A. Gianfreda and D. Bunn. A stochastic latent moment model for electricity price formation. Operations Research, 66(5):1189â1203, 2018.
A. Kramer and R. Kiesel. Exogenous factors for order arrivals on the intraday electricity market. Energy Economics, 97:105186, 2021.
A. Lucas, K. Pegios, E. Kotsakis, and D. Clarke. Price forecasting for the balancing energy market using machine-learning regression. Energies, 13(20):5420, 2020.
- B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics, pages 1â26, 1979.
Paper not yet in RePEc: Add citation now
B. Uniejewski and R. Weron. Regularized quantile regression averaging for probabilistic electricity price forecasting. Energy Economics, 95:105121, 2021.
B. Uniejewski, G. Marcjasz, and R. Weron. Understanding intraday electricity markets: Variable selection and very short-term price forecasting using LASSO. International Journal of Forecasting, 35(4):1533â1547, 2019.
B. Uniejewski, R. Weron, and F. Ziel. Variance stabilizing transformations for electricity spot price forecasting. IEEE Transactions on Power Systems, 33(2):2219â2229, 2017.
C. Kath. Modeling intraday markets under the new advances of the cross-border intraday project (XBID): Evidence from the German intraday market. Energies, 12 (22):4339, 2019.
C. Koch and L. Hirth. Short-term electricity trading for system balancing: An empirical analysis of the role of intraday trading in balancing Germanyâs electricity system. Renewable and Sustainable Energy Reviews, 113:109275, 2019.
- D. M. Stasinopoulos and R. A. Rigby. Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, 23:1â46, 2008.
Paper not yet in RePEc: Add citation now
D. W. Bunn and S. O. Kermer. Statistical arbitrage and information flow in an electricity balancing market. The Energy Journal, 42(5), 2021.
D. W. Bunn, A. Gianfreda, and S. Kermer. A trading-based evaluation of density forecasts in a real-time electricity market. Energies, 11(10):2658, 2018.
F. Diebold and R. Mariano. Comparing Predictive Accuracy. Journal of Business & Economic Statistics, 13(3):253â63, 1995.
- F. Ocker and K.-M. Ehrhart. The âGerman Paradoxâ in the balancing power markets. Renewable and Sustainable Energy Reviews, 67:892â898, 2017.
Paper not yet in RePEc: Add citation now
F. Ziel and R. Weron. Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks. Energy Economics, 70: 396â420, 2018.
F. Ziel, C. Croonenbroeck, and D. Ambach. Forecasting wind powerâmodeling periodic and non-linear effects under conditional heteroscedasticity. Applied Energy, 177:285â 297, 2016.
- F. Ziel, P. Muniain, and M. Stasinopoulos. Extra lasso-type additive terms for gamlss. 2021.
Paper not yet in RePEc: Add citation now
F. Ziel. Forecasting electricity spot prices using lasso: On capturing the autoregressive intraday structure. IEEE Transactions on Power Systems, 31(6):4977â4987, 2016.
- F. Ziel. M5 competition uncertainty: Overdispersion, distributional forecasting, GAMLSS, and beyond. International Journal of Forecasting, 2021.
Paper not yet in RePEc: Add citation now
- G. Klæboe, A. L. Eriksrud, and S.-E. Fleten. Benchmarking time series based forecasting models for electricity balancing market prices. Energy Systems, 6(1):43â61, 2015.
Paper not yet in RePEc: Add citation now
- G. Marcjasz, B. Uniejewski, and R. Weron. Beating the naıÌveâCombining LASSO with naıÌve intraday electricity price forecasts. Energies, 13(7):1667, 2020.
Paper not yet in RePEc: Add citation now
- G. Marcjasz, M. Narajewski, R. Weron, and F. Ziel. Distributional neural networks for electricity price forecasting. working paper, 2022.
Paper not yet in RePEc: Add citation now
G. Marcjasz, T. Serafin, and R. Weron. Selection of calibration windows for day-ahead electricity price forecasting. Energies, 11(9):2364, 2018.
I. Oksuz and U. Ugurlu. Neural network based model comparison for intraday electricity price forecasting. Energies, 12(23):4557, 2019.
- J. Berrisch and F. Ziel. CRPS learning. Journal of Econometrics, 2021.
Paper not yet in RePEc: Add citation now
- J. Bottieau, L. Hubert, Z. De GreÌve, F. ValleÌe, and J.-F. Toubeau. Very-short-term probabilistic forecasting for a risk-aware participation in the single price imbalance settlement. IEEE Transactions on Power Systems, 35(2):1218â1230, 2019.
Paper not yet in RePEc: Add citation now
J. Browell. Risk constrained trading strategies for stochastic generation with a singleprice balancing market. Energies, 11(6):1345, 2018.
- J. Dumas, I. Boukas, M. M. de Villena, S. Mathieu, and B. CorneÌlusse. Probabilistic Forecasting of Imbalance Prices in the Belgian Context. In 2019 16th International Conference on the European Energy Market (EEM), pages 1â7. IEEE, 2019.
Paper not yet in RePEc: Add citation now
J. Lago, F. De Ridder, P. Vrancx, and B. De Schutter. Forecasting day-ahead electricity prices in Europe: the importance of considering market integration. Applied energy, 211:890â903, 2018.
J. Lago, G. Marcjasz, B. De Schutter, and R. Weron. Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark. Applied Energy, 293:116983, 2021.
J. Nowotarski and R. Weron. Computing electricity spot price prediction intervals using quantile regression and forecast averaging. Computational Statistics, 30(3):791â 803, 2015.
- J. Nowotarski and R. Weron. Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 81:1548â1568, 2018.
Paper not yet in RePEc: Add citation now
- J. Viehmann. State of the German Short-Term Power Market. Zeitschrift fuÌr Energiewirtschaft, 41(2):87â103, Jun 2017.
Paper not yet in RePEc: Add citation now
- J.-F. Toubeau, J. Bottieau, Y. Wang, and F. Vallee. Interpretable Probabilistic Forecasting of Imbalances in Renewable-Dominated Electricity Systems. IEEE Transactions on Sustainable Energy, 2021.
Paper not yet in RePEc: Add citation now
K. Maciejowska, J. Nowotarski, and R. Weron. Probabilistic forecasting of electricity spot prices using Factor Quantile Regression Averaging. International Journal of Forecasting, 32(3):957â965, 2016.
K. Maciejowska. Assessing the impact of renewable energy sources on the electricity price level and variabilityâA quantile regression approach. Energy Economics, 85: 104532, 2020.
K. Poplavskaya, J. Lago, and L. De Vries. Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets. Applied Energy, 270:115130, 2020.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015. URL https://www. tensorflow.org/. Software available from tensorflow.org.
Paper not yet in RePEc: Add citation now
- M. Kremer, R. Kiesel, and F. Paraschiv. An econometric model for intraday electricity trading. Philosophical Transactions of the Royal Society A, 379(2202):20190624, 2021.
Paper not yet in RePEc: Add citation now
M. Kremer, R. Kiesel, and F. Paraschiv. Intraday electricity pricing of night contracts. Energies, 13(17):4501, 2020.
M. Narajewski and F. Ziel. Econometric modelling and forecasting of intraday electricity prices. Journal of Commodity Markets, 19:100107, 2020.
M. Narajewski and F. Ziel. Ensemble forecasting for intraday electricity prices: Simulating trajectories. Applied Energy, 279:115801, 2020.
M. Narajewski and F. Ziel. Estimation and simulation of the transaction arrival process in intraday electricity markets. Energies, 12(23):4518, 2019.
- M. Narajewski and F. Ziel. Optimal bidding on hourly and quarter-hourly day-ahead electricity price auctions: trading large volumes of power with market impact and transaction costs. arXiv preprint arXiv:2104.14204, 2021.
Paper not yet in RePEc: Add citation now
- M. Narajewski, J. Kley-Holsteg, and F. Ziel. tsrobprep â an R package for robust preprocessing of time series data. SoftwareX, 16:100809, 2021.
Paper not yet in RePEc: Add citation now
- Method for determining the reBAP â regelleistung.net. https://www.regelleistung. net/ext/static/rebap?lang=en. Accessed: 2022-02-18.
Paper not yet in RePEc: Add citation now
N. Kumbartzky, M. Schacht, K. Schulz, and B. Werners. Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market. European Journal of Operational Research, 261(1):390â404, 2017.
R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54 (3):507â554, 2005.
R. A. van der Veen and R. A. Hakvoort. The electricity balancing market: Exploring the design challenge. Utilities Policy, 43:186â194, 2016.
R. A. van der Veen, A. Abbasy, and R. A. Hakvoort. Agent-based analysis of the impact of the imbalance pricing mechanism on market behavior in electricity balancing markets. Energy Economics, 34(4):874â881, 2012.
- R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1):267â288, 1996.
Paper not yet in RePEc: Add citation now
R. Weron. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International journal of forecasting, 30(4):1030â1081, 2014.
- T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2623â2631, 2019.
Paper not yet in RePEc: Add citation now
T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the American statistical Association, 102(477):359â378, 2007.
T. Janke and F. Steinke. Forecasting the price distribution of continuous intraday electricity trading. Energies, 12(22):4262, 2019.
T. Serafin, B. Uniejewski, and R. Weron. Averaging predictive distributions across calibration windows for day-ahead electricity price forecasting. Energies, 12(13):2561, 2019.