Nothing Special   »   [go: up one dir, main page]

login
A121299
Sum of the heights of all directed column-convex polyominoes of area n; here by the height of a polyomino one means the number of lines of slope -1 that pass through the centers of the polyomino cells.
1
1, 4, 14, 47, 149, 458, 1373, 4046, 11765, 33857, 96611, 273760, 771164, 2161352, 6031104, 16764719, 46442640, 128268379, 353296944, 970717966, 2661204271, 7280832780, 19882745230, 54203791062, 147536291969, 400991600305
OFFSET
1,2
LINKS
E. Barcucci, A. Del Lungo, R. Pinzani and R. Sprugnoli, La hauteur des polyominos dirigés verticalement convexes, Actes du 31e Séminaire Lotharingien de Combinatoire, Publi. IRMA, Université Strasbourg I (1993).
E. Barcucci, R. Pinzani and R. Sprugnoli, Directed column-convex polyominoes by recurrence relations, Lecture Notes in Computer Science, No. 668, Springer, Berlin (1993), pp. 282-298.
FORMULA
a(n) = Sum_{k=1..n} k*A121298(n,k). [Corrected by R. J. Mathar, Sep 18 2007]
EXAMPLE
a(2)=4 because the vertical and the horizontal dominoes have altogether 4 diagonals with slope -1.
MAPLE
T:=proc(n, k) if n<=0 or k<=0 then 0 elif n=1 and k=1 then 1 else T(n-1, k-1)+add(T(n-k, j), j=1..k-1)+add(T(n-j, k-1), j=1..k-1) fi end: seq(add(k*T(n, k), k=1..n), n=1..15);
MATHEMATICA
T[n_, k_] := T[n, k] = Which[n <= 0 || k <= 0, 0, n == 1 && k == 1, 1, True, T[n - 1, k - 1] + Sum[T[n - k, j], {j, 1, k - 1}] + Sum[T[n - j, k - 1], {j, 1, k - 1}]];
a[n_] := Sum[k*T[n, k], {k, 1, n}];
Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Aug 25 2024, after Maple program *)
CROSSREFS
Cf. A121298.
Sequence in context: A124805 A362279 A121530 * A326346 A046718 A291385
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Aug 04 2006
EXTENSIONS
More terms from R. J. Mathar, Sep 18 2007
STATUS
approved