OFFSET
1,4
COMMENTS
LINKS
E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
FORMULA
G.f. of column k is f[k]-f[k+1], where f[k]=z^k*(1-z)/(z^2-2*z+1+z^(1+k)*k-k*z^k-z^(1+k)) is the g.f. for directed column-convex polyominoes whose columns have height at least k.
EXAMPLE
Triangle starts:
1;
1,1;
4,0,1;
10,2,0,1;
28,5,0,0,1;
75,10,3,0,0,1;
202,23,7,0,0,0,1;
MAPLE
f:=k->z^k*(1-z)/(z^2-2*z+1+z^(1+k)*k-k*z^k-z^(1+k)): T:=proc(n, k) if k<=n then coeff(series(f(k)-f(k+1), z=0, 15), z, n) else 0 fi end: for n from 1 to 13 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form
MATHEMATICA
f[k_] := z^k*(1 - z)/(z^2 - 2*z + 1 + z^(1 + k)*k - k*z^k - z^(1 + k));
T[n_, k_] := If[k <= n, SeriesCoefficient[f[k] - f[k+1], {z, 0, n}], 0];
Table[T[n, k], {n, 1, 13}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 25 2024, after Maple Program *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 04 2006
STATUS
approved