering the Tagged Web[C]//Proceedings of the Second International Conference on Web Search and Web Data Mining.Barcelona,Spain,2009. [48]SANG J T,XU C S.Right Buddy Makes the Difference:An Early Exploration of Social Relation Analysis in Multimedia Applications[C]//Proceedings of the 20th ACM Multimedia Confe-rence.Nara,Japan,2012:19-28. [49]QIAN S,ZHANG T,XU C,et al.Multi-Modal Event TopicModel for Social Event Analysis[J].IEEE Transactions on Multimedia,2016,18(2):233-246. [50]SANG J,XU C,JAIN R.Social Multimedia Ming:From Special to General[C]//Proceedings of the 2016 IEEE International Symposium on Multimedia.2016. [51]LIU X L,HUET B.Heterogeneous Features and Model Selection for Event-Based Media Classification[C]//Proceedings of theInternational Conference on Multimedia Retrieval.Dallas,TX,USA,2013:151-158. [52]DAS R,ZAHEER M,DYER C.Gaussian LDA for Topic Models with Word Embeddings[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th Internatio-nal Joint Conference on Natural Language Processing.2015. [53]WAN L,ZHU L,FERGUS R.A Hybrid NeuralNetwork-La-tent Topic Model[C]//Proceedings of the Fifteenth Internatio-nal Conference on ArtificialIntelligence and Statistics.La Palma,Canary Islands,Spain,2012:1287-1294. [54]SRIVASTAVA N,SALAKHUTDINOV R.Multimodal Lear-ning with Deep Boltzmann Machines[C]//International Confe-rence on Neural Information Processing Systems.2012. [55]NGIAM J,KHOSLA A,KIM M,et al.Multimodal Deep Lear-ning[C]//International Conference on Machine Learning.2009. [56]GUO Q,JIA J,SHEN G,et al.Learning Robust Uniform Features for Cross-Media Social Data by Using Cross Autoencoders[J].Knowledge Based Systems,2016,102(15):64-75. [57]FENG F,WANG X,LI R,et al.Correspondence Autoencoders for Cross-Modal Retrieval[J].Acm Transactions on Multimedia Computing Communications & Applications,2015,12(1s):26. [58]FENG F,LI R,WANG X.Deep correspondence restricted Boltzmann machine for cross-modal retrieval[M].Amsterdam:Elsevier Science Publishers B.V.,2015. [59]HONG S,IM W,YANG H S.Content-Based Video-Music Retrieval Using Soft Intra-Modal Structure Constraint[C]//Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval.Yokohama,Japan,2018:353-361. [60]WEI Y,ZHAO Y,LU C,et al.Cross-Modal Retrieval with CNN Visual Features:A New Baseline[J].IEEE Transactions on Cybernetics,2017,47(2):449-460. [61]KIM Y.Convolutional neural networks for sentence classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Doha,Qatar,2014:1746-1751. [62]HE Y,XIANG S,KANG C,et al.Cross-Modal Retrieval viaDeep and Bidirectional Representation Learning[J].IEEE Transactions on Multimedia,2016,18(7):1363-1377. [63]HONG C Q,YU J.Multi-modal face pose estimation with multi-task manifold deep learning.[OL].http://arxiv.org/abs/1712.06467. [64]GAO Y,ZHANG H,ZHAO X,et al.Event Classification in Microblogs via Social Tracking[J].Acm Transactions on Intelligent Systems & Technology,2017,8(3):35. [65]ZHANG X,GHORBANI A A.An overview of online fakenews:Characterization,detection,and discussion[J].Information Processing & Management,2020,57(2):102025. [66]VLACHOS A,RIEDEL S.Fact Checking:Task Definition and Dataset Construction[C]//Proceedings of the ACL 2014 Workshop on Language Technologies and Computational SocialScience.2014. [67]MAGDY A,WANAS N,MAGDY A,et al.Web-based statistical fact checking of textual documents[C]//Proceedings of the 2nd international workshop on Search and mining user-generated contents.Toronto,ON,Canada,2010:103-110. [68]ZHANG H W,FANG Q,QIAN S S,et al.Multi-Modal Know-ledge-Aware Event Memory Network for Social Media Rumor Detection[C]//Proceedings of the 27th ACM International Conference on Multimedia.Nice,France,2019:1942-1951. [69]WANG Y Z,QIAN S S,HU J,et al.Fake News Detection via Knowledge-driven Multimodal Graph Convolutional Networks[C]//Proceedings of the 2020 on International Conference on Multimedia Retrieval.Dublin,Ireland,2020:540-547. [70]AFROZ S,BRENNAN M,GREENSTADT R.Detecting Hoa-xes,Frauds,And Deception in Writing Style Online[C]//Proceedings of the IEEE Symposium on Security and Privacy.San Francisco,California,2012:461-475. [71]BENJAMIN D H,SIBEL A.This Just In:Fake News Packs a Lot in Title,Uses Simpler,Repetitive Content in Text Body,More Similar to Satire than Real News[OL].http://arxiv.org/abs/1703.09398v1. [72]CASTILLO C,MENDOZA M,POBLETE B.Information credibility on Twitter[C]//Proceedings of the 20th International Conference on World Wide Web.Hyderabad,India,2011. [73]JIN Z W, CAO J,ZHANG Y D,et al.News Verification by Exploiting Conflicting Social Viewpoints in Microblogs[C]//AAAI.2016:2972-2978. [74]AHMED H.Detecting opinion spam and fake news usingn-gram analysis and semantic similarity[OL].https://onlinelibrary.wiley.com/doi/epdf/10.1002/spy2.9. [75]ZHANG H W,QIAN S S,FANG Q,et al.Multimodal Disentangled Domain Adaption for Social Media Event Rumor Detection[J].IEEE Transaction on Multimedia,2020,PP(99):1-1. [76]BAIRD S,SIBLEY D,PAN Y X.Talos targets disinformation with fake news challenge victory[OL].https://blog.talosintelligence.com/2017/06/talos-fake-news-challenge.html. [77]HANSELOWSKI A,AVINESH P V S,SCHILLER B,et al.Description of the system developed by team athene in the fnc-1[OL].https://medium.com/@andre134679/team-athene-on-the-fake-news-challenge-28a5cf5e017b. [78]RIEDEL B,AUGENSTEIN I,SPITHOURAKIS G P,et al.ASimple but Tough-To-Beat Baseline For The Fake News Challenge Stance Detection Task[OL].http://arxiv.org/pdf/1707.03264. [79]POTTHAST M,KIESEL J,REINARTZ K,et al.A Stylometric Inquiry into Hyperpartisan and Fake News[OL].https://www.researchgate.net/profile/Martin_Potthast/publication/313861498_A_Stylometric_Inquiry_into_Hyperpartisan_and_Fake_News/links/58afe5aba6fdcc6f03f3675b/A-Stylometric-Inquiry-into-Hyperpartisan-and-Fake-News.pdf. [80]MA J,GAO W,MITRA P,et al.Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.New York,USA,2016:3818-3824. [81]CHEN T,WU L,LI X,et al.Call attention to rumors:deep attention based recurrent neural networks for early rumor detection[C]//Proceedings of the Pacific-Asia Conference on Know-ledge Discovery and Data Mining.Australia,2018:40-52. [82]YU F,LIU Q,WU S,et al.A Convolutional Approach for Misinformation Identification[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence.Melbourne,Australia,2017:3901-3907. [83]JIN Z W,CAO J,GUO H,et al.Multimodal Fusion with Recurrent Neural Networks for Rumor Detection On Microblogs[C]//Proceedings of the 2017 ACM on Multimedia Conference.Mountain View,CA,USA,2017:795-816. [84]YANG Y,ZHENG L,ZHANG J W,et al.TI-CNN:Convolutional Neural Networks for Fake News Detection[OL].https://arxiv.org/pdf/1806.00749.pdf. [85]ZHOU X Y,WU J D,ZAFARANI R.SAFE:Similarity-Aware Multi-Modal Fake News Detection[OL].https://arxiv.org/abs/2003.04981. [86]FERRARA E,VAROL O,DAVIS C,et al.The Rise of Social Bots[J].Communications of the Acm,2014,59(7):96-104. [87]ZHAO J,CAO N,WEN Z,et al.FluxFlow:Visual Analysis of Anomalous Information Spreading on Social Media[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(12):1773-1782. [88]MURTHY D,POWELL A,TINATI R,et al.Automation,algorithms,and politics| bots and political influence:a sociotechnical investigation of social network capital [J].International Journal of Communication,2016,10,4952-4971. [89]MISLOVE A,MARCON M,GUMMADI P K,et al.Measure-ment and analysis of online social networks[C]//Proceedings of the Internet Measurement Conference 2007.2007:29-42. [90]CHU Z,GIANVECCHIO S,WANG H,et al.Detecting Auto-mation of Twitter Accounts:Are You a Human,Bot,or Cyborg? [J].IEEE Transactions on Dependable & Secure Computing,2012,9(6):811-824. [91]LIU Y,WU Y F B.Early Detection of Fake News on SocialMedia Through Propagation Path Classification with Recurrent and Convolutional Networks[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence.New Or-leans,Louisiana,USA,2018:354-361. [92]MA J,GAO W,WONG K F.Rumor Detection on Twitter With Tree-Structured Recursive Neural Networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computatio-nal Linguistics.Melbourne,Australia,2018:1980-1989. [93]BIAN T,XIAO X,XU T,et al.Rumor Detection on SocialMedia with Bi-Directional Graph Convolutional Networks [C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(1):549-556. [94]KWON S,CHA M,JUNG K,et al.Prominent Features of Rumor Propagation in Online Social Media[C]//Proceedings of the IEEE 13th International Conference on Data Mining.TX,USA,2013:1103-1108. [95]JAMES A.Topic Detection and Tracking:Event Based Information Retrieval [J].Information Retrieval Journal,2002,5(2):139-157. [96]MARON M E.Automatic Indexing:An Experimental Inquiry[J].Journal of the Acm,1961,8(3):404-417. [97]POPESCU A M,PENNACCHIOTTI M.Detecting Controver-sial Events from Twitter[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management.Toronto,Ontario,Canada,2010:1873-1876. [98]LUITEL B,MURTHY Y V S,KOOLAGUDI S.Sound Event Detection in Urban Soundscape using Two-level Classification[C]//Proceedings of the 2016 IEEE Distributed Computing,VLSI,Electrical Circuits and Robotics.Mangalore,2016:259-263. [99]SEEMA,WAZARKAR,BETTAHALLY,et al.Region-basedSegmentation of Social Images Using Soft KNN Algorithm [J].Procedia Computer Science,2018,125:93-98. [100]SADLIER D A,O’CONNOR N E.Event Detection in FieldSports Video Using Audio-Visual Features and A Support Vector Machine [J].IEEE Transactions on Circuits and Systems for Video Technology,2005,5(10):1225-1233. [101]REUTER T,CIMIANO P.Event-Based Classification of Social Media Streams[C]//Proceedings of the 2nd ACM International Conference on Multimedia Retrieval.Hong Kong,China,2012:22. [102]BISCHKE B,BORTH D,SCHULZE C,et al.Contextual En-richment of Remote-Sensed Events with Social Media Streams[C]//Proceedings of the 24th ACM International Conference on Multimedia.Amsterdam,Netherlands,2016:1077-1081. [103]BLANDFORT P,PATTON D U,FREY W R,et al.Multimodal social media analysis for gang violence prevention[C]//Procee-dings of the International AAAI Conference on Web and Social Media.Munich,Germany,2019,114-124. [104]ZHAO S,YAO H,ZHAO S,et al.Multi-modal microblog classification via multi-task learning [J].Multimedia Tools & Applications,2016,75(15):8921-8938. [105]SANKARANARAYANAN J,SAMET H,TEITLER B E,et al.Twitterstand:news in tweets[C]//Proceedings of the 17th Acm Sigspatial International Conference on Advances in Geographic Information Systems.Seattle,Washington,USA,2009:42-51. [106]ZHU J,CHEN N,PERKINS H,et al.Gibbs Max-margin Topic Models with Data Augmentation [J].Journal of Machine Lear-ning Research,2013,15(1):1073-1110. [107]FRED A L N,JOSÉ M N L.Partitional vs Hierarchical Clustering Using a Minimum Grammar Complexity Approach[C]//Joint Iapr International Workshops on Advances in Pattern Reco-gnition.Springer-Verlag,2000. [108]JON R.Pattern Recognition:Concepts,Methods and Applica-tions [J/OL].Assembly Automation,https://doi.org/10.1108/aa.2002.03322dae.002. [109]ZHAO Y C,SONG J D.Gdilc:A Grid-Based Density-IsolineClustering Algorithm[C]//Proceedings of the 2001 Internatio-nal Conferences on Info-Tech and Info-Net.Beijing,China,2001:140-145. [110]BECKER H,NAAMAN M,GRAVANO L.Event Identification in Social Media[C]//Proceedings of the 12th International Workshop on the Web and Databases.Providence,Rhode Island,USA,2009:291-300. [111]CHOI J,KIM E,LARSON M,et al.Evento 360:Social Event Discovery from Web-scale Multimedia Collection[C]//Procee-dings of the 23rd ACM International Conference on Multimedia.Brisbane,Australia,2015:193-196. [112]MA Y,LI Q,YANG Z G,et al.An SVD-based multimodal clustering method for social event detection[C]//Proceedings of 31st International Conference on Data Engineering Workshops.Seoul,South Korea,2015:202-209. [113]CAPDEVILA J,JESÚS CERQUIDES,NIN J,et al.Tweet-SCAN:An Event Discovery Technique for Geo-Located Tweets[C]//Proceedings of the 18th International Conference of the Catalan Association for Artificial Intelligence.Valencia,Catalonia,Spain,2015:110-119. [114]CHU L Y,ZHANG Y Y,LI G R,et al.Effective Multimodality Fusion Framework for Cross-Media Topic Detection[J].IEEE Trans.Circuits Syst.Video Technol.J.,2016,26(3):556-569. [115]ZHAO S,GAO Y,DING G,et al.Real-Time Multimedia Social Event Detection in Microblog [J].IEEE Transactions on Cybernetics,2017,1-14. [116]KUMARAN G,ALLAN J.Text Classification and Named Entities For New Event Detection[C]//Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Sheffield,UK,2004:297-304. [117]MERLER M,HUANG B,XIE L,et al.Semantic Model Vectors for Complex Video Event Recognition [J].IEEE Transactions on Multimedia,2012,14(1):88-101. [118]ZHANG T,XU C.Cross-Domain Multi-Event Tracking via CO-PMHT [J].Acm Transactions on Multimedia Computing Communications & Applications,2014,10(4):31. [119]WU X,NGO C W,HAUPTMANN A G.Multimodal News Story Clustering with Pairwise Visual Near-Duplicate Constraint [J].IEEE Transactions on Multimedia,2008,10(2):188-199. [120]KALAMARAS I,DROSOU A,TZOVARAS D.Multi-objective optimization for multimodal visualization [J].IEEE Transactions on Multimedia.J.,2014,16(5):1460-1472. [121]MAKKONEN J,AHONEN-MYKA H,SALMENKIVI M.Simple Semantics in Topic Detection and Tracking [J].Information Retrieval,2004,7(3/4):347-368. [122]YANG Y M,ZHANG J,CARBONELL J G,et al.Topic-Conditioned Novelty Detection[C]//Proceedings of the Eighth ACM SIGKDDInternational Conference on Knowledge Discovery and Data Mining.Edmonton,Alberta,Canada,2002:688-693. [123]ALLAN J,WADE C,BOLIVAR A.Retrieval and Novelty Detection at the Sentence Level[C]//Proceedings of the 26th Annual International ACM SIGIRConference onResearch and Development in Information Retrieval.Canada,2003,314-321. [124]WANG C,BLEI D,HECKERMAN D.Continuous Time Dynamic Topic Models[C]//Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence(UAI’08).2008:579-586. [125]ROY S D,MEI T,ZENG W.Bridging Human-Centered Social Media Content Across Web Domains[M].Springer International Publishing,2014. [126]KENDER J R,NAPHADE M R.Visual Concepts for News Story Tracking:Analyzing and Exploiting the Nist Trecvid Video Annotation Experiment[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,CA,USA,2005:1174-1181. [127]ZHAI Y,SHAH M.Tracking News Stories Across Different Sources[C]//Proceedings of the 13th ACM International Conference on Multimedia.Singapore,2005:2-10. [128]QIAN S,ZHANG T,XU C.Online Multi-modal Multi-expert Learning for Social Event Tracking [J].IEEE Transactions on Multimedia,2018:1-1. [129]ALSUMAIT L,BARBARA D,DOMENICONI C.Online LDA:adaptive topic model for mining text streams with application on topic detection and tracking[C]//Proceedings of the Eighth IEEE International Conference on Data Mining.New York,2008:3-12. [130]YU B G,WANG L F,ZHANG W C.Topic Evolution Analysis Based on Dual-OLDA Model Under Chinese Semantic Environment[C]//Proceedings of the IEEE International Conference on Big Data Analysis.New York,2017:658-664. [131]WANG Y,AGICHTEIN E,BENZI M.TM-LDA:Efficient Online Modeling of Latent Topic Transitions in Social Media[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Beijing,China,2012:123-131. [132]SAHA A,SINDHWANI V.Learning Evolving and EmergingTopics in Social Media:A Dynamic NMF approach with Temporal Regularization[C]//Proceedings of the Fifth International Conference on Web Search and Web Data Mining.Seattle,WA,USA,2012:693-702. [133]TANG L,LIU H,ZHANG J P,et al.Community Evolution in Dynamic Multi-Mode Networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.Las Vegas,Nevada,USA,2008:677-685. [134]HUANG X H,YE Y M,XIONG L Y,et al.Clustering Time-Stamped Data Using Multiple Nonnegative Matrices Factorization [J].Knowledge Based Systems,2016,114:88-98. [135]LIN Y R,SUN J,CASTRO P,et al.Metafac:community disco-very viarelational hypergraph factorization.Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Paris,France,2009:527-536. [136]GUO X,XIANG Y,CHEN Q,et al.LDA-based online topic detection using tensor factorization [J].Journal of Information Science,2013,39(4):459-469. [137]ZHANG S.Research on Text Classification of Internet Public Opinion Based on SVM [D].Qufu:Qufu Normal University,2015. [138]MA M,LIU D S,LI H.Research on the Network Public Opinion Analysis System Model Based on Big Data [J].Information Science,2016,36(3):25-28. [139]HAN Y X.Research on Weibo Opinion Detection Method Based on Neural Network [D].Xinjiang:Xinjiang University,2019. [140]TIAN J J,LAN Y X,XIA Y X.Recognition and Empirical Research of Network Public Opinion Reversal Based on Decision Tree Method [J].Journal of Intelligence,2019,38(8):121-125. [141]ZHANG Q H.Design and Implementation of Short MessageMonitoring System Based on Lingo Algorithm[D].Beijing:Beijing University of Posts and Telecommunications,2012. [142]NIE F Y.Research on the Classification Model of Public Opinion Based on Fuzzy C Means[J].Software Guide,2017,16(6):130-132. [143]ZHANG H P,CHEN Q H.Research on the Prediction of Network Public Opinion Based on Grey Markov Model.[J].Information Science,2018,36(1):75-79. [144]HE Y X,LIU J B,SUN S T.Neural Network-Based PublicOpinion Prediction Method for Microblog[J].Journal of South China University of Technology(Natural Science Edition,2016(44):52. [145]KUMAR S,BARBIER G,ABBASI M A,et al.TweetTracker:An Analysis Tool for Humanitarian and Disaster Relief[C]//International Conference on Weblogs & Social Media.2011. [146]SHEKHAR H,SETTY S.Disaster Analysis Through Tweets[C]//Proceedings of 2015 International Conference on Advances in Computing,Communications and Informatics.Kochi,India,2015:1719-1723. [147]STOWE K,PAUL M J,PALMER M,et al.Identifying and Cate-gorizing Disaster-Related Tweets[C]//Proceedings of the Fourth International Workshop on Natural Language Processing for Social Media.Austin,TX,USA,2016:1-6. [148]TO H,AGRAWAL S,KIM S H,et al.On Identifying Disaster-Related Tweets:Matching-based or Learning-based?[C]//Proceedings of 2017 IEEE Third International Conference on Multimedia Big Data.Laguna Hills,CA,USA,2017:330-337. [149]AHMAD K,RIEGLER M,POGORELOV K,et al.JORD:ASystem for Collecting Information and Monitoring Natural Disasters by Linking Social Media with Satellite Imagery[C]//Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing.Florence,Italy,2017:1-12. [150]LI X K,CARAGEA D,ZHANG H Y,et al.Localizing andQuantifying Damage in Social Media Images[C]//Proceedings of 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.Barcelona,Spain,2018:194-201. [151]NALLURU G,PANDEY R,PUROHIT H.Relevancy classification of multimodal social media streams for emergency ser-vices[C]//Proceedings of 2019 IEEE International Conference on Smart Computing.Washington,DC,USA,2019:121-125. [152]ABAVISANI M,WU L,HU S,et al.Multimodal Categorization of Crisis Events in Social Media[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA,USA,2020:14667-14677. [153]JREIS J C S,MELO P D F,GARIMELLA K,et al.A Dataset of Fact-Checked Images Shared on WhatsApp During the Brazilian and Indian Elections[C]//Proceedings of the Fourteenth International AAAI Conference on Web and Social Media.USA,2020:903-908. [154]SALEM F K A,FEEL R A,ELBASSUONI S,et al.FA-KES:A Fake News Dataset around the Syrian War[C]//Proceedings of the Thirteenth International Conference on Web and Social Media.Munich,Germany,2019:573-582. [155]HORNE B D,ADALI S.This Just in:Fake News Packs a Lot in Title,Uses Simpler,Repetitive Content in Text Body,More Similar to Satire than Real News[OL].https://arxiv.org/abs/1703.09398v1. [156]BURFOOT C,BALDWIN T.Automatic Satire Detection:Are You Having a Laugh?[C]//Proceedings of the 47th Annual Meeting of the Association for Computational Linguistics and the 4th International Joint Conference on Natural Language Processing of the AFNLP.Singapore,2009:161-164. [157]NØRREGAARD J,HORNE B D,ADALI S.NELA-GT-2018:A Large Multi-Labelled News Dataset for the Study of Misinformation in News Articles[OL].http://arxiv.org/abs/1904.01546v1. [158]SHU K,SLIVA A,WANG S,et al.Fake News Detection on Social Media:A Data Mining Perspective[J/OL].ACM SIGKDD Explorations Newsletter,https://www.researchgate.net/profile/Kai-Shu/publication/318981549_Fake_News_Detection_on_Social_Media_A_Data_Mining_Perspective/links/59da74eaa-ca272e6096bead4/Fake-News-Detection-on-Social-Media-A-Data-Mining-Perspective.pdf. [159]ZUBIAGA A,LIAKATA M,PROCTER R,et al.AnalysingHow People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads[J].PLoS ONE,2016,11(3). [160]WANG W Y.“Liar,Liar Pants on Fire”:A New Benchmark Dataset for Fake News Detection[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Vancouver,Canada,2017:422-426. [161]MITRA T.CREDBANK:A Large-Scale Social Media Corpus With Associated Credibility Annotations[C]//Proceedings of the Ninth International Conference on Web and Social Media.Oxford,UK,2015:258-267. [162]PAPADOPOULOS S,SCHINAS E,MEZARIS V,et al.Social Event Detection at MediaEval 2011:Challenges,Dataset and Evaluation[J].Mediaeval Workshop,2016:18-19. [163]PAPADOPOULOS S,SCHINAS E,MEZARIS V,et al.The2012 Social Event Detection Dataset[C]//Proceedings of the 4th ACM Multimedia Systems Conference.Oslo,Norway,2013:102-107. [164]REUTER T,PAPADOPOULOS S,PETKOS G,et al.SocialEvent Detection at Mediaeval 2013:Challenges,Datasets and Evaluation[J].In Medieval 2013 Workshop,2013:18-19. [165]PETKOS G,PAPADOPOULOS S,MEZARIS V,et al.SocialEvent Detection at Mediaeval 2014:Challenges,Datasets and Evaluation[C]//Proceedings of the Medieval 2014 Workshop.Barcelona,Catalunya,Spain,2014. [166]GAO Y,WANG F,LUAN H,et al.Brand Data Gathering from Live Social Media Streams[C]//Proceedings of the International Conference on Multimedia Retrieval.Glasgow,United Kingdom,2014,169. [167]QIAN S S,ZHANG T Z,XU C S.Multi-modal Multi-view To-pic-opinion Mining for Social Event Analysis[C]//Proceedings of the 2016 ACM Conference on Multimedia Conference.Amsterdam,Netherlands,2016:2-11. [168]XUE F,HONG R,HE X,et al.Knowledge-Based Topic Model for Multi-Modal Social Event Analysis [J].IEEE Transactions on Multimedia,2020,22(8):2098-2110. |
[1] | 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲. 基于无监督集群级的科技论文异质图节点表示学习方法 Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level 计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196 |
[2] | 聂秀山, 潘嘉男, 谭智方, 刘新放, 郭杰, 尹义龙. 基于自然语言的视频片段定位综述 Overview of Natural Language Video Localization 计算机科学, 2022, 49(9): 111-122. https://doi.org/10.11896/jsjkx.220500130 |
[3] | 周旭, 钱胜胜, 李章明, 方全, 徐常胜. 基于对偶变分多模态注意力网络的不完备社会事件分类方法 Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification 计算机科学, 2022, 49(9): 132-138. https://doi.org/10.11896/jsjkx.220600022 |
[4] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[5] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[6] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[7] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[8] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[9] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[10] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[11] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[12] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[13] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[14] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[15] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
|