Nothing Special   »   [go: up one dir, main page]

An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In graph theory, the degree diameter problem is the problem of finding the largest possible graph G (in terms of the size of its vertex set V) of diameter k such that the largest degree of any of the vertices in G is at most d. The size of G is bounded above by the Moore bound; for 1 < k and 2 < d only the Petersen graph, the Hoffman-Singleton graph, and possibly one more graph (not yet proven to exist) of diameter k = 2 and degree d = 57 attain the Moore bound. In general, the largest degree-diameter graphs are much smaller in size than the Moore bound.

Property Value
dbo:abstract
  • In graph theory, the degree diameter problem is the problem of finding the largest possible graph G (in terms of the size of its vertex set V) of diameter k such that the largest degree of any of the vertices in G is at most d. The size of G is bounded above by the Moore bound; for 1 < k and 2 < d only the Petersen graph, the Hoffman-Singleton graph, and possibly one more graph (not yet proven to exist) of diameter k = 2 and degree d = 57 attain the Moore bound. In general, the largest degree-diameter graphs are much smaller in size than the Moore bound. (en)
  • グラフ理論において次数直径問題とは、最大次数がdで直径がkのグラフのうち頂点数が最大となるグラフGを見つけよ、というものだ。Gの頂点数はムーア・バウンドによって上から抑えられる。1<kで2<dのときムーアバウンドに一致するグラフ(ムーアグラフ)で構成できているものはピーターセングラフとホフマンシングルトングラフである。k=2でd=57のときにムーアバウンドに一致するグラフが存在しうるが、いまだ構成されておらず未解決の問題である。一般的に最大次数と直径が与えられたときの最大頂点数はムーアバウンドよりも小さくなる。 (ja)
  • Проблема размера — диаметра — задача поиска наибольшего возможного графа (в терминах размера множества его вершин ) диаметра такого, что наибольшая степень любой вершины в графе не превосходит . Размер графа ограничен сверху границей Мура. Для и только граф Петерсена, граф Хоффмана — Синглтона и, возможно, граф с диаметром и степенью достигают границу Мура. В общем случае наибольшие графы со значениями степень/диаметр имеют размер, много меньший границы Мура. Изучается также задача поиска наибольшего возможного орграфа, вместо степени графа в этом случае используется полустепень исхода. (ru)
  • 度-直徑問題是圖論中一個問題,目的在定下最大直徑k及最大度數d後,找出擁有最多節點的圖。 假設圖以表示,某節點的度數以表示,節點之間的最短距離以表示,則度-直徑問題是規定了 求出圖G。G的大小(以節點數衡量)受制於,亦即節點的數目不可能多於 已知在k > 1和d > 2的情況下,只有佩特森圖和Hoffman-Singleton圖,以及一個k=2、d=57的圖能達到摩爾上限,一般情況下,圖的節點數目遠少於摩爾上限所指定。 (zh)
  • Зада́ча сте́пеня — діа́метра — задача пошуку найбільшого можливого графа (в термінах розміру множини його вершин ) діаметром такого, що найбільший степінь будь-якої вершини в графі не перевищує . Розмір графа обмежений зверху межею Мура. Для і тільки граф Петерсена, граф Гофмана — Синглтона і, можливо, граф із діаметром і степенем досягають межі Мура. В загальному випадку графи з найбільшими значеннями степінь/діаметр мають розмір, значно менший від межі Мура. Вивчається також задача пошуку найбільшого можливого орграфа, замість степеня графа в цьому випадку використовують напівстепень виходу. (uk)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19726161 (xsd:integer)
dbo:wikiPageLength
  • 3544 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1095409561 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In graph theory, the degree diameter problem is the problem of finding the largest possible graph G (in terms of the size of its vertex set V) of diameter k such that the largest degree of any of the vertices in G is at most d. The size of G is bounded above by the Moore bound; for 1 < k and 2 < d only the Petersen graph, the Hoffman-Singleton graph, and possibly one more graph (not yet proven to exist) of diameter k = 2 and degree d = 57 attain the Moore bound. In general, the largest degree-diameter graphs are much smaller in size than the Moore bound. (en)
  • グラフ理論において次数直径問題とは、最大次数がdで直径がkのグラフのうち頂点数が最大となるグラフGを見つけよ、というものだ。Gの頂点数はムーア・バウンドによって上から抑えられる。1<kで2<dのときムーアバウンドに一致するグラフ(ムーアグラフ)で構成できているものはピーターセングラフとホフマンシングルトングラフである。k=2でd=57のときにムーアバウンドに一致するグラフが存在しうるが、いまだ構成されておらず未解決の問題である。一般的に最大次数と直径が与えられたときの最大頂点数はムーアバウンドよりも小さくなる。 (ja)
  • 度-直徑問題是圖論中一個問題,目的在定下最大直徑k及最大度數d後,找出擁有最多節點的圖。 假設圖以表示,某節點的度數以表示,節點之間的最短距離以表示,則度-直徑問題是規定了 求出圖G。G的大小(以節點數衡量)受制於,亦即節點的數目不可能多於 已知在k > 1和d > 2的情況下,只有佩特森圖和Hoffman-Singleton圖,以及一個k=2、d=57的圖能達到摩爾上限,一般情況下,圖的節點數目遠少於摩爾上限所指定。 (zh)
  • Проблема размера — диаметра — задача поиска наибольшего возможного графа (в терминах размера множества его вершин ) диаметра такого, что наибольшая степень любой вершины в графе не превосходит . Размер графа ограничен сверху границей Мура. Для и только граф Петерсена, граф Хоффмана — Синглтона и, возможно, граф с диаметром и степенью достигают границу Мура. В общем случае наибольшие графы со значениями степень/диаметр имеют размер, много меньший границы Мура. (ru)
  • Зада́ча сте́пеня — діа́метра — задача пошуку найбільшого можливого графа (в термінах розміру множини його вершин ) діаметром такого, що найбільший степінь будь-якої вершини в графі не перевищує . Розмір графа обмежений зверху межею Мура. Для і тільки граф Петерсена, граф Гофмана — Синглтона і, можливо, граф із діаметром і степенем досягають межі Мура. В загальному випадку графи з найбільшими значеннями степінь/діаметр мають розмір, значно менший від межі Мура. (uk)
rdfs:label
  • Degree diameter problem (en)
  • 次数直径問題 (ja)
  • Проблема размера — диаметра (ru)
  • 度-直徑問題 (zh)
  • Задача степеня — діаметра (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License