Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M2-1
<p>Homotypic LLPS of M<sub>2-1</sub> compared to P. (<b>A</b>) Effect of crowding agent on homotypic LLPS; 5 µM M<sub>2-1</sub> was incubated in the presence of increasing concentrations of PEG-4000. Scale bar = 10 µm. (<b>B</b>) P and M<sub>2-1</sub> were tested at concentrations ranging from 0.05 to 12.5 µM in the presence or absence of 150 mM NaCl and 15% PEG-4000. Arrow indicates the saturation concentration of M<sub>2-1</sub> in both conditions. Scale bar = 10 µm. (<b>C</b>) Effect of protein concentration on homotypic LLPS monitored by turbidity.</p> "> Figure 2
<p>Heterotypic condensation of P and M<sub>2-1</sub>. (<b>A</b>) P and M<sub>2-1</sub> were incubated at different ratios (protein concentration ranged from 2.5 to 10 µM) and visualized by brightfield and fluorescence microscopy. Scale bar = 10 µm. (<b>B</b>) Bright field microscopy of samples containing fixed concentration of M<sub>2-1</sub> (10 µM) and varying concentrations of P (upper panel) and fixed concentration of P (10 µM) and varying concentration of M<sub>2-1</sub> (lower panel). Scale bar = 10 µm. (<b>C</b>) Turbidity assay monitoring absorbance at 370 nm of the samples analyzed in (<b>B</b>). (<b>D</b>) Effect of crowding agent (PEG-4000) concentration on homotypic M<sub>2-1</sub> vs. heterotypic P-M<sub>2-1</sub> condensation monitored by turbidity. (<b>E</b>) Top, initial protein concentration vs. dense phase concentration of P (blue) and M<sub>2-1</sub> (red) in a partition experiment (see <a href="#sec2-viruses-15-01329" class="html-sec">Section 2</a>) at different ratios of heterotypic P-M<sub>2-1</sub> condensates (<span class="html-italic">n</span> = 3 ± s. e.). Bottom, schematic representation of the initial and dense phase conditions with their respective stoichiometry. Solid spheres refer to proteins in solution and stoichiometric complex formation. Translucent spheres refer to proteins within the condensate. (<b>F</b>) Effect of P and its deletions P<sub>∆N</sub> and P<sub>∆C</sub> on the formation of heterotypic condensates with M<sub>2-1</sub> in a 4 M<sub>2-1</sub>:1 P ratio. Scale bar = 10 µm.</p> "> Figure 3
<p>Tripartite P-N<sub>R</sub>-M<sub>2-1</sub> condensates and incorporation of M<sub>2-1</sub>. (<b>A</b>) Incorporation of M<sub>2-1</sub> over time to bipartite condensates of P-N<sub>R</sub>. Preformed P-N<sub>R</sub> condensates were incubated for 1 h followed by addition of M<sub>2-1</sub> (arrow). N is shown in green, P in blue, and M<sub>2-1</sub> in red. Scale bar = 10 µm. (<b>B</b>) Formation of tripartite heterotypic condensates triggered by N<sub>R</sub> (see <a href="#app1-viruses-15-01329" class="html-app">Figure S3A</a>). Preformed P-M<sub>2-1</sub> soluble complex incubated for 10 min and then N<sub>R</sub> was added (arrow). (<b>C</b>) Incorporation of M<sub>2-1</sub>-FITC to tripartite condensates of unlabeled P-N<sub>R</sub>-M<sub>2-1</sub> (see <a href="#app1-viruses-15-01329" class="html-app">Figure S3B</a>). Preformed P-N<sub>R</sub>-M<sub>2-1</sub> tripartite condensates were incubated for 1 h followed by addition of M<sub>2-1</sub>-FITC (arrow). (<b>D</b>) Schematic representation of the incorporation of M<sub>2-1</sub> to tripartite condensates. (<b>E</b>) Effect of increasing M<sub>2-1</sub> protein concentration on P-N<sub>R</sub>-M<sub>2-1</sub> tripartite condensates. Scale bar = 10 µm. (<b>F</b>) Co-localization of RSV proteins in transfected cells. A549 cells were co-transfected with plasmids encoding GFP-P, M<sub>2-1</sub>, and N. After 24 h, the proteins were detected by direct GFP fluorescence or with anti-M<sub>2-1</sub> or anti-N antibodies by IFI. Nuclei were stained with DAPI. Scale bar = 10 µm.</p> "> Figure 4
<p>Effect of ionic strength on homotypic and heterotypic condensates. (<b>A</b>) Homotypic condensates of P (5 µM) and M<sub>2-1</sub> (5 µM) and heterotypic condensates of P-N<sub>R</sub> (1.25 µM and 0.5 µM, respectively), P-M<sub>2-1</sub> (1.25 µM and 5 µM, respectively) and P-N<sub>R</sub>-M<sub>2-1</sub> (1.25 µM, 0.5 µM, and 1.25 µM, respectively) at increasing concentration of NaCl. Scale bar = 10 µm. (<b>B</b>) Turbidity assay of samples from (<b>A</b>) monitored by absorbance signal at 370 nm.</p> "> Figure 5
<p>Modulation of heterotypic M<sub>2-1</sub>-RNA condensates by binding stoichiometry. (<b>A</b>) Samples with fixed concentration of Cy5-M<sub>2-1</sub> (2.5 µM) were incubated with varying concentrations of FITC-RNA<sub>RSV20</sub> ratio. A maximum condensation effect is seen at a 1:0.5 ratio (highlighted in red) in 25 mM HEPES pH 7.5, 5% PEG and 100 mM NaCl buffer. (<b>B</b>) Top, electrophoretic shift mobility assay (EMSA) of stoichiometric complex M<sub>2-1</sub>-RNA<sub>RSV20</sub> formation varying the concentration of M<sub>2-1</sub> (0 to 320 nM) with fixed concentration of RNA<sub>RSV20</sub> (200 nM). The asterisk refers to the stoichiometric complex ratio formation. Bottom, plot represents the fraction of free RNA densitometry from the EMSA as a function of M<sub>2-1</sub>:RNA<sub>RSV20</sub> ratio. Arrow indicates the solution binding stoichiometry. (<b>C</b>) Samples with fixed concentration of M<sub>2-1</sub> (2.5 µM) were incubated with varying concentrations of tRNA<sub>70</sub> in heterotypic condensates. A maximum condensation effect takes place at a 16:1 ratio (highlighted in red) in 25 mM HEPES pH 7.5, 5% PEG and minimum NaCl buffer. Scale bar = 10 µm. (<b>D</b>) Top, EMSA of M<sub>2-1</sub>-tRNA<sub>70</sub> stoichiometric complexes formation varying the concentration of M<sub>2-1</sub> (0 to 4 µM) with fixed concentration of tRNA<sub>70</sub> (1.5 µM). The asterisk refers to the stoichiometric complex ratio formation. Bottom, plot depicts free M<sub>2-1</sub>-tRNA<sub>70</sub> complex (full circles) and RNA (unfilled circles) densitometry from the EMSA assay. Arrow indicates the solution-binding stoichiometry.</p> "> Figure 6
<p>Ionic strength dependence and reversibility of M<sub>2-1</sub>-RNA condensates. (<b>A</b>) Effect of NaCl on M<sub>2-1</sub> (5 µM) homotypic and heterotypic, and M<sub>2-1</sub>-RNA<sub>RSV20</sub> (2 M<sub>2-1</sub>:1 RNA<sub>RSV20</sub> ratio) and M<sub>2-1</sub>-tRNA<sub>70</sub> (16 M<sub>2-1</sub>:1 tRNA<sub>70</sub> ratio) heterotypic condensates. Scale bar = 10 µm. (<b>B</b>) Turbidity measurement of samples from (<b>A</b>) monitored by absorbance at 370 nm. (<b>C</b>) Turbidity kinetic assay monitoring heterotypic condensation triggered by addition of 5 µM M<sub>2-1</sub> to a solution of 0.31 µM tRNA<sub>70</sub> (16 M<sub>2-1</sub>:1 tRNA<sub>70</sub> ratio) and reversed by increasing NaCl to 0.5 M. (<b>D</b>) Coulombic surface scheme of M<sub>2-1</sub> structure. The red areas correspond to negatively charged regions (E70-E71 and E118-E119) and the blue ones to positively charged regions. Scheme of interactions of M<sub>2-1</sub> in homotypic condensates and interactions of M<sub>2-1</sub> with RNA both in heterotypic condensates and in soluble stoichiometric complex. The formation of homotypic M<sub>2-1</sub> condensates is affected by the addition of sub stoichiometric short (20 bases) or long (70 bases) RNA. These heterotypic condensates are irregular but do not correspond to amorphous aggregates. RNA excess dissolves heterotypic condensates.</p> "> Figure 7
<p>P-N<sub>R</sub>-M<sub>2-1</sub> tripartite heterotypic condensates with RNA<sub>RSV20</sub>. (<b>A</b>) Effect of RNA<sub>RSV20</sub> on tripartite condensates of P-N<sub>R</sub>-M<sub>2-1</sub> over time. 0.625 µM RNA<sub>RSV20</sub> was added to preformed tripartite condensates at a 2 M<sub>2-1</sub>:1 RNA<sub>RSV20</sub> ratio in 25 mM HEPES pH 7.5, 5% PEG, and 75 mM NaCl buffer. (<b>B</b>) Representative fluorescence microscopy images of samples from (<b>A</b>) after overnight incubation. Heterogeneous distribution of RNA can be seen within the condensate. Scale bar = 10 µm.</p> "> Figure 8
<p>Intrinsic disorder and LLPS propensity of the RSV N (<b>A</b>), P (<b>B</b>), and M<sub>2-1</sub> proteins (<b>C</b>).</p> "> Figure 9
<p>Mechanistic hypothesis for viral factory condensation based on our in vitro analysis. Proteins N and P are the first ones to be synthesized and in large quantities (1) and are known to be the main drivers for condensation (2). As M<sub>2-1</sub> levels increase at later stages of the infection cycle, it incorporates into the condensate nuclei to increase the size of the condensates (3). We propose that as polymerase is synthesized at a later stage and low amounts, it is tightly bound to P and is incorporated to condensates as clients (3). Although not known at this stage, we hypothesize that, exacerbated by the high concentrations of both enzyme and template, genomic transcription drastically increases and the increased mRNA transcripts recruit M<sub>2-1</sub> from the protein phase to the IBAGs subcompartments (4). NS1 and NS2 genes are upstream N and not shown on this schematic representation of the viral genome. The same goes for M<sub>2-2</sub>, the product of the expression of the second ORF of the viral gene M2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Purification
2.2. Protein Fluorescent Labeling
2.3. Turbidity Experiments
2.4. Bright Field and Fluorescence Microscopy
2.5. Fluorescence Recovery after Photobleaching
2.6. Electro Mobility Shift Assay (EMSA)
2.7. Partition Experiments
2.8. Cell Imaging
2.9. Bioinformatics Analysis of the Intrinsic Disorder Propensity
2.10. RNAs
3. Results
3.1. M2-1 Readily Undergoes Homotypic and Heterotypic Condensation with P
3.2. Formation and Modulation of Tripartite NR-P-M2-1 Condensates
3.3. M2-1-RNA Condensates Form Subcompartments within the In Vitro Tripartite Condensates
3.4. Bioinformatics Analysis of the Intrinsic Disorder Propensity of the RSV M2-1, P, and N Proteins and Their Predisposition for Phase Separation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fields, B.N. Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; ISBN 978-1-4698-7422-7. [Google Scholar]
- Fooks, A.R.; Cliquet, F.; Finke, S.; Freuling, C.; Hemachudha, T.; Mani, R.S.; Müller, T.; Nadin-Davis, S.; Picard-Meyer, E.; Wilde, H.; et al. Rabies. Nat. Rev. Dis. Primer 2017, 3, 17091. [Google Scholar] [CrossRef]
- Wu, C.; Holehouse, A.S.; Leung, D.W.; Amarasinghe, G.K.; Dutch, R.E. Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annu. Rev. Virol. 2022, 9, 285–306. [Google Scholar] [CrossRef]
- Habchi, J.; Tompa, P.; Longhi, S.; Uversky, V.N. Introducing Protein Intrinsic Disorder. Chem. Rev. 2014, 114, 6561–6588. [Google Scholar] [CrossRef]
- Charman, M.; Weitzman, M.D. Replication Compartments of DNA Viruses in the Nucleus: Location, Location, Location. Viruses 2020, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- Lopez, N.; Camporeale, G.; Salgueiro, M.; Borkosky, S.S.; Visentín, A.; Peralta-Martinez, R.; Loureiro, M.E.; De Prat-Gay, G. Deconstructing Virus Condensation. PLoS Pathog. 2021, 17, e1009926. [Google Scholar] [CrossRef] [PubMed]
- Borodavka, A.; Acker, J. Seeing Biomolecular Condensates Through the Lens of Viruses. Annu. Rev. Virol. 2023. [Google Scholar] [CrossRef]
- Caragliano, E.; Brune, W.; Bosse, J.B. Herpesvirus Replication Compartments: Dynamic Biomolecular Condensates? Viruses 2022, 14, 960. [Google Scholar] [CrossRef]
- Buchholz, U.J.; Biacchesi, S.; Pham, Q.N.; Tran, K.C.; Yang, L.; Luongo, C.L.; Skiadopoulos, M.H.; Murphy, B.R.; Collins, P.L. Deletion of M2 Gene Open Reading Frames 1 and 2 of Human Metapneumovirus: Effects on RNA Synthesis, Attenuation, and Immunogenicity. J. Virol. 2005, 79, 6588–6597. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.L.; Wertz, G.W. The Envelope-Associated 22K Protein of Human Respiratory Syncytial Virus: Nucleotide Sequence of the MRNA and a Related Polytranscript. J. Virol. 1985, 54, 65–71. [Google Scholar] [CrossRef]
- Tanner, S.J.; Ariza, A.; Richard, C.-A.; Kyle, H.F.; Dods, R.L.; Blondot, M.-L.; Wu, W.; Trincão, J.; Trinh, C.H.; Hiscox, J.A.; et al. Crystal Structure of the Essential Transcription Antiterminator M2-1 Protein of Human Respiratory Syncytial Virus and Implications of Its Phosphorylation. Proc. Natl. Acad. Sci. USA 2014, 111, 1580–1585. [Google Scholar] [CrossRef]
- Hardy, R.W.; Wertz, G.W. The Cys 3 -His 1 Motif of the Respiratory Syncytial Virus M2-1 Protein Is Essential for Protein Function. J. Virol. 2000, 74, 5880–5885. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.R.; Noton, S.L.; Blanchard, E.L.; Shareef, A.; Santangelo, P.J.; Johnson, W.E.; Fearns, R. Respiratory Syncytial Virus M2-1 Protein Associates Non-Specifically with Viral Messenger RNA and with Specific Cellular Messenger RNA Transcripts. PLoS Pathog. 2021, 17, e1009589. [Google Scholar] [CrossRef] [PubMed]
- Blondot, M.-L.; Dubosclard, V.; Fix, J.; Lassoued, S.; Aumont-Nicaise, M.; Bontems, F.; Eléouët, J.-F.; Sizun, C. Structure and Functional Analysis of the RNA- and Viral Phosphoprotein-Binding Domain of Respiratory Syncytial Virus M2-1 Protein. PLoS Pathog. 2012, 8, e1002734. [Google Scholar] [CrossRef]
- García-Barreno, B.; Delgado, T.; Melero, J.A. Identification of Protein Regions Involved in the Interaction of Human Respiratory Syncytial Virus Phosphoprotein and Nucleoprotein: Significance for Nucleocapsid Assembly and Formation of Cytoplasmic Inclusions. J. Virol. 1996, 70, 801–808. [Google Scholar] [CrossRef]
- Galloux, M.; Gabiane, G.; Sourimant, J.; Richard, C.-A.; England, P.; Moudjou, M.; Aumont-Nicaise, M.; Fix, J.; Rameix-Welti, M.-A.; Eléouët, J.-F. Identification and Characterization of the Binding Site of the Respiratory Syncytial Virus Phosphoprotein to RNA-Free Nucleoprotein. J. Virol. 2015, 89, 3484–3496. [Google Scholar] [CrossRef] [PubMed]
- Noval, M.G.; Esperante, S.A.; Molina, I.G.; Chemes, L.B.; Prat-Gay, G.d. Intrinsic Disorder to Order Transitions in the Scaffold Phosphoprotein P from the Respiratory Syncytial Virus RNA Polymerase Complex. Biochemistry 2016, 55, 1441–1454. [Google Scholar] [CrossRef]
- Pereira, N.; Cardone, C.; Lassoued, S.; Galloux, M.; Fix, J.; Assrir, N.; Lescop, E.; Bontems, F.; Eléouët, J.-F.; Sizun, C. New Insights into Structural Disorder in Human Respiratory Syncytial Virus Phosphoprotein and Implications for Binding of Protein Partners. J. Biol. Chem. 2017, 292, 2120–2131. [Google Scholar] [CrossRef]
- Galloux, M.; Tarus, B.; Blazevic, I.; Fix, J.; Duquerroy, S.; Eléouët, J.-F. Characterization of a Viral Phosphoprotein Binding Site on the Surface of the Respiratory Syncytial Nucleoprotein. J. Virol. 2012, 86, 8375–8387. [Google Scholar] [CrossRef]
- Gilman, M.S.A.; Liu, C.; Fung, A.; Behera, I.; Jordan, P.; Rigaux, P.; Ysebaert, N.; Tcherniuk, S.; Sourimant, J.; Eléouët, J.-F.; et al. Structure of the Respiratory Syncytial Virus Polymerase Complex. Cell 2019, 179, 193–204.e14. [Google Scholar] [CrossRef]
- Cao, D.; Gao, Y.; Roesler, C.; Rice, S.; D’Cunha, P.; Zhuang, L.; Slack, J.; Domke, M.; Antonova, A.; Romanelli, S.; et al. Cryo-EM Structure of the Respiratory Syncytial Virus RNA Polymerase. Nat. Commun. 2020, 11, 368. [Google Scholar] [CrossRef]
- Asenjo, A.; González-Armas, J.C.; Villanueva, N. Phosphorylation of Human Respiratory Syncytial Virus P Protein at Serine 54 Regulates Viral Uncoating. Virology 2008, 380, 26–33. [Google Scholar] [CrossRef]
- Alvarez Paggi, D.; Esperante, S.A.; Salgueiro, M.; Camporeale, G.; De Oliveira, G.A.P.; Prat Gay, G. A Conformational Switch Balances Viral RNA Accessibility and Protection in a Nucleocapsid Ring Model. Arch. Biochem. Biophys. 2019, 671, 77–86. [Google Scholar] [CrossRef]
- Hyman, A.A.; Weber, C.A.; Jülicher, F. Liquid-Liquid Phase Separation in Biology. Annu. Rev. Cell Dev. Biol. 2014, 30, 39–58. [Google Scholar] [CrossRef]
- Shin, Y.; Brangwynne, C.P. Liquid Phase Condensation in Cell Physiology and Disease. Science 2017, 357, eaaf4382. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Banjade, S.; Cheng, H.-C.; Kim, S.; Chen, B.; Guo, L.; Llaguno, M.; Hollingsworth, J.V.; King, D.S.; Banani, S.F.; et al. Phase Transitions in the Assembly of Multivalent Signalling Proteins. Nature 2012, 483, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Nikolic, J.; Le Bars, R.; Lama, Z.; Scrima, N.; Lagaudrière-Gesbert, C.; Gaudin, Y.; Blondel, D. Negri Bodies Are Viral Factories with Properties of Liquid Organelles. Nat. Commun. 2017, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Richard, C.-A.; Rincheval, V.; Lassoued, S.; Fix, J.; Cardone, C.; Esneau, C.; Nekhai, S.; Galloux, M.; Rameix-Welti, M.-A.; Sizun, C.; et al. RSV Hijacks Cellular Protein Phosphatase 1 to Regulate M2-1 Phosphorylation and Viral Transcription. PLoS Pathog. 2018, 14, e1006920. [Google Scholar] [CrossRef] [PubMed]
- Rincheval, V.; Lelek, M.; Gault, E.; Bouillier, C.; Sitterlin, D.; Blouquit-Laye, S.; Galloux, M.; Zimmer, C.; Eleouet, J.-F.; Rameix-Welti, M.-A. Functional Organization of Cytoplasmic Inclusion Bodies in Cells Infected by Respiratory Syncytial Virus. Nat. Commun. 2017, 8, 563. [Google Scholar] [CrossRef]
- Galloux, M.; Risso-Ballester, J.; Richard, C.-A.; Fix, J.; Rameix-Welti, M.-A.; Eléouët, J.-F. Minimal Elements Required for the Formation of Respiratory Syncytial Virus Cytoplasmic Inclusion Bodies In Vivo and In Vitro. mBio 2020, 11, e01202-20. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, M.; Camporeale, G.; Visentin, A.; Aran, M.; Pellizza, L.; Esperante, S.A.; Corbat, A.; Grecco, H.; Sousa, B.; Esperón, R.; et al. Molten Globule Driven and Self-Downmodulated Phase Separation of a Viral Factory Scaffold. J. Mol. Biol. 2023, 168153. [Google Scholar] [CrossRef]
- Nevers, Q.; Scrima, N.; Glon, D.; Le Bars, R.; Decombe, A.; Garnier, N.; Ouldali, M.; Lagaudrière-Gesbert, C.; Blondel, D.; Albertini, A.; et al. Properties of Rabies Virus Phosphoprotein and Nucleoprotein Biocondensates Formed in Vitro and in Cellulo. PLoS Pathog. 2022, 18, e1011022. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, J.M.; Samuel, C.E.; Ma, D. Measles Virus Forms Inclusion Bodies with Properties of Liquid Organelles. J. Virol. 2019, 93, e00948-19. [Google Scholar] [CrossRef]
- Esperante, S.A.; Noval, M.G.; Altieri, T.A.; De Oliveira, G.A.P.; Silva, J.L.; De Prat-Gay, G. Fine Modulation of the Respiratory Syncytial Virus M2–1 Protein Quaternary Structure by Reversible Zinc Removal from Its Cys3-His1 Motif. Biochemistry 2013, 52, 6779–6789. [Google Scholar] [CrossRef] [PubMed]
- Esperante, S.A.; Paris, G.; De Prat-Gay, G. Modular Unfolding and Dissociation of the Human Respiratory Syncytial Virus Phosphoprotein P and Its Interaction with the M2–1 Antiterminator: A Singular Tetramer–Tetramer Interface Arrangement. Biochemistry 2012, 51, 8100–8110. [Google Scholar] [CrossRef] [PubMed]
- Alshareedah, I.; Kaur, T.; Banerjee, P.R. Methods for Characterizing the Material Properties of Biomolecular Condensates. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 646, pp. 143–183. ISBN 978-0-12-821159-5. [Google Scholar]
- Molina, I.G.; Esperante, S.A.; Marino-Buslje, C.; Chemes, L.B.; De Prat-Gay, G. Cooperative RNA Recognition by a Viral Transcription Antiterminator. J. Mol. Biol. 2018, 430, 777–792. [Google Scholar] [CrossRef] [PubMed]
- Dayhoff, G.W.; Uversky, V.N. Rapid Prediction and Analysis of Protein Intrinsic Disorder. Protein Sci. Publ. Protein Soc. 2022, 31, e4496. [Google Scholar] [CrossRef] [PubMed]
- Romero, P.; Obradovic, Z.; Li, X.; Garner, E.C.; Brown, C.J.; Dunker, A.K. Sequence Complexity of Disordered Protein. Proteins 2001, 42, 38–48. [Google Scholar] [CrossRef]
- Peng, K.; Radivojac, P.; Vucetic, S.; Dunker, A.K.; Obradovic, Z. Length-Dependent Prediction of Protein Intrinsic Disorder. BMC Bioinform. 2006, 7, 208. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Vucetic, S.; Radivojac, P.; Brown, C.J.; Dunker, A.K.; Obradovic, Z. Optimizing Long Intrinsic Disorder Predictors with Protein Evolutionary Information. J. Bioinform. Comput. Biol. 2005, 3, 35–60. [Google Scholar] [CrossRef]
- Xue, B.; Dunbrack, R.L.; Williams, R.W.; Dunker, A.K.; Uversky, V.N. PONDR-FIT: A Meta-Predictor of Intrinsically Disordered Amino Acids. Biochim. Biophys. Acta 2010, 1804, 996–1010. [Google Scholar] [CrossRef]
- Mészáros, B.; Erdos, G.; Dosztányi, Z. IUPred2A: Context-Dependent Prediction of Protein Disorder as a Function of Redox State and Protein Binding. Nucleic Acids Res. 2018, 46, W329–W337. [Google Scholar] [CrossRef] [PubMed]
- Hardenberg, M.; Horvath, A.; Ambrus, V.; Fuxreiter, M.; Vendruscolo, M. Widespread Occurrence of the Droplet State of Proteins in the Human Proteome. Proc. Natl. Acad. Sci. USA 2020, 117, 33254–33262. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, M.; Fuxreiter, M. Sequence Determinants of the Aggregation of Proteins Within Condensates Generated by Liquid-Liquid Phase Separation. J. Mol. Biol. 2022, 434, 167201. [Google Scholar] [CrossRef]
- Tran, T.-L.; Castagné, N.; Bhella, D.; Varela, P.F.; Bernard, J.; Chilmonczyk, S.; Berkenkamp, S.; Benhamo, V.; Grznarova, K.; Grosclaude, J.; et al. The Nine C-Terminal Amino Acids of the Respiratory Syncytial Virus Protein P Are Necessary and Sufficient for Binding to Ribonucleoprotein Complexes in Which Six Ribonucleotides Are Contacted per N Protein Protomer. J. Gen. Virol. 2007, 88, 196–206. [Google Scholar] [CrossRef]
- Selvaraj, M.; Yegambaram, K.; Todd, E.J.A.A.; Richard, C.-A.; Dods, R.L.; Pangratiou, G.M.; Trinh, C.H.; Moul, S.L.; Murphy, J.C.; Mankouri, J.; et al. The Structure of the Human Respiratory Syncytial Virus M2-1 Protein Bound to the Interaction Domain of the Phosphoprotein P Defines the Orientation of the Complex. mBio 2018, 9, e01554-18. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Protter, D.S.W.; Rosen, M.K.; Parker, R. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins. Mol. Cell 2015, 60, 208–219. [Google Scholar] [CrossRef]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular Condensates: Organizers of Cellular Biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Hottle, G.A.; Morgan, C.; Peers, J.H.; Wyckoff, R.W.G. The Election Microscopy of Rabies Inclusion (Negri) Bodies. Exp. Biol. Med. 1951, 77, 721–723. [Google Scholar] [CrossRef]
- Matsumoto, S. Electron Microscopy of Nerve Cells Infected with Street Rabies Virus. Virology 1962, 17, 198–202. [Google Scholar] [CrossRef]
- Lahaye, X.; Vidy, A.; Pomier, C.; Obiang, L.; Harper, F.; Gaudin, Y.; Blondel, D. Functional Characterization of Negri Bodies (NBs) in Rabies Virus-Infected Cells: Evidence That NBs Are Sites of Viral Transcription and Replication. J. Virol. 2009, 83, 7948–7958. [Google Scholar] [CrossRef] [PubMed]
- Boggs, K.B.; Edmonds, K.; Cifuentes-Munoz, N.; El Najjar, F.; Ossandón, C.; Roe, M.; Wu, C.; Moncman, C.L.; Creamer, T.P.; Amarasinghe, G.K.; et al. Human Metapneumovirus Phosphoprotein Independently Drives Phase Separation and Recruits Nucleoprotein to Liquid-Like Bodies. mBio 2022, 13, e01099-22. [Google Scholar] [CrossRef] [PubMed]
- Neitzel, A.E.; Fang, Y.N.; Yu, B.; Rumyantsev, A.M.; De Pablo, J.J.; Tirrell, M.V. Polyelectrolyte Complex Coacervation across a Broad Range of Charge Densities. Macromolecules 2021, 54, 6878–6890. [Google Scholar] [CrossRef]
- Portz, B.; Shorter, J. Biochemical Timekeeping Via Reentrant Phase Transitions. J. Mol. Biol. 2021, 433, 166794. [Google Scholar] [CrossRef] [PubMed]
- Bailly, B.; Richard, C.-A.; Sharma, G.; Wang, L.; Johansen, L.; Cao, J.; Pendharkar, V.; Sharma, D.-C.; Galloux, M.; Wang, Y.; et al. Targeting Human Respiratory Syncytial Virus Transcription Anti-Termination Factor M2-1 to Inhibit in Vivo Viral Replication. Sci. Rep. 2016, 6, 25806. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K. The Biology of Paramyxoviruses; Caister Academic Press: Norfolk, UK, 2011; ISBN 978-1-904455-85-1. [Google Scholar]
- Peeples, W.; Rosen, M.K. Mechanistic Dissection of Increased Enzymatic Rate in a Phase-Separated Compartment. Nat. Chem. Biol. 2021, 17, 693–702. [Google Scholar] [CrossRef]
- Risso-Ballester, J.; Galloux, M.; Cao, J.; Le Goffic, R.; Hontonnou, F.; Jobart-Malfait, A.; Desquesnes, A.; Sake, S.M.; Haid, S.; Du, M.; et al. A Condensate-Hardening Drug Blocks RSV Replication in vivo. Nature 2021, 595, 596–599. [Google Scholar] [CrossRef]
Stoichiometry | Fold Concentration 1 | ||
---|---|---|---|
Initial | Dense Phase | ||
P:M2-1 | 04:01 | 16:01 | 19.5:4.8 |
P:M2-1 | 01:01 | 01:00.5 | 21.2:9.6 |
P:M2-1 | 01:04 | 01:02 | 28:14:00 |
P:NR | 2.5:1 | 01:01 | 19.7:40.7 |
P:NR:M2-1 | 2.5:1:2.5 | 01:00.5 | 24.2:46.7:12.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visentin, A.; Demitroff, N.; Salgueiro, M.; Borkosky, S.S.; Uversky, V.N.; Camporeale, G.; de Prat-Gay, G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M2-1. Viruses 2023, 15, 1329. https://doi.org/10.3390/v15061329
Visentin A, Demitroff N, Salgueiro M, Borkosky SS, Uversky VN, Camporeale G, de Prat-Gay G. Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M2-1. Viruses. 2023; 15(6):1329. https://doi.org/10.3390/v15061329
Chicago/Turabian StyleVisentin, Araceli, Nicolás Demitroff, Mariano Salgueiro, Silvia Susana Borkosky, Vladimir N. Uversky, Gabriela Camporeale, and Gonzalo de Prat-Gay. 2023. "Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M2-1" Viruses 15, no. 6: 1329. https://doi.org/10.3390/v15061329
APA StyleVisentin, A., Demitroff, N., Salgueiro, M., Borkosky, S. S., Uversky, V. N., Camporeale, G., & de Prat-Gay, G. (2023). Assembly of the Tripartite and RNA Condensates of the Respiratory Syncytial Virus Factory Proteins In Vitro: Role of the Transcription Antiterminator M2-1. Viruses, 15(6), 1329. https://doi.org/10.3390/v15061329