Nothing Special   »   [go: up one dir, main page]

About: Near polygon

An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a near polygon is an incidence geometry introduced by Ernest E. Shult and Arthur Yanushka in 1980. Shult and Yanushka showed the connection between the so-called tetrahedrally closed line-systems in Euclidean spaces and a class of point-line geometries which they called near polygons. These structures generalise the notion of generalized polygon as every generalized 2n-gon is a near 2n-gon of a particular kind. Near polygons were extensively studied and connection between them and dual polar spaces was shown in 1980s and early 1990s. Some sporadic simple groups, for example the Hall-Janko group and the Mathieu groups, act as automorphism groups of near polygons.

Property Value
dbo:abstract
  • In mathematics, a near polygon is an incidence geometry introduced by Ernest E. Shult and Arthur Yanushka in 1980. Shult and Yanushka showed the connection between the so-called tetrahedrally closed line-systems in Euclidean spaces and a class of point-line geometries which they called near polygons. These structures generalise the notion of generalized polygon as every generalized 2n-gon is a near 2n-gon of a particular kind. Near polygons were extensively studied and connection between them and dual polar spaces was shown in 1980s and early 1990s. Some sporadic simple groups, for example the Hall-Janko group and the Mathieu groups, act as automorphism groups of near polygons. (en)
  • Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а связь между ними и двойственными полярными пространствами была показана в 1980-х годах и начале 1990-х. Некоторые спорадические простые группы, например, группа Холла — Янко и группы Матьё, действуют как группы автоморфизмов на почти многоугольниках. (ru)
  • Майже многокутник — це геометрія інцидентності, запропонована Ернестом Е. Шультом і Артуром Янушкою 1980 року. Шульт і Янушка показали зв'язок між так званими тетраедрально замкнутими системами прямих у евклідових просторах і класом геометрій точка/пряма, які вони назвали майже многокутниками. Ці структури узагальнюють нотацію узагальнених многокутників, оскільки будь-який узагальнений 2n-кутник є майже 2n-кутником певного виду. Майже многокутники інтенсивно вивчалися, а зв'язок між ними і подвійними полярними просторами показано в 1980-х роках і початку 1990-х. Деякі , наприклад, і , діють як групи автоморфізмів на майже многокутниках. (uk)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 41024203 (xsd:integer)
dbo:wikiPageLength
  • 8966 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1106927284 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, a near polygon is an incidence geometry introduced by Ernest E. Shult and Arthur Yanushka in 1980. Shult and Yanushka showed the connection between the so-called tetrahedrally closed line-systems in Euclidean spaces and a class of point-line geometries which they called near polygons. These structures generalise the notion of generalized polygon as every generalized 2n-gon is a near 2n-gon of a particular kind. Near polygons were extensively studied and connection between them and dual polar spaces was shown in 1980s and early 1990s. Some sporadic simple groups, for example the Hall-Janko group and the Mathieu groups, act as automorphism groups of near polygons. (en)
  • Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а связь между ними и двойственными полярными пространствами была показана в 1980-х годах и начале 1990-х. Некоторые спорадические простые группы, например, группа Холла — Янко и группы Матьё, действуют как группы автоморфизмов на почти многоугольниках. (ru)
  • Майже многокутник — це геометрія інцидентності, запропонована Ернестом Е. Шультом і Артуром Янушкою 1980 року. Шульт і Янушка показали зв'язок між так званими тетраедрально замкнутими системами прямих у евклідових просторах і класом геометрій точка/пряма, які вони назвали майже многокутниками. Ці структури узагальнюють нотацію узагальнених многокутників, оскільки будь-який узагальнений 2n-кутник є майже 2n-кутником певного виду. Майже многокутники інтенсивно вивчалися, а зв'язок між ними і подвійними полярними просторами показано в 1980-х роках і початку 1990-х. Деякі , наприклад, і , діють як групи автоморфізмів на майже многокутниках. (uk)
rdfs:label
  • Near polygon (en)
  • Почти многоугольник (ru)
  • Майже многокутник (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License