Nothing Special   »   [go: up one dir, main page]

skip to main content
research-article

A learned shape-adaptive subsurface scattering model

Published: 12 July 2019 Publication History

Abstract

Subsurface scattering, in which light refracts into a translucent material to interact with its interior, is the dominant mode of light transport in many types of organic materials. Accounting for this phenomenon is thus crucial for visual realism, but explicit simulation of the complex internal scattering process is often too costly. BSSRDF models based on analytic transport solutions are significantly more efficient but impose severe assumptions that are almost always violated, e.g. planar geometry, isotropy, low absorption, and spatio-directional separability. The resulting discrepancies between model and usage lead to objectionable errors in renderings, particularly near geometric features that violate planarity.
This article introduces a new shape-adaptive BSSRDF model that retains the efficiency of prior analytic methods while greatly improving overall accuracy. Our approach is based on a conditional variational autoencoder, which learns to sample from a reference distribution produced by a brute-force volumetric path tracer. In contrast to the path tracer, our autoencoder directly samples outgoing locations on the object surface, bypassing a potentially lengthy internal scattering process.
The distribution is conditional on both material properties and a set of features characterizing geometric variation in a neighborhood of the incident location. We use a low-order polynomial to model the local geometry as an implicitly defined surface, capturing curvature, thickness, corners, as well as cylindrical and toroidal regions. We present several examples of objects with challenging medium parameters and complex geometry and compare to ground truth simulations and prior work.

References

[1]
Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Jia Yangqing, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
[2]
Adam Arbree, Bruce Walter, and Kavita Bala. 2011. Heterogeneous Subsurface Scattering Using the Finite Element Method. IEEE Transactions on Visualization and Computer Graphics 17, 7 (July 2011), 956--969.
[3]
Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill, Pradeep Sen, Tony DeRose, and Fabrice Rousselle. 2017. Kernel-predicting Convolutional Networks for Denoising Monte Carlo Renderings. ACM Trans. Graph. (Proc. SIGGRAPH) 36, 4 (jul 2017), 97:1--97:14.
[4]
Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi, Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Reconstruction of Monte Carlo Image Sequences Using a Recurrent Denoising Autoencoder. ACM Trans. Graph. 36, 4 (jul 2017), 98:1--98:12.
[5]
Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Dover publications, New York.
[6]
Per Christensen, Julian Fong, Jonathan Shade, Wayne Wooten, Brenden Schubert, Andrew Kensler, Stephen Friedman, Charlie Kilpatrick, Cliff Ramshaw, Marc Bannister, Brenton Rayner, Jonathan Brouillat, and Max Liani. 2018. RenderMan: An Advanced Path-Tracing Architecture for Movie Rendering. ACM Trans. Graph. 37, 3, Article 30 (Aug. 2018), 21 pages.
[7]
Eugene d'Eon. 2012. A better dipole. http://www.eugenedeon.com/project/a-better-dipole/
[8]
Eugene D'Eon and Geoffrey Irving. 2011. A Quantized-diffusion Model for Rendering Translucent Materials. ACM Trans. Graph. (Proc. SIGGRAPH 2011) 30, 4 (jul 2011), 56:1--56:14.
[9]
Eugene d'Eon, David Luebke, and Eric Enderton. 2007. Efficient Rendering of Human Skin. In Proceedings of the 18th Eurographics Conference on Rendering Techniques (EGSR'07). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 147--157.
[10]
Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation using Real NVP. arXiv:cs.LG/1605.08803
[11]
Carl Doersch. 2016. Tutorial on Variational Autoencoders. stat/1606 (2016), 23. arXiv:1412.6980 https://arxiv.org/abs/1606.05908
[12]
Craig Donner and Henrik Wann Jensen. 2005. Light Diffusion in Multi-layered Translucent Materials. In ACM Trans. Graph. (Proc. SIGGRAPH) (SIGGRAPH '05). ACM, New York, NY, USA, 1032--1039.
[13]
Craig Donner, Jason Lawrence, Ravi Ramamoorthi, Toshiya Hachisuka, Henrik Wann Jensen, and Shree Nayar. 2009. An Empirical BSSRDF Model. ACM Trans. Graph. 28, 3, Article 30 (July 2009), 10 pages.
[14]
Luca Fascione, Johannes Hanika, Mark Leone, Marc Droske, Jorge Schwarzhaupt, Tomáš Davidovič, Andrea Weidlich, and Johannes Meng. 2018. Manuka: A Batch-Shading Architecture for Spectral Path Tracing in Movie Production. ACM Trans. Graph. 37, 3, Article 31 (Aug. 2018), 18 pages.
[15]
Roald Frederickx and Philip Dutré. 2017. A Forward Scattering Dipole Model from a Functional Integral Approximation. ACM Trans. Graph. 36, 4, Article 109 (July 2017), 13 pages.
[16]
Jeppe Revall Frisvad, Toshiya Hachisuka, and Thomas Kim Kjeldsen. 2014. Directional Dipole Model for Subsurface Scattering. ACM Trans. Graph. 34, 1, Article 5 (Dec. 2014), 12 pages.
[17]
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
[18]
Ralf Habel, Per H Christensen, and Wojciech Jarosz. 2013. Photon Beam Diffusion: A Hybrid Monte Carlo Method for Subsurface Scattering. Computer Graphics Forum (Proceedings of EGSR) 32, 4 (jun 2013), 27--37.
[19]
Pat Hanrahan and Wolfgang Krueger. 1993. Reflection from Layered Surfaces Due to Subsurface Scattering. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '93). ACM, New York, NY, USA, 165--174.
[20]
Louis G. Henyey and Jesse L. Greenstein. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93 (1941), 70--83.
[21]
Pedro Hermosilla, Sebastian Maisch, Tobias Ritschel, and Timo Ropinski. 2018. Deep-learning the Latent Space of Light Transport. arXiv:cs.GR/1811.04756
[22]
Akira Ishimaru. 1999. Wave propagation and scattering in random media. Vol. 12. John Wiley & Sons.
[23]
Wenzel Jakob. 2010. Mitsuba renderer.
[24]
Wenzel Jakob, Adam Arbree, Jonathan T Moon, Kavita Bala, and Steve Marschner. 2010. A Radiative Transfer Framework for Rendering Materials with Anisotropic Structure. ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4 (2010), 53:1--53:13.
[25]
Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant Field-Aligned Meshes. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 34, 6 (Nov. 2015), 189:1--189:15.
[26]
Henrik Wann Jensen and Juan Buhler. 2002. A Rapid Hierarchical Rendering Technique for Translucent Materials. ACM Trans. Graph. 21, 3 (July 2002), 576--581.
[27]
Henrik Wann Jensen and Per H. Christensen. 1998. Efficient Simulation of Light Transport in Scenes with Participating Media Using Photon Maps. (1998), 311--320.
[28]
Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. 2001. A Practical Model for Subsurface Light Transport. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01). ACM, New York, NY, USA, 511--518.
[29]
Jorge Jimenez, Veronica Sundstedt, and Diego Gutierrez. 2009. Screen-space perceptual rendering of human skin. ACM Transactions on Applied Perception 6, 4, Article 23 (2009), 15 pages.
[30]
James T. Kajiya. 1986. The Rendering Equation. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '86). ACM, New York, NY, USA, 143--150.
[31]
James T. Kajiya and Brian P. Von Herzen. 1984. Ray Tracing Volume Densities. In Proceedings of the 11th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '84). ACM, New York, NY, USA, 165--174.
[32]
Simon Kallweit, Thomas Müller, Brian McWilliams, Markus Gross, and Jan Novák. 2017. Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting Neural Networks. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36, 6 (nov 2017), 231:1--231:11.
[33]
Benjamin Keinert, Henry Schäfer, Johann Korndörfer, Urs Ganse, and Marc Stamminger. 2014. Enhanced Sphere Tracing. In Smart Tools and Apps for Graphics - Eurographics Italian Chapter Conference, Andrea Giachetti (Ed.). The Eurographics Association.
[34]
Alan King, Christopher Kulla, Alejandro Conty, and Marcos Fajardo. 2013. BSSRDF Importance Sampling. In ACM SIGGRAPH 2013 Talks (SIGGRAPH '13). ACM, New York, NY, USA, Article 48, 1 pages.
[35]
Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization. CoRR abs/1412.6 (2014), 15. arXiv:1412.6980 http://arxiv.org/abs/1412.6980
[36]
Diederik P. Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. CoRR abs/1312.6114 (2013), 14.
[37]
Konstantin Kolchin. 2010. Surface Curvature Effects on Reflectance from Translucent Materials. CoRR abs/1010.2623 (2010), 4. arXiv:1010.2623 http://arxiv.org/abs/1010.2623
[38]
Jaroslav Křivánek and Eugene d'Eon. 2014. A Zero-variance-based Sampling Scheme for Monte Carlo Subsurface Scattering. In ACM SIGGRAPH 2014 Talks (SIGGRAPH '14). ACM, New York, NY, USA, Article 66, 1 pages.
[39]
Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521 (2015), 436--444.
[40]
Johannes Meng, Johannes Hanika, and Carsten Dachsbacher. 2016. Improving the Dwivedi Sampling Scheme. Computer Graphics Forum (Proceedings of Eurographics Symposium on Rendering) 35, 4 (2016), 37--44.
[41]
Michael I Mishchenko, Larry D Travis, and Andrew A Lacis. 2006. Multiple scattering of light by particles: radiative transfer and coherent backscattering. Cambridge University Press.
[42]
Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages.
[43]
Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. 2018. Neural Importance Sampling. arXiv:cs.LG/1808.03856
[44]
Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen-Space Shading. Computer Graphics Forum (Proc. EGSR 2017) 36, 4 (2017), 65--78.
[45]
Srinivasa G. Narasimhan, Mohit Gupta, Craig Donner, Ravi Ramamoorthi, Shree K. Nayar, and Henrik Wann Jensen. 2006. Acquiring scattering properties of participating media by dilution. ACM Trans. Graph. 25, 3 (2006), 1003--1012.
[46]
Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012. Virtual Ray Lights for Rendering Scenes with Participating Media. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4, Article 60 (jul 2012), 11 pages.
[47]
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3rd ed.) (3rd ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. 1266 pages.
[48]
Simon Premože, Michael Ashikhmin, and Peter Shirley. 2003. Path Integration for Light Transport in Volumes. In Proceedings of the 14th Eurographics Workshop on Rendering (EGRW '03). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 52--63. http://dl.acm.org/citation.cfm?id=882404.882413
[49]
Chen Shen, James F. O'Brien, and Jonathan R. Shewchuk. 2004. Interpolating and Approximating Implicit Surfaces from Polygon Soup. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3 (Aug. 2004), 896--904.
[50]
Jos Stam. 1995. Multiple scattering as a diffusion process. In Rendering Techniques '95. Springer Vienna, Vienna, 41--50.
[51]
Jerry Tessendorf. 1987. Radiative transfer as a sum over paths. Physical review A 35, 2 (1987), 872.
[52]
Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David Adler, Mark Meyer, and Jan Novák. 2018. Denoising with Kernel Prediction and Asymmetric Loss Functions. ACM Trans. Graph. 37, 4, Article 124 (July 2018), 15 pages.
[53]
Bruce Walter, Pramook Khungurn, and Kavita Bala. 2012. Bidirectional Lightcuts. ACM Trans. Graph. 31, 4, Article 59 (July 2012), 11 pages.
[54]
Jiaping Wang, Shuang Zhao, Xin Tong, Stephen Lin, Zhouchen Lin, Yue Dong, Baining Guo, and Heung-Yeung Shum. 2008. Modeling and Rendering of Heterogeneous Translucent Materials Using the Diffusion Equation. ACM Trans. Graph. 27, 1, Article 9 (March 2008), 18 pages.
[55]
Douglas R. Wyman, Michael S. Patterson, and Brian C. Wilson. 1989. Similarity relations for the interaction parameters in radiation transport. Appl. Opt. 28, 24 (Dec 1989), 5243--5249.
[56]
Shuang Zhao, Ravi Ramamoorthi, and Kavita Bala. 2014. High-order Similarity Relations in Radiative Transfer. ACM Trans. Graph. 33, 4, Article 104 (July 2014), 12 pages.
[57]
Quan Zheng and Matthias Zwicker. 2018. Learning to Importance Sample in Primary Sample Space. arXiv:cs.LG/1808.07840

Cited By

View all
  • (2024)RNA: Relightable Neural AssetsACM Transactions on Graphics10.1145/369586644:1(1-19)Online publication date: 12-Sep-2024
  • (2024)Neural Product Importance Sampling via Warp CompositionSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687566(1-11)Online publication date: 3-Dec-2024
  • (2024)Learning to Transfer Heterogeneous Translucent Materials from a 2D Image to 3D ModelsProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680813(3440-3448)Online publication date: 28-Oct-2024
  • Show More Cited By

Index Terms

  1. A learned shape-adaptive subsurface scattering model

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 38, Issue 4
    August 2019
    1480 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3306346
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 July 2019
    Published in TOG Volume 38, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    • Swiss National Science Foundation (SNSF)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)79
    • Downloads (Last 6 weeks)10
    Reflects downloads up to 14 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)RNA: Relightable Neural AssetsACM Transactions on Graphics10.1145/369586644:1(1-19)Online publication date: 12-Sep-2024
    • (2024)Neural Product Importance Sampling via Warp CompositionSIGGRAPH Asia 2024 Conference Papers10.1145/3680528.3687566(1-11)Online publication date: 3-Dec-2024
    • (2024)Learning to Transfer Heterogeneous Translucent Materials from a 2D Image to 3D ModelsProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680813(3440-3448)Online publication date: 28-Oct-2024
    • (2024)LightFormer: Light-Oriented Global Neural Rendering in Dynamic SceneACM Transactions on Graphics10.1145/365822943:4(1-14)Online publication date: 19-Jul-2024
    • (2024)NeuPreSS: Compact Neural Precomputed Subsurface Scattering for Distant Lighting of Heterogeneous Translucent ObjectsComputer Graphics Forum10.1111/cgf.1523443:7Online publication date: 18-Oct-2024
    • (2024)Neural SSS: Lightweight Object Appearance RepresentationComputer Graphics Forum10.1111/cgf.1515843:4Online publication date: 24-Jul-2024
    • (2024)Deep and Fast Approximate Order Independent TransparencyComputer Graphics Forum10.1111/cgf.1507143:6Online publication date: 6-Mar-2024
    • (2024)Learning subsurface scattering solutions of tightly-packed granular media using optimal transportComputers & Graphics10.1016/j.cag.2024.103895119(103895)Online publication date: Apr-2024
    • (2023)NeLT: Object-Oriented Neural Light TransferACM Transactions on Graphics10.1145/359649142:5(1-16)Online publication date: 10-May-2023
    • (2023)Deep Real-time Volumetric Rendering Using Multi-feature FusionACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591493(1-10)Online publication date: 23-Jul-2023
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media