- Abedinia, O. ; Amjady, N. ; Zareipour, H. A new feature selection technique for load and price forecast of electrical power systems. 2017 IEEE Trans Power Syst. 32 62-74
Paper not yet in RePEc: Add citation now
- Amjady, N. Day-ahead price forecasting of electricity markets by a new fuzzy neural network. 2006 IEEE Trans Power Syst. 21 887-896
Paper not yet in RePEc: Add citation now
- Amjady, N. ; Daraeepour, A. ; Keynia, F. Day-ahead electricity price forecasting by modified relief algorithm and hybrid neural network. 2010 IET Gener Transm Distrib. 4 432-444
Paper not yet in RePEc: Add citation now
- Amjady, N. ; Hemmati, M. Energy price forecasting – problems and proposals for such predictions. 2006 IEEE Power Energy Mag. 4 20-29
Paper not yet in RePEc: Add citation now
- Amjady, N. ; Keynia, F. Day-ahead price forecasting of electricity markets by mutual information technique and cascaded neuro-evolutionary algorithm. 2009 IEEE Trans Power Syst. 24 306-318
Paper not yet in RePEc: Add citation now
Bergstra J, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter optimization. In: Advances in neural information processing systems; 2011. p. 2546–54. <http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization>.
- Bergstra J, Yamins D, Cox DD. Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: Proceedings of the 30th international conference on machine learning; 2013. p. 115–23. <http://proceedings.mlr.press/v28/bergstra13.pdf>.
Paper not yet in RePEc: Add citation now
Bunn, D.W. ; Gianfreda, A. Integration and shock transmissions across European electricity forward markets. 2010 Energy Econ. 32 278-291
Carta, J.A. ; Cabrera, P. ; MatÃas, J.M. ; Castellano, F. Comparison of feature selection methods using ANNs in MCP-wind speed methods. A case study. 2015 Appl Energy. 158 490-507
- Catalão, J.P.S. ; Mariano, S.J.P.S. ; Mendes, V.M.F. ; Ferreira, L.A.F.M. Short-term electricity prices forecasting in a competitive market: a neural network approach. 2007 Electr Power Syst Res. 77 1297-1304
Paper not yet in RePEc: Add citation now
- Conejo, A. ; Plazas, M. ; Espinola, R. ; Molina, A. Day-ahead electricity price forecasting using the wavelet transform and ARIMA models. 2005 IEEE Trans Power Syst. 20 1035-1042
Paper not yet in RePEc: Add citation now
Crespo Cuaresma, J. ; Hlouskova, J. ; Kossmeier, S. ; Obersteiner, M. Forecasting electricity spot-prices using linear univariate time-series models. 2004 Appl Energy. 77 87-106
- Cruz, A. ; Muñoz, A. ; Zamora, J. ; EspÃnola, R. The effect of wind generation and weekday on Spanish electricity spot price forecasting. 2011 Electr Power Syst Res. 81 1924-1935
Paper not yet in RePEc: Add citation now
de Menezes, L.M. ; Houllier, M.A. Reassessing the integration of European electricity markets: a fractional cointegration analysis. 2016 Energy Econ. 53 132-150
Diebold, F.X. ; Mariano, R.S. Comparing predictive accuracy. 1995 J Bus Econ Stat. 13 253-263
Diongue, A.K. ; Guégan, D. ; Vignal, B. Forecasting electricity spot market prices with a k-factor GIGARCH process. 2009 Appl Energy. 86 505-510
- Elia, Grid data. <http://www.elia.be/en/grid-data/dashboard> [accessed on 15.05.2017].
Paper not yet in RePEc: Add citation now
- ENTSO-E transparency platform. <https://transparency.entsoe.eu/> [accessed on 15.05.2017].
Paper not yet in RePEc: Add citation now
- Fan, S. ; Mao, C. ; Chen, L. Next-day electricity-price forecasting using a hybrid network. 2007 IET Gener Transm Distrib. 1 176-182
Paper not yet in RePEc: Add citation now
Ghasemi, A. ; Shayeghi, H. ; Moradzadeh, M. ; Nooshyar, M. A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management. 2016 Appl Energy. 177 40-59
- Glorot, X. ; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. 2010 En : Proceedings of the international conference on artificial intelligence and statistics (AISTATS’10). Society for Artificial Intelligence and Statistics:
Paper not yet in RePEc: Add citation now
- Goodfellow, I. ; Bengio, Y. ; Courville, A. Deep learning. 2016 MIT Press:
Paper not yet in RePEc: Add citation now
- Guyon, I. ; Elisseeff, A. An introduction to variable and feature selection. 2003 J Mach Learn Res. 3 1157-1182
Paper not yet in RePEc: Add citation now
- Hong, T. Crystal ball lessons in predictive analytics. 2015 EnergyBiz. 12 35-37
Paper not yet in RePEc: Add citation now
Hong, Y. ; Wu, C. Day-ahead electricity price forecasting using a hybrid principal component analysis network. 2012 Energies. 5 4711-4725
- Hutter F, Hoos H, Leyton-Brown K. An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st international conference on machine learning. ICML’14, vol. 32; 2014. p. 754–62. <http://proceedings.mlr.press/v32/hutter14.pdf>.
Paper not yet in RePEc: Add citation now
- Hutter, F. ; Hoos, H.H. ; Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. 2011 En : International conference on learning and intelligent optimization. Springer:
Paper not yet in RePEc: Add citation now
- Jaderberg M, Mnih V, Czarnecki WM, Schaul T, Leibo JZ, Silver D, et al. Reinforcement learning with unsupervised auxiliary tasks; 2016. Available from: 1611.05397.
Paper not yet in RePEc: Add citation now
Jamasb, T. ; Pollitt, M. Electricity market reform in the European union: review of progress toward liberalization & integration. 2005 Energy J. 26 11-41
- Jones, D.R. ; Schonlau, M. ; Welch, W.J. Efficient global optimization of expensive black-box functions. 1998 J Global Optim. 13 455-492
Paper not yet in RePEc: Add citation now
Keles, D. ; Scelle, J. ; Paraschiv, F. ; Fichtner, W. Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. 2016 Appl Energy. 162 218-230
- Kingma DP, Ba J. Adam: a method for stochastic optimization; 2014. Available from: 1412.6980.
Paper not yet in RePEc: Add citation now
- LeCun, Y. ; Bottou, L. ; Orr, G.B. ; Müller, K.-R. Efficient BackProp. 1998 En : Orr, G.B. ; Müller, K.-R. Neural networks: tricks of the trade. Springer: Berlin, Heidelberg
Paper not yet in RePEc: Add citation now
- Li, X. ; Zhao, L. ; Wei, L. ; Yang, M.-H. ; Wu, F. ; Zhuang, Y. DeepSaliency: multi-task deep neural network model for salient object detection. 2016 IEEE Trans Image Process. 25 3919-3930
Paper not yet in RePEc: Add citation now
Lin, W.-M. ; Gow, H.-J. ; Tsai, M.-T. An enhanced radial basis function network for short-term electricity price forecasting. 2010 Appl Energy. 87 3226-3234
Lindström, E. ; Regland, F. Modeling extreme dependence between European electricity markets. 2012 Energy Econ. 34 899-904
Makridakis, S. Accuracy measures: theoretical and practical concerns. 1993 Int J Forecast. 9 527-529
- Meeus L, Belmans R. Electricity market integration in Europe. In: Proceedings of the 16th power systems computation conference; 2008.
Paper not yet in RePEc: Add citation now
Misiorek, A. ; Trueck, S. ; Weron, R. Point and interval forecasting of spot electricity prices: linear vs. non-linear time series models. 2006 Stud Nonlinear Dyn Econometr. 10 1-36
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th international conference on machine learning (ICML); 2010. p. 807–14. <http://icml2010.haifa.il.ibm.com/papers/432.pdf>.
Paper not yet in RePEc: Add citation now
- Nogales, F.J. ; Contreras, J. ; Conejo, A.J. ; EspÃnola, R. Forecasting next-day electricity prices by time series models. 2002 IEEE Trans Power Syst. 17 342-348
Paper not yet in RePEc: Add citation now
Nolan, S. ; O’Malley, M. Challenges and barriers to demand response deployment and evaluation. 2015 Appl Energy. 152 1-10
Panapakidis, I.P. ; Dagoumas, A.S. Day-ahead electricity price forecasting via the application of artificial neural network based models. 2016 Appl Energy. 172 132-151
- Rodriguez, C.P. ; Anders, G.J. Energy price forecasting in the Ontario competitive power system market. 2004 IEEE Trans Power Syst. 19 366-374
Paper not yet in RePEc: Add citation now
- RTE, Grid data. <https://data.rte-france.com/> [accessed on 15.05.2017].
Paper not yet in RePEc: Add citation now
- Ruder S. An overview of gradient descent optimization algorithms; 2016. Available from: 1609.04747.
Paper not yet in RePEc: Add citation now
- Shafie-Khah, M. ; Moghaddam, M.P. ; Sheikh-El-Eslami, M. Price forecasting of day-ahead electricity markets using a hybrid forecast method. 2011 Energy Convers Manage. 52 2165-2169
Paper not yet in RePEc: Add citation now
Stevenson M. Filtering and forecasting spot electricity prices in the increasingly deregulated australian electricity market. In: QFRC research paper series, no. 63. Quantitative Finance Research Centre, University of Technology, Sydney; 2001. <http://www.qfrc.uts.edu.au/research/research_papers/rp63.pdf>.
- Szkuta, B. ; Sanabria, L. ; Dillon, T. Electricity price short-term forecasting using artificial neural networks. 1999 IEEE Trans Power Syst. 14 851-857
Paper not yet in RePEc: Add citation now
Tan, Z. ; Zhang, J. ; Wang, J. ; Xu, J. Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models. 2010 Appl Energy. 87 3606-3610
Uniejewski, B. ; Nowotarski, J. ; Weron, R. Automated variable selection and shrinkage for day-ahead electricity price forecasting. 2016 Energies. 9 621-
Wang, D. ; Luo, H. ; Grunder, O. ; Lin, Y. ; Guo, H. Multi-step ahead electricity price forecasting using a hybrid model based on two-layer decomposition technique and BP neural network optimized by firefly algorithm. 2017 Appl Energy. 190 390-407
Wang, J. ; Zhong, H. ; Ma, Z. ; Xia, Q. ; Kang, C. Review and prospect of integrated demand response in the multi-energy system. 2017 Appl Energy. 202 772-782
Wang, Q. ; Zhang, C. ; Ding, Y. ; Xydis, G. ; Wang, J. ; Østergaard, J. Review of real-time electricity markets for integrating distributed energy resources and demand response. 2015 Appl Energy. 138 695-706
Weron, R. Electricity price forecasting: a review of the state-of-the-art with a look into the future. 2014 Int J Forecast. 30 1030-1081
Weron, R. ; Misiorek, A. Forecasting spot electricity prices: a comparison of parametric and semiparametric time series models. 2008 Int J Forecast. 24 744-763
Xiao, L. ; Shao, W. ; Yu, M. ; Ma, J. ; Jin, C. Research and application of a hybrid wavelet neural network model with the improved cuckoo search algorithm for electrical power system forecasting. 2017 Appl Energy. 198 203-222
Yang, Z. ; Ce, L. ; Lian, L. Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. 2017 Appl Energy. 190 291-305
- Yao, Y. ; Rosasco, L. ; Caponnetto, A. On early stopping in gradient descent learning. 2007 Constr Approx. 26 289-315
Paper not yet in RePEc: Add citation now
- Yosinski, J. ; Clune, J. ; Bengio, Y. ; Lipson, H. How transferable are features in deep neural networks?. 2014 En : Ghahramani, Z. ; Welling, M. ; Cortes, C. ; Lawrence, N.D. ; Weinberger, K.Q. Advances in neural information processing systems 27. Curran Associates, Inc.:
Paper not yet in RePEc: Add citation now
Zachmann, G. Electricity wholesale market prices in Europe: convergence?. 2008 Energy Econ. 30 1659-1671
- Zareipour, H. ; Canizares, C.A. ; Bhattacharya, K. Economic impact of electricity market price forecasting errors: a demand-side analysis. 2010 IEEE Trans Power Syst. 25 254-262
Paper not yet in RePEc: Add citation now
Ziel, F. ; Steinert, R. ; Husmann, S. Forecasting day ahead electricity spot prices: the impact of the EXAA to other European electricity markets. 2015 Energy Econ. 51 430-444