dbo:abstract
|
- In mathematics, a near polygon is an incidence geometry introduced by Ernest E. Shult and Arthur Yanushka in 1980. Shult and Yanushka showed the connection between the so-called tetrahedrally closed line-systems in Euclidean spaces and a class of point-line geometries which they called near polygons. These structures generalise the notion of generalized polygon as every generalized 2n-gon is a near 2n-gon of a particular kind. Near polygons were extensively studied and connection between them and dual polar spaces was shown in 1980s and early 1990s. Some sporadic simple groups, for example the Hall-Janko group and the Mathieu groups, act as automorphism groups of near polygons. (en)
- Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а связь между ними и двойственными полярными пространствами была показана в 1980-х годах и начале 1990-х. Некоторые спорадические простые группы, например, группа Холла — Янко и группы Матьё, действуют как группы автоморфизмов на почти многоугольниках. (ru)
- Майже многокутник — це геометрія інцидентності, запропонована Ернестом Е. Шультом і Артуром Янушкою 1980 року. Шульт і Янушка показали зв'язок між так званими тетраедрально замкнутими системами прямих у евклідових просторах і класом геометрій точка/пряма, які вони назвали майже многокутниками. Ці структури узагальнюють нотацію узагальнених многокутників, оскільки будь-який узагальнений 2n-кутник є майже 2n-кутником певного виду. Майже многокутники інтенсивно вивчалися, а зв'язок між ними і подвійними полярними просторами показано в 1980-х роках і початку 1990-х. Деякі , наприклад, і , діють як групи автоморфізмів на майже многокутниках. (uk)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 8966 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, a near polygon is an incidence geometry introduced by Ernest E. Shult and Arthur Yanushka in 1980. Shult and Yanushka showed the connection between the so-called tetrahedrally closed line-systems in Euclidean spaces and a class of point-line geometries which they called near polygons. These structures generalise the notion of generalized polygon as every generalized 2n-gon is a near 2n-gon of a particular kind. Near polygons were extensively studied and connection between them and dual polar spaces was shown in 1980s and early 1990s. Some sporadic simple groups, for example the Hall-Janko group and the Mathieu groups, act as automorphism groups of near polygons. (en)
- Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а связь между ними и двойственными полярными пространствами была показана в 1980-х годах и начале 1990-х. Некоторые спорадические простые группы, например, группа Холла — Янко и группы Матьё, действуют как группы автоморфизмов на почти многоугольниках. (ru)
- Майже многокутник — це геометрія інцидентності, запропонована Ернестом Е. Шультом і Артуром Янушкою 1980 року. Шульт і Янушка показали зв'язок між так званими тетраедрально замкнутими системами прямих у евклідових просторах і класом геометрій точка/пряма, які вони назвали майже многокутниками. Ці структури узагальнюють нотацію узагальнених многокутників, оскільки будь-який узагальнений 2n-кутник є майже 2n-кутником певного виду. Майже многокутники інтенсивно вивчалися, а зв'язок між ними і подвійними полярними просторами показано в 1980-х роках і початку 1990-х. Деякі , наприклад, і , діють як групи автоморфізмів на майже многокутниках. (uk)
|
rdfs:label
|
- Near polygon (en)
- Почти многоугольник (ru)
- Майже многокутник (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |