Nothing Special   »   [go: up one dir, main page]

create a website
Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. (2018). Lago, Jesus ; de Schutter, Bart ; Vrancx, Peter ; de Ridder, Fjo.
In: Applied Energy.
RePEc:eee:appene:v:211:y:2018:i:c:p:890-903.

Full description at Econpapers || Download paper

Cited: 71

Citations received by this document

Cites: 63

References cited by this document

Cocites: 23

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Forecasting electricity prices from the state-of-the-art modeling technology and the price determinant perspectives. (2024). Abedin, Mohammad Zoynul ; Li, Qiang ; Chai, Shanglei ; Lucey, Brian M.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:67:y:2024:i:pa:s0275531923002581.

    Full description at Econpapers || Download paper

  2. The effect of the 2022 energy crisis on electricity markets ashore the North Sea. (2024). Neumann, Anne ; Sather, Bjarne.
    In: Energy Economics.
    RePEc:eee:eneeco:v:131:y:2024:i:c:s0140988324000884.

    Full description at Econpapers || Download paper

  3. Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices. (2024). Ikonnikova, Svetlana ; Madadkhani, Shiva.
    In: Energy Economics.
    RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007399.

    Full description at Econpapers || Download paper

  4. Online transfer learning-based residential demand response potential forecasting for load aggregator. (2024). Huang, Chunyi ; Li, Zhenghui ; Ai, Qian.
    In: Applied Energy.
    RePEc:eee:appene:v:358:y:2024:i:c:s030626192400014x.

    Full description at Econpapers || Download paper

  5. An Intra-Day Electricity Price Forecasting Based on a Probabilistic Transformer Neural Network Architecture. (2023). Celeita, David ; Lopez-Sotelo, Jesus ; Moreno-Chuquen, Ricardo ; Cantillo-Luna, Sergio.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:19:p:6767-:d:1245577.

    Full description at Econpapers || Download paper

  6. ML-Based Intermittent Fault Detection, Classification, and Branch Identification in a Distribution Network. (2023). Papaemmanouil, Antonios ; Nowak, Severin ; Hojabri, Mojgan.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:16:p:6023-:d:1219111.

    Full description at Econpapers || Download paper

  7. A comparative analysis of charging strategies for battery electric buses in wholesale electricity and ancillary services markets. (2023). van Sark, Wilfried ; Lampropoulos, Ioannis ; van Twuijver, Tim ; van Bezu, Ronald ; Zijlstra, Marle ; Brinkel, Nico.
    In: Transportation Research Part E: Logistics and Transportation Review.
    RePEc:eee:transe:v:172:y:2023:i:c:s136655452300073x.

    Full description at Econpapers || Download paper

  8. Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx. (2023). Weron, Rafał ; Dubrawski, Artur ; Marcjasz, Grzegorz ; Challu, Cristian ; Olivares, Kin G.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:39:y:2023:i:2:p:884-900.

    Full description at Econpapers || Download paper

  9. Daily electricity price forecasting using artificial intelligence models in the Iranian electricity market. (2023). Fazeli, Meysam ; Hooshyaripor, Farhad ; Heidarpanah, Mohammadreza.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pe:s0360544222028973.

    Full description at Econpapers || Download paper

  10. Deep learning-based application for fault location identification and type classification in active distribution grids. (2023). Birbas, A ; Andriopoulos, N ; Bachoumis, A ; Rizeakos, V.
    In: Applied Energy.
    RePEc:eee:appene:v:338:y:2023:i:c:s0306261923002969.

    Full description at Econpapers || Download paper

  11. A hybrid model for day-ahead electricity price forecasting: Combining fundamental and stochastic modelling. (2023). Musgens, Felix ; Grothe, Oliver ; Mobius, Thomas ; Watermeyer, Mira.
    In: Papers.
    RePEc:arx:papers:2304.09336.

    Full description at Econpapers || Download paper

  12. Wind Power Generation Scheduling Accuracy in Europe: An Overview of ENTSO-E Countries. (2022). Baranyai, Nora Hegedsne ; Vincze, Andras ; Pinter, Gabor ; Zsiboracs, Henrik.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:24:p:16446-:d:997686.

    Full description at Econpapers || Download paper

  13. Short-Term Electricity Price Forecasting Based on the Two-Layer VMD Decomposition Technique and SSA-LSTM. (2022). Guo, Fang ; Deng, Shangyun ; Zheng, Weijia ; Wen, AN ; Du, Jinfeng ; Huang, Guangshan ; Wang, Ruiyang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:22:p:8445-:d:969965.

    Full description at Econpapers || Download paper

  14. Wholesale Electricity Price Forecasting Using Integrated Long-Term Recurrent Convolutional Network Model. (2022). Li, Xingpeng ; Tuo, Mingjian ; Sridharan, Vasudharini.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:20:p:7606-:d:942778.

    Full description at Econpapers || Download paper

  15. Probabilistic Forecasting of German Electricity Imbalance Prices. (2022). Narajewski, Micha.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:14:p:4976-:d:857870.

    Full description at Econpapers || Download paper

  16. An integrated model for electricity market coupling simulations: Evidence from the European power market crossroad. (2022). Verbič, Miroslav ; Zori, Jelena ; Haluan, Marko.
    In: Utilities Policy.
    RePEc:eee:juipol:v:79:y:2022:i:c:s0957178722001205.

    Full description at Econpapers || Download paper

  17. Influencer-defaulter mutation-based optimization algorithms for predicting electricity prices. (2022). Kottath, Rahul ; Singh, Priyanka.
    In: Utilities Policy.
    RePEc:eee:juipol:v:79:y:2022:i:c:s0957178722001084.

    Full description at Econpapers || Download paper

  18. A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid. (2022). Verma, Ashu ; Pareek, Parikshit ; Kandpal, Bakul.
    In: Energy.
    RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006405.

    Full description at Econpapers || Download paper

  19. Data-driven modeling for long-term electricity price forecasting. (2022). Sansavini, Giovanni ; Blume, Steffen ; Wuthrich, Moritz ; Gabrielli, Paolo.
    In: Energy.
    RePEc:eee:energy:v:244:y:2022:i:pb:s036054422200010x.

    Full description at Econpapers || Download paper

  20. GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting. (2022). Schell, Kristen R ; Yang, Haolin.
    In: Energy.
    RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221023008.

    Full description at Econpapers || Download paper

  21. Potential utilization of battery energy storage systems (BESS) in the major European electricity markets. (2022). Sanchez, Maria Jesus ; Armada, Miguel ; Hu, YU.
    In: Applied Energy.
    RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008340.

    Full description at Econpapers || Download paper

  22. Framework for collaborative intelligence in forecasting day-ahead electricity price. (2022). Yeregui, Imanol ; Naveran, Gorka ; Irizar, Ion ; Castro, Alain ; Beltran, Sergio.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013398.

    Full description at Econpapers || Download paper

  23. Probabilistic forecasting of German electricity imbalance prices. (2022). Narajewski, Michal.
    In: Papers.
    RePEc:arx:papers:2205.11439.

    Full description at Econpapers || Download paper

  24. .

    Full description at Econpapers || Download paper

  25. Application of Bagging in Day-Ahead Electricity Price Forecasting and Factor Augmentation. (2021). Yildirim, Dilem ; Ozen, Kadir.
    In: ERC Working Papers.
    RePEc:met:wpaper:2101.

    Full description at Econpapers || Download paper

  26. Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid. (2021). Farooq, Umer ; Ayub, Nasir ; Aslam, Shahzad ; Bukhsh, Rasool ; Azar, Ahmad Taher ; Haider, Syed Irtaza ; Rukh, Gul ; Albogamy, Fahad R ; Alvi, Muhammad Junaid.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:22:p:12653-:d:680508.

    Full description at Econpapers || Download paper

  27. Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling. (2021). Becker, Denis Mike ; Li, Wei.
    In: Energy.
    RePEc:eee:energy:v:237:y:2021:i:c:s0360544221017916.

    Full description at Econpapers || Download paper

  28. Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design. (2021). de Vries, Laurens ; Stromer, Stefan ; Lago, Jesus ; Poplavskaya, Ksenia.
    In: Energy Policy.
    RePEc:eee:enepol:v:158:y:2021:i:c:s030142152100392x.

    Full description at Econpapers || Download paper

  29. Demystifying market clearing and price setting effects in low-carbon energy systems. (2021). Korps, Magnus ; Hartel, Philipp.
    In: Energy Economics.
    RePEc:eee:eneeco:v:93:y:2021:i:c:s0140988320303911.

    Full description at Econpapers || Download paper

  30. Application of bagging in day-ahead electricity price forecasting and factor augmentation. (2021). Yildirim, Dilem ; Ozen, Kadir.
    In: Energy Economics.
    RePEc:eee:eneeco:v:103:y:2021:i:c:s0140988321004448.

    Full description at Econpapers || Download paper

  31. Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting. (2021). Paterakis, Nikolaos G ; Kok, Koen ; Mincev, Krystof ; Demir, Sumeyra.
    In: Applied Energy.
    RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010527.

    Full description at Econpapers || Download paper

  32. Real-time electricity price forecasting of wind farms with deep neural network transfer learning and hybrid datasets. (2021). Schell, Kristen R ; Yang, Haolin.
    In: Applied Energy.
    RePEc:eee:appene:v:299:y:2021:i:c:s0306261921006632.

    Full description at Econpapers || Download paper

  33. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. (2021). Weron, Rafał ; de Schutter, Bart ; Marcjasz, Grzegorz ; Lago, Jesus.
    In: Applied Energy.
    RePEc:eee:appene:v:293:y:2021:i:c:s0306261921004529.

    Full description at Econpapers || Download paper

  34. Advanced price forecasting in agent-based electricity market simulation. (2021). Fichtner, Wolf ; Keles, Dogan ; Kraft, Emil ; Fraunholz, Christoph.
    In: Applied Energy.
    RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002142.

    Full description at Econpapers || Download paper

  35. Inducing flexibility of household electricity demand: The overlooked costs of reacting to dynamic incentives. (2021). Hansen, Lars ; Andersen, Laura M ; Jensen, Carsten Lynge ; Bejan, Ioana.
    In: Applied Energy.
    RePEc:eee:appene:v:284:y:2021:i:c:s0306261920316718.

    Full description at Econpapers || Download paper

  36. A comparison of modern deep neural network architectures for energy spot price forecasting. (2020). Cordoni, F.
    In: Digital Finance.
    RePEc:spr:digfin:v:2:y:2020:i:3:d:10.1007_s42521-020-00022-2.

    Full description at Econpapers || Download paper

  37. Does Ensemble Learning Always Lead to Better Forecasts?. (2020). Hamori, Shigeyuki.
    In: Applied Economics and Finance.
    RePEc:rfa:aefjnl:v:7:y:2020:i:2:p:51-56.

    Full description at Econpapers || Download paper

  38. Power Exchange Prices: Comparison of Volatility in European Markets. (2020). Arsi, Jovana ; Dobromirov, Duan ; Boi, Zorana ; Lusarczyk, Beata ; Radii, Mladen.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5620-:d:435563.

    Full description at Econpapers || Download paper

  39. Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme. (2020). Marcjasz, Grzegorz.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4605-:d:409115.

    Full description at Econpapers || Download paper

  40. Optimizing power-to-H2 participation in the Nord Pool electricity market: Effects of different bidding strategies on plant operation. (2020). McDonagh, Shane ; Janke, Leandro ; Nordberg, KE ; Hansson, Per-Anders ; Nilsson, Daniel ; Murphy, Jerry ; Weinrich, Soren.
    In: Renewable Energy.
    RePEc:eee:renene:v:156:y:2020:i:c:p:820-836.

    Full description at Econpapers || Download paper

  41. A critical review of Koreas long-term contract for renewable energy auctions: The relationship between the import price of liquefied natural gas and system marginal price. (2020). Jung, Tae Yong ; Moon, Jongwoo.
    In: Utilities Policy.
    RePEc:eee:juipol:v:67:y:2020:i:c:s0957178720301260.

    Full description at Econpapers || Download paper

  42. Risk-based optimal bidding patterns in the deregulated power market using extended Markowitz model. (2020). Ostadi, Bakhtiar ; Kashan, Ali Husseinzadeh ; HusseinzadehKashan, Ali ; Sedeh, Omid Motamedi.
    In: Energy.
    RePEc:eee:energy:v:191:y:2020:i:c:s036054421932211x.

    Full description at Econpapers || Download paper

  43. The impacts of an integrated European adjustment market for electricity under high share of renewables. (2020). Masera, Marcelo ; Purvins, Arturs ; Bompard, Ettore ; Zalzar, Shaghayegh.
    In: Energy Policy.
    RePEc:eee:enepol:v:136:y:2020:i:c:s0301421519306421.

    Full description at Econpapers || Download paper

  44. Ensemble forecasting for intraday electricity prices: Simulating trajectories. (2020). Ziel, Florian ; Narajewski, Micha.
    In: Applied Energy.
    RePEc:eee:appene:v:279:y:2020:i:c:s0306261920312824.

    Full description at Econpapers || Download paper

  45. Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges. (2020). Verbič, Miroslav ; Zori, Jelena ; Haluan, Marko.
    In: Applied Energy.
    RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311089.

    Full description at Econpapers || Download paper

  46. A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids. (2020). Raison, Bertrand ; de Schutter, Bart ; Lago, Jesus ; Sapountzoglou, Nikolaos.
    In: Applied Energy.
    RePEc:eee:appene:v:276:y:2020:i:c:s0306261920308114.

    Full description at Econpapers || Download paper

  47. Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets. (2020). de Vries, Laurens ; Lago, Jesus ; Poplavskaya, Ksenia.
    In: Applied Energy.
    RePEc:eee:appene:v:270:y:2020:i:c:s0306261920306425.

    Full description at Econpapers || Download paper

  48. Neural networks in day-ahead electricity price forecasting: Single vs. multiple outputs. (2020). Weron, Rafał ; Marcjasz, Grzegorz ; Lago, Jesus.
    In: Papers.
    RePEc:arx:papers:2008.08006.

    Full description at Econpapers || Download paper

  49. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. (2020). Weron, Rafał ; Marcjasz, Grzegorz ; de Schutter, Bart ; Lago, Jesus.
    In: Papers.
    RePEc:arx:papers:2008.08004.

    Full description at Econpapers || Download paper

  50. Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories. (2020). Ziel, Florian ; Narajewski, Michal.
    In: Papers.
    RePEc:arx:papers:2005.01365.

    Full description at Econpapers || Download paper

  51. A correlation analysis of the spot market prices of the Romanian electricity sector. (2019). Busu, Mihail ; Liliana, Murean Manuela ; Roxana, Clodnichi ; Mihail, Busu.
    In: Management & Marketing.
    RePEc:vrs:manmar:v:14:y:2019:i:1:p:150-162:n:10.

    Full description at Econpapers || Download paper

  52. Multi-Output Conditional Inference Trees Applied to the Electricity Market: Variable Importance Analysis. (2019). Gonzalez, Maria Camino ; Mira, Jose Manuel ; Dfuf, Ismael Ahrazem.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:6:p:1097-:d:215955.

    Full description at Econpapers || Download paper

  53. Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids. (2019). Javaid, Nadeem ; Javed, Muhammad Umar ; Naz, Aqdas ; Aurangzeb, Khursheed ; Alhussein, Musaed ; Saba, Tanzila.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:5:p:866-:d:211150.

    Full description at Econpapers || Download paper

  54. Modeling Intraday Markets under the New Advances of the Cross-Border Intraday Project (XBID): Evidence from the German Intraday Market. (2019). Kath, Christopher.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:22:p:4339-:d:286894.

    Full description at Econpapers || Download paper

  55. BRIM: An Accurate Electricity Spot Price Prediction Scheme-Based Bidirectional Recurrent Neural Network and Integrated Market. (2019). Ma, Jianhua ; Wang, Yufeng ; Chen, Yiyuan ; Jin, Qun .
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:12:p:2241-:d:239123.

    Full description at Econpapers || Download paper

  56. Renewable generation forecast studies – Review and good practice guidance. (2019). Stadtmann, Georg ; Croonenbroeck, Carsten.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:108:y:2019:i:c:p:312-322.

    Full description at Econpapers || Download paper

  57. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. (2019). Chen, Wenbo ; Zhang, Yang ; Chang, Zihan.
    In: Energy.
    RePEc:eee:energy:v:187:y:2019:i:c:s0360544219314768.

    Full description at Econpapers || Download paper

  58. Integration in the European electricity market: A machine learning-based convergence analysis for the Central Western Europe region. (2019). Corona, Luis ; Mochon, Asuncion ; Saez, Yago ; Isasi, Pedro.
    In: Energy Policy.
    RePEc:eee:enepol:v:132:y:2019:i:c:p:549-566.

    Full description at Econpapers || Download paper

  59. Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices. (2019). Portolani, Pietro ; Matteucci, Matteo ; Brusaferri, Alessandro ; Vitali, Andrea.
    In: Applied Energy.
    RePEc:eee:appene:v:250:y:2019:i:c:p:1158-1175.

    Full description at Econpapers || Download paper

  60. A 1-dimensional continuous and smooth model for thermally stratified storage tanks including mixing and buoyancy. (2019). de Ridder, Fjo ; Lago, Jesus ; de Schutter, Bart ; Mazairac, Wiet.
    In: Applied Energy.
    RePEc:eee:appene:v:248:y:2019:i:c:p:640-655.

    Full description at Econpapers || Download paper

  61. Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol. (2019). Eissa, M M.
    In: Applied Energy.
    RePEc:eee:appene:v:236:y:2019:i:c:p:273-292.

    Full description at Econpapers || Download paper

  62. Electricity Price Forecasting Using Recurrent Neural Networks. (2018). Tas, Oktay ; Oksuz, Ilkay ; Ugurlu, Umut.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:5:p:1255-:d:146305.

    Full description at Econpapers || Download paper

  63. Thermal load forecasting in district heating networks using deep learning and advanced feature selection methods. (2018). Suryanarayana, Gowri ; Johansson, Christian ; Aleksiejuk, Piotr ; Geysen, Davy ; Lago, Jesus.
    In: Energy.
    RePEc:eee:energy:v:157:y:2018:i:c:p:141-149.

    Full description at Econpapers || Download paper

  64. Incorporating unit commitment aspects to the European electricity markets algorithm: An optimization model for the joint clearing of energy and reserve markets. (2018). Koltsaklis, Nikolaos E ; Dagoumas, Athanasios S.
    In: Applied Energy.
    RePEc:eee:appene:v:231:y:2018:i:c:p:235-258.

    Full description at Econpapers || Download paper

  65. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms. (2018). Lago, Jesus ; de Schutter, Bart ; de Ridder, Fjo.
    In: Applied Energy.
    RePEc:eee:appene:v:221:y:2018:i:c:p:386-405.

    Full description at Econpapers || Download paper

  66. Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem. (2018). Singh, Priyanka ; Dwivedi, Pragya.
    In: Applied Energy.
    RePEc:eee:appene:v:217:y:2018:i:c:p:537-549.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abedinia, O. ; Amjady, N. ; Zareipour, H. A new feature selection technique for load and price forecast of electrical power systems. 2017 IEEE Trans Power Syst. 32 62-74
    Paper not yet in RePEc: Add citation now
  2. Amjady, N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network. 2006 IEEE Trans Power Syst. 21 887-896
    Paper not yet in RePEc: Add citation now
  3. Amjady, N. ; Daraeepour, A. ; Keynia, F. Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network. 2010 IET Gener Transm Distrib. 4 432-444
    Paper not yet in RePEc: Add citation now
  4. Amjady, N. ; Hemmati, M. Energy price forecasting – problems and proposals for such predictions. 2006 IEEE Power Energy Mag. 4 20-29
    Paper not yet in RePEc: Add citation now
  5. Amjady, N. ; Keynia, F. Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm. 2009 IEEE Trans Power Syst. 24 306-318
    Paper not yet in RePEc: Add citation now
  6. Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems; 2011. p. 2546–54. <http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization>.

  7. Bergstra J, Yamins D, Cox DD. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th international conference on machine learning; 2013. p. 115–23. <http://proceedings.mlr.press/v28/bergstra13.pdf>.
    Paper not yet in RePEc: Add citation now
  8. Bunn, D.W. ; Gianfreda, A. Integration and shock transmissions across European electricity forward markets. 2010 Energy Econ. 32 278-291

  9. Carta, J.A. ; Cabrera, P. ; Matías, J.M. ; Castellano, F. Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study. 2015 Appl Energy. 158 490-507

  10. Catalão, J.P.S. ; Mariano, S.J.P.S. ; Mendes, V.M.F. ; Ferreira, L.A.F.M. Short-term electricity prices forecasting in a competitive market: a neural network approach. 2007 Electr Power Syst Res. 77 1297-1304
    Paper not yet in RePEc: Add citation now
  11. Conejo, A. ; Plazas, M. ; Espinola, R. ; Molina, A. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. 2005 IEEE Trans Power Syst. 20 1035-1042
    Paper not yet in RePEc: Add citation now
  12. Crespo Cuaresma, J. ; Hlouskova, J. ; Kossmeier, S. ; Obersteiner, M. Forecasting electricity spot-prices using linear univariate time-series models. 2004 Appl Energy. 77 87-106

  13. Cruz, A. ; Muñoz, A. ; Zamora, J. ; Espínola, R. The effect of wind generation and weekday on Spanish electricity spot price forecasting. 2011 Electr Power Syst Res. 81 1924-1935
    Paper not yet in RePEc: Add citation now
  14. de Menezes, L.M. ; Houllier, M.A. Reassessing the integration of European electricity markets: a fractional cointegration analysis. 2016 Energy Econ. 53 132-150

  15. Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 1995 J Bus Econ Stat. 13 253-263

  16. Diongue, A.K. ; Guégan, D. ; Vignal, B. Forecasting electricity spot market prices with a k-factor GIGARCH process. 2009 Appl Energy. 86 505-510

  17. Elia, Grid data. <http://www.elia.be/en/grid-data/dashboard> [accessed on 15.05.2017].
    Paper not yet in RePEc: Add citation now
  18. ENTSO-E transparency platform. <https://transparency.entsoe.eu/> [accessed on 15.05.2017].
    Paper not yet in RePEc: Add citation now
  19. Fan, S. ; Mao, C. ; Chen, L. Next-day electricity-price forecasting using a hybrid network. 2007 IET Gener Transm Distrib. 1 176-182
    Paper not yet in RePEc: Add citation now
  20. Ghasemi, A. ; Shayeghi, H. ; Moradzadeh, M. ; Nooshyar, M. A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management. 2016 Appl Energy. 177 40-59

  21. Glorot, X. ; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. 2010 En : Proceedings of the international conference on artificial intelligence and statistics (AISTATS’10). Society for Artificial Intelligence and Statistics:
    Paper not yet in RePEc: Add citation now
  22. Goodfellow, I. ; Bengio, Y. ; Courville, A. Deep learning. 2016 MIT Press:
    Paper not yet in RePEc: Add citation now
  23. Guyon, I. ; Elisseeff, A. An introduction to variable and feature selection. 2003 J Mach Learn Res. 3 1157-1182
    Paper not yet in RePEc: Add citation now
  24. Hong, T. Crystal ball lessons in predictive analytics. 2015 EnergyBiz. 12 35-37
    Paper not yet in RePEc: Add citation now
  25. Hong, Y. ; Wu, C. Day-ahead electricity price forecasting using a hybrid principal component analysis network. 2012 Energies. 5 4711-4725

  26. Hutter F, Hoos H, Leyton-Brown K. An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st international conference on machine learning. ICML’14, vol. 32; 2014. p. 754–62. <http://proceedings.mlr.press/v32/hutter14.pdf>.
    Paper not yet in RePEc: Add citation now
  27. Hutter, F. ; Hoos, H.H. ; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. 2011 En : International conference on learning and intelligent optimization. Springer:
    Paper not yet in RePEc: Add citation now
  28. Jaderberg M, Mnih V, Czarnecki WM, Schaul T, Leibo JZ, Silver D, et al. Reinforcement learning with unsupervised auxiliary tasks; 2016. Available from: 1611.05397.
    Paper not yet in RePEc: Add citation now
  29. Jamasb, T. ; Pollitt, M. Electricity market reform in the European union: review of progress toward liberalization & integration. 2005 Energy J. 26 11-41

  30. Jones, D.R. ; Schonlau, M. ; Welch, W.J. Efficient global optimization of expensive black-box functions. 1998 J Global Optim. 13 455-492
    Paper not yet in RePEc: Add citation now
  31. Keles, D. ; Scelle, J. ; Paraschiv, F. ; Fichtner, W. Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. 2016 Appl Energy. 162 218-230

  32. Kingma DP, Ba J. Adam: a method for stochastic optimization; 2014. Available from: 1412.6980.
    Paper not yet in RePEc: Add citation now
  33. LeCun, Y. ; Bottou, L. ; Orr, G.B. ; Müller, K.-R. Efficient BackProp. 1998 En : Orr, G.B. ; Müller, K.-R. Neural networks: tricks of the trade. Springer: Berlin, Heidelberg
    Paper not yet in RePEc: Add citation now
  34. Li, X. ; Zhao, L. ; Wei, L. ; Yang, M.-H. ; Wu, F. ; Zhuang, Y. DeepSaliency: multi-task deep neural network model for salient object detection. 2016 IEEE Trans Image Process. 25 3919-3930
    Paper not yet in RePEc: Add citation now
  35. Lin, W.-M. ; Gow, H.-J. ; Tsai, M.-T. An enhanced radial basis function network for short-term electricity price forecasting. 2010 Appl Energy. 87 3226-3234

  36. Lindström, E. ; Regland, F. Modeling extreme dependence between European electricity markets. 2012 Energy Econ. 34 899-904

  37. Makridakis, S. Accuracy measures: theoretical and practical concerns. 1993 Int J Forecast. 9 527-529

  38. Meeus L, Belmans R. Electricity market integration in Europe. In: Proceedings of the 16th power systems computation conference; 2008.
    Paper not yet in RePEc: Add citation now
  39. Misiorek, A. ; Trueck, S. ; Weron, R. Point and interval forecasting of spot electricity prices: linear vs. non-linear time series models. 2006 Stud Nonlinear Dyn Econometr. 10 1-36

  40. Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML); 2010. p. 807–14. <http://icml2010.haifa.il.ibm.com/papers/432.pdf>.
    Paper not yet in RePEc: Add citation now
  41. Nogales, F.J. ; Contreras, J. ; Conejo, A.J. ; Espínola, R. Forecasting next-day electricity prices by time series models. 2002 IEEE Trans Power Syst. 17 342-348
    Paper not yet in RePEc: Add citation now
  42. Nolan, S. ; O’Malley, M. Challenges and barriers to demand response deployment and evaluation. 2015 Appl Energy. 152 1-10

  43. Panapakidis, I.P. ; Dagoumas, A.S. Day-ahead electricity price forecasting via the application of artificial neural network based models. 2016 Appl Energy. 172 132-151

  44. Rodriguez, C.P. ; Anders, G.J. Energy price forecasting in the Ontario competitive power system market. 2004 IEEE Trans Power Syst. 19 366-374
    Paper not yet in RePEc: Add citation now
  45. RTE, Grid data. <https://data.rte-france.com/> [accessed on 15.05.2017].
    Paper not yet in RePEc: Add citation now
  46. Ruder S. An overview of gradient descent optimization algorithms; 2016. Available from: 1609.04747.
    Paper not yet in RePEc: Add citation now
  47. Shafie-Khah, M. ; Moghaddam, M.P. ; Sheikh-El-Eslami, M. Price forecasting of day-ahead electricity markets using a hybrid forecast method. 2011 Energy Convers Manage. 52 2165-2169
    Paper not yet in RePEc: Add citation now
  48. Stevenson M. Filtering and forecasting spot electricity prices in the increasingly deregulated australian electricity market. In: QFRC research paper series, no. 63. Quantitative Finance Research Centre, University of Technology, Sydney; 2001. <http://www.qfrc.uts.edu.au/research/research_papers/rp63.pdf>.

  49. Szkuta, B. ; Sanabria, L. ; Dillon, T. Electricity price short-term forecasting using artificial neural networks. 1999 IEEE Trans Power Syst. 14 851-857
    Paper not yet in RePEc: Add citation now
  50. Tan, Z. ; Zhang, J. ; Wang, J. ; Xu, J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. 2010 Appl Energy. 87 3606-3610

  51. Uniejewski, B. ; Nowotarski, J. ; Weron, R. Automated variable selection and shrinkage for day-ahead electricity price forecasting. 2016 Energies. 9 621-

  52. Wang, D. ; Luo, H. ; Grunder, O. ; Lin, Y. ; Guo, H. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. 2017 Appl Energy. 190 390-407

  53. Wang, J. ; Zhong, H. ; Ma, Z. ; Xia, Q. ; Kang, C. Review and prospect of integrated demand response in the multi-energy system. 2017 Appl Energy. 202 772-782

  54. Wang, Q. ; Zhang, C. ; Ding, Y. ; Xydis, G. ; Wang, J. ; Østergaard, J. Review of real-time electricity markets for integrating distributed energy resources and demand response. 2015 Appl Energy. 138 695-706

  55. Weron, R. Electricity price forecasting: a review of the state-of-the-art with a look into the future. 2014 Int J Forecast. 30 1030-1081

  56. Weron, R. ; Misiorek, A. Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models. 2008 Int J Forecast. 24 744-763

  57. Xiao, L. ; Shao, W. ; Yu, M. ; Ma, J. ; Jin, C. Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting. 2017 Appl Energy. 198 203-222

  58. Yang, Z. ; Ce, L. ; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. 2017 Appl Energy. 190 291-305

  59. Yao, Y. ; Rosasco, L. ; Caponnetto, A. On early stopping in gradient descent learning. 2007 Constr Approx. 26 289-315
    Paper not yet in RePEc: Add citation now
  60. Yosinski, J. ; Clune, J. ; Bengio, Y. ; Lipson, H. How transferable are features in deep neural networks?. 2014 En : Ghahramani, Z. ; Welling, M. ; Cortes, C. ; Lawrence, N.D. ; Weinberger, K.Q. Advances in neural information processing systems 27. Curran Associates, Inc.:
    Paper not yet in RePEc: Add citation now
  61. Zachmann, G. Electricity wholesale market prices in Europe: convergence?. 2008 Energy Econ. 30 1659-1671

  62. Zareipour, H. ; Canizares, C.A. ; Bhattacharya, K. Economic impact of electricity market price forecasting errors: a demand-side analysis. 2010 IEEE Trans Power Syst. 25 254-262
    Paper not yet in RePEc: Add citation now
  63. Ziel, F. ; Steinert, R. ; Husmann, S. Forecasting day ahead electricity spot prices: the impact of the EXAA to other European electricity markets. 2015 Energy Econ. 51 430-444

Cocites

Documents in RePEc which have cited the same bibliography

  1. Bermudan option in Singapore Savings Bonds. (2021). Lim, Kian Guan.
    In: Review of Derivatives Research.
    RePEc:kap:revdev:v:24:y:2021:i:1:d:10.1007_s11147-020-09168-y.

    Full description at Econpapers || Download paper

  2. The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling. (2019). Xiao, Tim.
    In: EconStor Preprints.
    RePEc:zbw:esprep:201542.

    Full description at Econpapers || Download paper

  3. An Economic Examination of Collateralization in Different Financial Markets. (2019). Xiao, Tim.
    In: EconStor Preprints.
    RePEc:zbw:esprep:200503.

    Full description at Econpapers || Download paper

  4. The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling. (2019). Xiao, Tim.
    In: Working Papers.
    RePEc:hal:wpaper:hal-02024145.

    Full description at Econpapers || Download paper

  5. An Economic Examination of Collateralization in Different Financial Markets. (2019). Xiao, Tim.
    In: Working Papers.
    RePEc:hal:wpaper:hal-02024144.

    Full description at Econpapers || Download paper

  6. An Economic Examination of Collateralization in Different Financial Markets. (2018). Xiao, Tim.
    In: FrenXiv.
    RePEc:osf:frenxi:j32fu.

    Full description at Econpapers || Download paper

  7. An Economic Examination of Collateralization in Different Financial Markets. (2018). Xiao, Tim.
    In: arabixiv.org.
    RePEc:osf:arabix:b7uvg.

    Full description at Econpapers || Download paper

  8. Forecasting day-ahead electricity prices in Europe: The importance of considering market integration. (2018). Lago, Jesus ; de Schutter, Bart ; Vrancx, Peter ; de Ridder, Fjo.
    In: Applied Energy.
    RePEc:eee:appene:v:211:y:2018:i:c:p:890-903.

    Full description at Econpapers || Download paper

  9. A New Model for Pricing Collateralized Financial Derivatives. (2018). Xiao, Tim.
    In: Papers.
    RePEc:arx:papers:1805.11981.

    Full description at Econpapers || Download paper

  10. A New Model for Pricing Collateralized Financial Derivatives. (2017). Xiao, Tim.
    In: MPRA Paper.
    RePEc:pra:mprapa:87088.

    Full description at Econpapers || Download paper

  11. The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling. (2017). Xiao, Tim.
    In: FrenXiv.
    RePEc:osf:frenxi:mt637.

    Full description at Econpapers || Download paper

  12. A New Model for Pricing Collateralized OTC Derivatives. (2017). Xiao, Tim.
    In: FrenXiv.
    RePEc:osf:frenxi:am8zy.

    Full description at Econpapers || Download paper

  13. A New Model for Pricing Collateralized OTC Derivatives. (2017). Xiao, Tim.
    In: arabixiv.org.
    RePEc:osf:arabix:b9vg8.

    Full description at Econpapers || Download paper

  14. The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling. (2017). Xiao, Tim.
    In: arabixiv.org.
    RePEc:osf:arabix:96dy5.

    Full description at Econpapers || Download paper

  15. A New Model for Pricing Collateralized Financial Derivatives. (2017). Xiao, Tim.
    In: Post-Print.
    RePEc:hal:journl:hal-01800559.

    Full description at Econpapers || Download paper

  16. .

    Full description at Econpapers || Download paper

  17. .

    Full description at Econpapers || Download paper

  18. .

    Full description at Econpapers || Download paper

  19. .

    Full description at Econpapers || Download paper

  20. An efficient grid lattice algorithm for pricing American-style options. (2016). Liu, Zhongkai ; Pang, Tao.
    In: International Journal of Financial Markets and Derivatives.
    RePEc:ids:ijfmkd:v:5:y:2016:i:1:p:36-55.

    Full description at Econpapers || Download paper

  21. The Impact of Default Dependency and Collateralization on Asset Pricing and Credit Risk Modeling. (2013). Xiao, Tim.
    In: MPRA Paper.
    RePEc:pra:mprapa:47136.

    Full description at Econpapers || Download paper

  22. An Economic Examination of Collateralization in Different Financial Markets. (2012). Xiao, Tim.
    In: MPRA Paper.
    RePEc:pra:mprapa:47371.

    Full description at Econpapers || Download paper

  23. An Economic Examination of Collateralization in Different Financial Markets. (2012). Xiao, Tim.
    In: MPRA Paper.
    RePEc:pra:mprapa:47105.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-25 13:32:05 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.